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21 Outline

• Description of radiation transport discretizations

• General verification definitions and techniques

• Special considerations for unstructured meshes

• Application to Sceptre transport code

• Results

• Conclusions
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I3 Continuous-Energy Boltzmann Transport Equation
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The steady-state transport equation describes a six-dimensional
phase space:
• 3 in space (r)
• 1 in energy (E)

• 2 in direction (F2).
The fundamental unknown is the angular flux density IP

[h •• V +o-t(r,E)111#,E,f2>)=

fdE' f cISTo-s(r,E' —> E,S1' —> SI)ip(r,E',S1')+q(r,E,S1)

• v:
at:

as:

"streaming" term

"collision" (total) term

double differential scattering term



41 Energy differencing: multigroup
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If we integrate the energy-dependent Boltzmann equation over an energy
range ("group"), we obtain a coupled system of within-group (or
monoenergetic) equations, which are typically solved via "outer"
(Richardson) iterations:

[), • v + at,g(r)11p9(r,)

1 f dd 'o-s,g,,g (r , Si' -> s1)09,(r, si') + qg (r, si)
g f

Note: assumptions about the spectral shape of the flux are made, which
affects the multigroup cross sections. This is notoriously difficult for
neutronics due to nuclear resonances. Such cross sections are usually
supplied as an external database rather than embedded in the code.

(Takeaway lesson: Deterministic codes "solve" the cross section problem by
defining it as someone else's problem.)



51 Transport Equation
Forms of Monoenergetic Boltzmann i

.*

SCEPtRE

First-order: [S/ • V + aiv(r,Q)= MID kr , SI) + Q(r,Q)

Second-order:

[— Q . v9i-1Q . v + 9i v(r,Q)= Q(r ,Q)— Q .V[9i-1Q(r ,Q)]

The two continuous forms above are equivalent.

Discretizations, however, yield different properties:

• Solutions
• Solvers

I
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61 Spatial discretizations
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There are various spatial discretizations that have been
used for deterministic codes. We will focus on finite
element methods

• Discontinuous Galerkin FEM for 1st-order form

• Continuous FEM for 2nd-order form

• Linear and quadratic basis functions

• Structured and unstructured meshes



I7 Angular discretization: discrete ordinates (Sn)

• Collocation in angle

• Compute solution
in discrete
directions

• Use numerical
quadrature to
compute angular
integrations
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I8 Angular discretization: spherical harmonics (Pn)
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9 Angular discretization: finite elements
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Verification techniques:
10 method of manufactured solutions

General equation to solve:

Du = q

Classic verification approach:

Set q 4 derive u; compare uh to u

MMS verification approach:

Set u 4 derive q; compare uh to u

Requires the code to accept a general source term
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I11 method of manufactured solutions
Verification techniques: i
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The method of manufactured solutions is used to verify error
convergence rates.

ch =uh —u = chP + c'hP+1 +•••

—> p = log2
gh12 i

We compare the observed convergence rate to the theoretical
rate on a series of meshes to verify the code.

I
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12 Unstructured meshes: refinement rules
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Unstructured meshes: refinement rules
13 I (tetrahedra)

 >

a

. 0
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The shortest diagonal ad, be, or cf should be used to
subdivide each tetrahedron. Failure to do so can result in
tetrahedra of increasingly poor quality.



14I Mesh refinement rules for curved elements

a b

d'

>

d'

.*

SCEPtRE

a

Element refinement should occur in interpolation space (i.e.
"master element").

• ensures valid elements

• preserves Jacobians



151 Example: triangular mesh refinement
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I16 Example: quadrilateral mesh refinement
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171 SCEPTRE Code Description
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SCEPTRE: Sandia's Computational Engine for Particle Transport
for Radiation Effects

• Linear steady-state deterministic Boltzmann transport solver

• Sn, Pn, or FEM in angle

• Multigroup in energy

• Discontinuous FEM (15t order) and continuous FEM (2nd order)
on unstructured meshes

• Second-order variants

— Even/odd parity flux (EOPF)

— Self-adjoint angular flux (SAAF)

— Least-squares (LS)



181 Error metrics used by Sceptre

L-norm: [ld52f dV

H-norm: [S dC2.1 dV

Streaming-norm: [f A/J. dV

Vin

V

Q • V

SCEPtRE

n
11

Used to determine the difference between a

computational result and a reference solution.



19 I Test strategy
.*

SCEPtRE

We generate tests in two different categories:

"Exact" tests: The solution can be exactly
computed/represented regardless of problem
refinement (also called "patch" tests)

"Inexact" tests: The discrete solution will contain
discretization error, which hopefully decreases with
problem refinement.



201 Exactly solvable problems (prediction) SCEPI7RE

1 x y z xy xz yz xyz x2 y2 z2 x2y x2z y2x y2z z2x z2y x2yz y2xz z2xy

edge2 SU SU

edge3 SU SU s

tri3 SU SU SU

tri6 SU SU SU S S S

quad4 SU SU SU S

quad8 SU SU SU S S S S S

tet4 SU SU SU SU

ter1 0 SU SU SU SU S S S S S S

hex8 SU SU SU SU S S S S

hex2OSUSUSUSUS S S S S S S S S S S S S S S S I

S: Structured meshes

U: Unstructured meshes

Jacobians are generally non-constant in unstructured
meshes, resulting in some finite element integrals that
cannot be exactly computed with standard quadratures.



211 Structured mesh results, 2D
. e .

SCEPtRE [Al
Element
Type

Solver
Linf error norm

1 x x2 xy x3 x2y

tri3 Sn-1st 7.79x1 0-14 3.70x1 0-14 1.06x10-2 5.04x10-3 2.73x10-2 1.26x10-2

tri6 Sn-1st 7.74x1 0-13 7.85x1 0-13 7.43x1 0-13 6.60x1 0-13 9.47x10-4 2.79x10-4

quad4 Sn-1st 2.55x1 0-15 1 .67x1 0-15 1.18x10-2 1 .22x1 0-15 3.13x10-2 1.04x10-2

quad8 Sn-1st 1 .05)(10-14 7.55)(10-15 7.33x1 0-15 4.44x1 0-15 1.05x10-3 3.44x1 0-15

tri3 Sn-EOP 2.29x1 0-14 4.90x1 0-14 2.07x10-2 5.32x10-3 5.20x10-2 2.46x10-2

tri6 Sn-EOP 8.06x1 0-14 1 .10x1 0-13 1 .14x1 0-13 1 .98x1 0-13 2.33x10-3 5.61x10-4

quad4 Sn-EOP 3.66x1 0-15 7.12x1 0-14 1.50x10-2 7.26x1 0-14 4.18x10-2 1.31x10-2

quad8 Sn-EOP 5.63x1 0-14 1 .38x1 0-13 1 .1 3x1 0-13 1 .92x1 0-13 1.80x1 0-3 1 .56x10-13

1
I
1
I



221 Unstructured mesh results, 2D
. e .

SCEPtRE [Al
Element
Type

Solver
Linf error norm

1 x x2 xy x3 x2y

tri3 Sn-1st 1.03x1 0-1 3 5.27x10-14 1.40x10-2 6.83x10-3 3.22x10-2 1.60x10-2

tri6 Sn-1st 1.53x10-12 1.05x10-12 7.40x10-3 2.52x10-3 2.14x10-2 5.32x10-3

quad4 Sn-1st 4.11x10-15 2.66x10-15 2.09x10-2 6.12x10-3 4.03x10-2 1.85x10-2

quad8 Sn-1st 4.64x10-14 2.76x10-14 3.04x10-2 1.75x10-2 5.72x10-2 3.26x10-2

tri3 Sn-EOP 3.67x10-14 7.75x10-14 2.34x10-2 9.23x10-3 5.39x10-2 2.43x10-2

tri6 Sn-EOP 7.41x10-14 9.03x10-14 6.83x10-3 3.25x10-3 1.97x10-2 6.95x10-3

quad4 Sn-EOP 9.88x10-14 6.87x10-14 3.34x10-2 9.51x10-3 6.12x10-2 2.77x10-2

quad8 Sn-EOP 6.76x10-14 9.76x10-14 1.57x10-2 7.64x10-3 3.60x10-2 1.36x10-2

1
I
1
I
1



231 Structured mesh results, 3D
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Element
Type

Solver
L,nf error norm

1 x x2 xy x3 x2y xyz x2yz

tet4 Sn-15t 1.05x10-12 5.01x10-13 9.81x10-3 5.74x10-3 2.53x10-2 1.85x10-2 8.57x10-3 1.62x10-2

tet10 Sn-15t 3.08x10-12 1.48x10-12 1.14x10-12 1.08x10-12 9.20x10-4 4.36x10-4 1.88x10-4 7.82x10-4

hex8 Sn-1st 5.88x10-15 4.88x10-15 1.33x10-2 5.22x10-15 3.46x10-2 1.17x10-2 4.33x10-15 1.03x10-2

hex20 Sn-1st 6.11x10-14 3.64x10-14 4.25x10-14 3.97x10-14 1.13x10-3 2.32x10-14 2.24x10-14 1.97x10-14

tet4 Sn-EOP 2.87x10-13 2.22x10-14 1.87x10-2 9.42x10-3 4.94x10-2 2.65x10-2 1.82x10-2 3.67x10-2

tet10 Sn-EOP 6.80x10-13 2.26x10-13 1.90x10-13 1.72x10-13 1.91x10-3 6.91x10-4 3.26x10-4 1.21x10-3

hex8 Sn-EOP 9.17x10-14 1.03x10-14 3.29x10-2 1.39x10-14 8.99x10-2 3.08x10-2 9.27x10-15 2.88x10-2

hex20 Sn-EOP 8.46x10-14 6.06x10-14 5.64x10-14 4.45x10-14 3.62x10-3 5.20x10-14 4.76x10-14 3.55x10-14



241 Unstructured mesh results, 3D
.
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Element
Type

Solver
Linf error norm

1 x x2 xy x3 x2y xyz x2yz

tet4 Sn-1st 1.20x10-12 5.82x10-13 1.88x10-2 9.14x10-3 4.89x10-2 1.94x10-2 1.13x10-2 1.87x10-2

tet10 Sn-1st 4.20x10-12 2.25x10-12 9.15x10-4 6.30x10-4 2.70x10-3 1.63x10-3 1.03x10-3 1.36x10-3

hex8 Sn-1st 1.08x10-14 9.77x10-15 2.35x10-2 7.66x10-3 6.15x10-2 2.08x10-2 1.01x10-2 1.66x10-2

hex20 Sn-1st 6.38x10-14 5.60x10-14 5.27x10-3 3.14x10-3 1.03x10-2 4.20x10-3 4.36x10-3 5.26x10-3

tet4 Sn-EOP 4.40x10-13 3.31x10-13 2.33x10-2 1.53x10-2 5.54x10-2 3.24x10-2 2.66x10-2 4.91x10-2

tet10 Sn-EOP 1.41x10-13 1.53x10-13 1.17x10-3 9.17x10-4 4.09x10-3 1.67x10-3 1.29x10-3 1.94x10-3

hex8 Sn-EOP 3.55x10-13 2.88x10-13 4.79x10-2 9.16x10-3 1.25x10-1 4.55x10-2 1.30x10-2 5.14x10-2

hex20 Sn-EOP 1.10x10-13 6.18x10-14 6.86x10-3 6.07x10-3 1.62x10-2 6.78x10-3 5.85x10-3 7.28x10-3



251 Convergence rates for linear FEM
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261 Convergence rates for quadratic FEM
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271 MMS testing
Sceptre bugs/issues identified by means of i
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• 2nd-order methods have inherent degradation of convergence
order

• Element quadratures lose accuracy when Jacobians are non-
constant, but do not affect convergence order

• MMS test generation incorrectly calculated gradients

• Inconsistent definitions of face rotations/mirroring

• Some solvers used 0 rather than previous iterate solutions for
outer iteration

• Some solvers used incorrect scattering cross section functor

I

1



281 Angular FEM verification
. 0
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We have a limited amount of verification data for FEM in angle
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29 I Conclusions . 0 .
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• Radiation transport methods discretize in energy, angle, and
space

• Robust verification activities for spatial discretizations
• "Exact" and "inexact" problems
• Structured and unstructured meshes

*
DAKOTA

• Verification on angular differencing currently limited to exact
problems for Sn and Pn discretizations; some convergence analysis
for FEM in angle

• Verification of multigroup energy differencing for exact problems


