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.| Outline ScEpfae

= Description of radiation transport discretizations
= General verification definitions and techniques

= Special considerations for unstructured meshes
= Application to Sceptre transport code

= Results

= Conclusions




;1 Continuous-Energy Boltzmann Transport Equation SCE,,;R,;

The steady-state transport equation describes a six-dimensional
phase space:

* 3in space (r)

* linenergy (E)

e 2indirection (ﬁ).

The fundamental unknown is the angular flux density ¥

[S_i V + o.(r, E)]t,b(r, E, S_i) =
JdE'j da')as(r,E’ SEQ - S_i)lp(r,E’,S_i') + q(r, E,S_i)
S_i - V. “streaming” term

O¢: “collision” (total) term

Os: double differential scattering term
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1 Energy differencing: multigroup scepfE

If we integrate the energy-dependent Boltzmann equation over an energy
range (“group”), we obtain a coupled system of within-group (or
monoenergetic) equations, which are typically solved via “outer”
(Richardson) iterations:

[S_i V+o:, (T)]l,bg (r, S_l)) =

S [ a1y (0.8 = B (1) + 0, )
g’

Note: assumptions about the spectral shape of the flux are made, which
affects the multigroup cross sections. This is notoriously difficult for
neutronics due to nuclear resonances. Such cross sections are usually
supplied as an external database rather than embedded in the code.

(Takeaway lesson: Deterministic codes “solve” the cross section problem by
defining it as someone else’s problem.)




Forms of Monoenergetic Boltzmann
Transport Equation SeERfoE
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First-order:  |[Q-V+0, jy(r,Q)= MEDy(r,Q)+ O(r,Q)

Second-order:
—Q-VR'Q-V+ R (r,Q)=0(r,Q)-Q-V[R0(r,Q)]

The two continuous forms above are equivalent.
Discretizations, however, yield different properties:

* Solutions
e Solvers
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.| Spatial discretizations scepfRE

There are various spatial discretizations that have been
used for deterministic codes. We will focus on finite
element methods

e Discontinuous Galerkin FEM for 15t-order form

* Continuous FEM for 2"9-order form

* Linear and quadratic basis functions

e Structured and unstructured meshes




7| Angular discretization: discrete ordinates (Sn) scsp;né

= Collocation in angle

= Compute solution
in discrete
directions

= Use numerical
guadrature to
compute angular
integrations
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SCEP]'RE

spherical harmonics (Pn)

Angular discretization
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»1 Angular discretization: finite elements .

Unit sphere with surface mesh
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Verification techniques:
o | method of manufactured solutions SeERfoE

General equation to solve:
Du=q
Classic verification approach:
Set g - derive u; compare u, to u
MMS verification approach:
Set u - derive g; compare u, to u

Requires the code to accept a general source term




Verification techniques:
« | method of manufactured solutions SeERfoE

The method of manufactured solutions is used to verify error
convergence rates.

1
g =u,—u=ch’” +c'h”" +--.

— p=log, S

Enin

We compare the observed convergence rate to the theoretical
rate on a series of meshes to verify the code.
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» 1 Unstructured meshes: refinement rules SteEfas

o
ey




Unstructured meshes: refinement rules
s 1 (tetrahedra) SeERfoE

The shortest diagonal ad, be, or cf should be used to
subdivide each tetrahedron. Failure to do so can result in
tetrahedra of increasingly poor quality.




1 Mesh refinement rules for curved elements .

Element refinement should occur in interpolation space (i.e.
“master element”).

* ensures valid elements

* preserves Jacobians
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s 1 Example: triangular mesh refinement sterfas
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w1 Example: quadrilateral mesh refinement SteEfas




+| SCEPTRE Code Description

SCEP"RE

SCEPTRE: Sandia’s Computational Engine for Particle Transport
for Radiation Effects

e Linear steady-state deterministic Boltzmann transport solver
e S.,P,or FEMin angle
e Multigroup in energy

e Discontinuous FEM (1%t order) and continuous FEM (2" order)
on unstructured meshes

e Second-order variants
— Even/odd parity flux (EOPF)
— Self-adjoint angular flux (SAAF)
— Least-squares (LS)
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« 1 Error metrics used by Sceptre scerfre

]l/n
n]l/n
n]l/n

L-norm: [J'dQJ' dV‘t//”

H-norm: “dQIdVHVW

Streaming-norm: “dQJdV\Q-Vl//

Used to determine the difference between a
computational result and a reference solution.
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w | Test strategy scepfre

We generate tests in two different categories:

— “Exact” tests: The solution can be exactly
computed/represented regardless of problem
refinement (also called “patch” tests)

— “Inexact” tests: The discrete solution will contain
discretization error, which hopefully decreases with
problem refinement.
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Exactly solvable problems (prediction)

SCEP"RE
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S: Structured meshes
U: Unstructured meshes

Jacobians are generally non-constant in unstructured

meshes, resulting in some finite element integrals that
cannot be exactly computed with standard quadratures.
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Structured mesh results, 2D
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SCEPI'RL;

Element L, error norm

Type Solver

1 % X2 Xy x3 X2y

tri3 Sn-1st | 7.79x10'* | 3.70x10'* | 1.06x102 | 5.04x10° | 2.73x102 | 1.26x102

tri6 Sn-1st | 7.74x10 3 | 7.85x1013 | 7.43x10-'3 | 6.60x10"3 | 9.47x10%4 | 2.79x10+4
quad4 Sn-1st | 2.55x10"° | 1.67x10" | 1.18x102 | 1.22x10'> | 3.13x102 | 1.04x102
quad8 Sn-1st 1 1.05x10- | 7.55x10"® | 7.33x10°'5 | 4.44x10'° | 1.05x103 | 3.44x10-1°

tri3 Sn-EOP | 2.29x10-"* | 4.90x10'* | 2.07x102 | 5.32x10 | 5.20x102 | 2.46x102

tri6 Sn-EOP | 8.06x10'* | 1.10x10"'3 | 1.14x10-'3 | 1.98x10"3 | 2.33x10 | 5.61x10*
quad4 Sn-EOP | 3.66x10"° | 7.12x10'* | 1.50x102 | 7.26x10"* | 4.18x102 | 1.31x10%2
quad8 Sn-EOP | 5.63x10"* | 1.38x10°'3 | 1.13x10-'3 | 1.92x10'3 | 1.80x10-3 | 1.56x10-13
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Unstructured mesh results, 2D
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scspjké

Element L, error norm

Type Solver

1 % X2 Xy x3 X2y

tri3 Sn-1st | 1.03x10"® | 5.27x10'* | 1.40x102 | 6.83x10° | 3.22x102 | 1.60x10-2

tri6 Sn-1st | 1.53x10-"2 | 1.05x10'2 | 7.40x103 | 2.52x10°% | 2.14x102 | 5.32x103
quad4 Sn-1st | 4.11x10- | 2.66x10" | 2.09x102 | 6.12x10° | 4.03x102 | 1.85x102
quad8 Sn-1st | 4.64x10'4 | 2.76x10'* | 3.04x102 | 1.75x102 | 5.72x102 | 3.26x10-2

tri3 Sn-EOP | 3.67x10" | 7.75x10"* | 2.34x102 | 9.23x10 | 5.39x102 | 2.43x102

tri6 Sn-EOP | 7.41x10-" | 9.03x10'* | 6.83x10° | 3.25x10° | 1.97x102 | 6.95x103
quad4 Sn-EOP | 9.88x10-"* | 6.87x10'* | 3.34x102 | 9.51x10° | 6.12x102 | 2.77x10%2
quad8 Sn-EOP | 6.76x10'* | 9.76x10-'* | 1.57x102 | 7.64x10° | 3.60x102 | 1.36x102




23‘ Structured mesh results, 3D
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SCEP"RI:;

Element L, error norm

Type Solver

1 X b & Xy X3 X2y Xyz X2yz

tet4 Sn-1st 11.05x1012|{5.01x10-13| 9.81x103 | 5.74x103 | 2.53x10-2 | 1.85x10-2 | 8.57x10-3 | 1.62x10-2
tet10 | Sn-1st 13.08x10-12 | 1.48x10-12 | 1.14x10-12 | 1.08x10-'2 | 9.20x10-4 | 4.36x10- | 1.88x10* | 7.82x10*
hex8 | Sn-1st 15.88x10-°(4.88x10-1° | 1.33x10-2 | 5.22x10-1° | 3.46x102 | 1.17x10-2 | 4.33x10-15| 1.03x10-2
hex20 | Sn-1st ]6.11x10'4 [ 3.64x10-144.25x10-14| 3.97x1014| 1.13x10-3 | 2.32x10'4[2.24x1014 | 1.97x10-"4
tet4 |[Sn-EOP]2.87x10-"3|2.22x10-14 | 1.87x102 | 9.42x10-3 | 4.94x102 | 2.65x10-2 | 1.82x10-2 | 3.67x10-2
tet10 |Sn-EOP]6.80x10-13(2.26x10-13|1.90x10-13 | 1.72x10-13| 1.91x10-3 | 6.91x10# | 3.26x104 | 1.21x10-3
hex8 |Sn-EOP]9.17x10-14[1.03x10-4 | 3.29x10-2 | 1.39x10-'4 | 8.99x10-2 | 3.08x10-2 | 9.27x10-15| 2.88x10-2
hex20 |Sn-EOP]8.46x10-14|6.06x10-14|5.64x10-14|4.45x10-14| 3.62x10-3 | 5.20x10'4|4.76x10'4 | 3.55x10-14




Unstructured mesh results, 3D
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24 SCEP"RI:;
Element L, error norm

Type Solver

1 X b & Xy X3 X2y Xyz X2yz

tet4 Sn-1st |1.20x1012|5.82x10-13 | 1.88x10-2 | 9.14x103 | 4.89x10-2 | 1.94x102 | 1.13x10-2 | 1.87x10-2
tet10 | Sn-1st 14.20x10-12|2.25x10-12 | 9.15x104 | 6.30x10* | 2.70x10-3 | 1.63x10-3 | 1.03x10-3 | 1.36x10-3
hex8 | Sn-1st 11.08x10-14[9.77x10-1% | 2.35x10-2 | 7.66x10-3 | 6.15x10-2 | 2.08x10-2 | 1.01x10-? | 1.66x10-2
hex20 | Sn-1st 16.38x10-14|5.60x10-14| 5.27x10-3 | 3.14x10-* | 1.03x10-2 | 4.20x10- | 4.36x10-3 | 5.26x10-3
tetd4 |[Sn-EOP]4.40x10-"3{3.31x10-13 | 2.33x102 | 1.53x102 | 5.54x10-2 | 3.24x10-2 | 2.66x10-2 | 4.91x10-2
tet10 |Sn-EOP]1.41x10-13[1.53x10-13 | 1.17x10-3 | 9.17x10* | 4.09x10-3 | 1.67x10-3 | 1.29x10-3 | 1.94x10-3
hex8 |Sn-EOP]3.55x10-13(2.88x10-13 | 4.79x10-2 | 9.16x10-3 | 1.25x10-1 | 4.55x10-2 | 1.30x10-? | 5.14x10-2
hex20 |Sn-EOP]1.10x10-13(6.18x10-14| 6.86x10-3 | 6.07x10-3 | 1.62x10-2 | 6.78x10-3 | 5.85x10-3 | 7.28x10-3
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25‘ Convergence rates for linear FEM SteEfas

Error metrics for tri3 meshes
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26‘ Convergence rates for quadratic FEM pafes

Error metrics for tri6 meshes
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Sceptre bugs/issues identified by means of
» 1 MMS testing SCEP;RI:;

e 2"d-order methods have inherent degradation of convergence
order

e Element quadratures lose accuracy when Jacobians are non-
constant, but do not affect convergence order

e MMS test generation incorrectly calculated gradients
e Inconsistent definitions of face rotations/mirroring

e Some solvers used O rather than previous iterate solutions for
outer iteration

e Some solvers used incorrect scattering cross section functor
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1 Angular FEM verification Scepfre

We have a limited amount of verification data for FEM in angle
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»| Conclusions P o

SCEPfRE  DAKOTA

- Radiation transport methods discretize in energy, angle, and
space
* Robust verification activities for spatial discretizations

e “Exact” and “inexact” problems

e Structured and unstructured meshes

* Verification on angular differencing currently limited to exact
problems for S_ and P, discretizations; some convergence analysis
for FEM in angle

e Verification of multigroup energy differencing for exact problems




