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In structural dynamics, a common practice when modeling
bolted joint structures is to create finite element models (FEM)
using multi-point constraints (MPC) and/or joint element(s) to
reduce the number of DOF (Degrees of Freedom) that need to
be joined at the contact interfaces. Scalability becomes an is-
sue when multiple joints are present in a system, each requiring
a nonlinear hysteretic model to capture the nonlinear behavior.
While this increases the computational cost, the larger problem
is that the parameters (and even the form) of the joint models are
not known, and so one must solve a nonlinear model updating
problem with hundreds of unknown variables to fit the model to
measurements. Furthermore, traditional approaches are limited
in how the flexibility of the interface is treated (i.e. with rigid bar
elements the interface has no flexibility). To resolve this short-
coming, this work presents an alternative approach where the
contact interface is reduced to a set of modal DOF which re-
tain the flexibility of the interface and are capable of modeling
multiple joints simultaneously while capturing the global dynam-
ics of the structure. Specifically, system-level characteristic con-
straint (S-CC) reduction is used to reduce the contact interface
to a small number of shapes that describe the global deforma-
tion. To capture hysteresis and energy dissipation that is present
during microslip of joints, a hysteretic element is used for a small
number of S-CC Shapes. This method is compared against a tra-
ditional MPC method constrained with rigid bar elements on a
2D cantilever beam structure with a single joint near the free
end. For all methods, a four-parameter Iwan element is applied
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to the interface DOF to capture how the amplitude dependent
modal frequency and damping change with vibration amplitude.

INTRODUCTION

Large structural finite element models are modeled with sev-
eral sub-assemblies that are connected with joints and introduce
mechanical interfaces. Nonlinearity and significant energy dis-
sipation arise from the friction at the joint interfaces between
these structures which can be characterized in two regimes: mi-
croslip and macroslip. Microslip of the joint occurs when an
applied load causes low pressure regions of the contact interface
to slip while the majority of the joint remains stuck. This re-
gion presents a change in the effective modal damping and nat-
ural frequency as a function of vibrational amplitude, i.e. lead-
ing to weakly nonlinear systems. As the joint is further loaded,
macroslip occurs when the entire contact interface exhibits slip
which is characterized by complicated phenomena such as modal
coupling and multi-harmonic responses, and even joint failure.

Although finite element software can solve contact problems
with high fidelity with friction elements such as Coulomb fric-
tion and capture microslip behavior [1], it requires significant
mesh refinement and large mesh densities at the interfaces in
order to obtain an accurate predictive model. Jewell, et al. [2]
demonstrated this using a commercial finite element package
(Abaqus ®) where models with one or two joints were studied;
her results showed showed that, in order to accurately simulate
the static response, the mesh needed to be highly refined and
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much effort was needed to find an appropriate set of solver set-
tings. This required tens of hours of simulation per iteration and
considerable effort to obtain reasonable solutions. Extrapolat-
ing this method to realistic systems with 100s to 1000s of joints
and to cases where the dynamic response must be computed over
many cycles (whereas Jewell et al. modeled only a quarter vibra-
tion cycle), it is clear that modeling the contact in detail is not
feasible.

In industry, the common approach to modeling joints is to
spider each joint interface together using multi-point constraints
(MPCs) [3] to reduce each contact surface down to a single point
and apply either linear springs for a linear analysis or a com-
bination of springs and hysteretic elements to capture nonlinear
behavior [4, 5] as shown in Fig 1.

CB Reduction
Nodes

Joint Model

"Virtual" Nodes

RBAR/RBE3
Elements
(MPC)

FIGURE 1: A schematic of a spidered model where two
interfaces are reduced to a single node and connected via a

whole joint model [6]

These constraints are meant to approximate the actual con-
tact, where in reality there are certain regions in the interface that
have adequate pressure to remain fully in contact (i.e. stuck). In
other regions, the material may have no contact stiffness due to
gapping or may switch between opened and closed as the struc-
ture vibrates. Lacayo and Allen [7] used MPCs alongside a
whole-joint hysteretic Iwan Model [8] and Quasi-Static Modal
Analysis (QSMA) [9] to determine the amplitude dependency of
the modal properties by iterating on the Iwan parameters used
to model the joint interface. They observed pareto fronts which
gave a trade off where either the frequency error or damping er-
ror between numerical/experimental results could be minimized,
but not both. Singh et al. [6] showed that this spidering approach
yields different results depending on whether the spiders were
rigid (i.e. RBAR) or averaging type (i.e. RBE3) and the size of
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the contact area. The RBAR MPC was shown to be the most ef-
fective at matching the experimental data, with all but one of the
models, it was impossible to obtain a good fit to measurements.

This work seeks to develop an alternative that transitions
from the traditional MPC approach to a continuous flexible inter-
face and inherently extend linear reduction techniques to nonlin-
ear problems. To do so, a full FEM is reduced down to the inter-
face DOF using a Hurty/Craig Bampton (HCB) reduction to de-
crease the size of the model. Then a preload is applied using the
penalty stiffness method shown by Hughes et. al. [10] to generate
a preloaded model with friction that would capture the response
at low amplitudes when the joints are fully stuck and a preload
model without friction to represent the system when the joints
are fully slipping yet still in contact. The nonlinear interface por-
tion of these two models were then reduced using System Level
Characteristic Constraint (S-CC) reduction to obtain a subset of
interface deformation shapes [11]. In the reduced S-CC space, a
physical Iwan element is added to each S-CC DOF to approxi-
mate the nonlinearity localized at the interface. This allows for
the nonlinear hysteretic model to be applied in a decoupled coor-
dinate space while potentially preserving the coupling between
modes when the nonlinear interface forces are projected onto the
structure's linearized modes. This method differs from a Modal
Iwan approach [?] since modal Iwan cannot capture modal cou-
pling due to the formulation, but still significantly captures the
effects of many joints simultaneously.

This work evaluates the ability of this new S-CC method to
capture the nonlinear behavior of various modes of a simple 2D
beam structure. The performance of this approach is also com-
pared to a traditional approach where the interface nodes are spi-
dered using rigid bar elements (RBAR) and connected through
an Iwan joint, as in [6, 7]. It begins to address the concern of
the variation in results with the spidered models, by reducing the
model to a set of DOF in the modal domain while maintaining the
flexibility of the interface (no rigid or averaging constraints).

THEORY AND METHODOLOGY
Hurty/Craig Bampton Reduction

Consider an undamped equation of motion for a multi degree
of freedom system as given by Eq. 1, where M is the mass ma-
trix, K is the stiffness matrix, F is the external forcing, Fj(u, 0)
is the source of the nonlinearity, u is the physical displacement,
and ii is the physical acceleration. If the nonlinear force is only
applied to a boundary, a Reduced order model (ROM) can be
used to approximate the full-order model at that set of reduction
nodes [12]. Although many methods of model reduction exist,
this paper will focus on the HCB method as discussed in [13].

Mi, +Ku + f(u,0) = F (1)



For the HCB method, the system is partitioned between the
boundary and internal DOFs as

[Mii

+

Kii Kibui 0 {

{FMN Mbb Kbi Kbb .1,b(u6) Fb}
(2)

where subscripts b and i represent the boundary and interior DOF
respectively. Note that only the boundary DOF are assumed to
be forced either externally or internally through the joint. The
interface is described by static constraint modes. The interior
is described by vibration modes (fixed-interface modes) and the
static constraint modes. These are combined to capture the dy-
namics joined full structure. As a result, a small number of fixed
interface modes, (II, are computed and that basis is augmented
with constraint modes, 11', as detailed [14], to obtain the HCB
transformation matrix,

{uub, THCB (1/ [CI) IP]
Ub 1. .J 

(3)

This transformation then reduces the equations of motion to the
following where the bar above the mass and stiffness terms indi-
cates the transformed HCB model,

I

[Aii {qi} { 0 } f 0 1
MN Mbb tib 0 Kbb Ub Fi,b(Ub) tFb j

(4)
The ROM can be used to analyze the dynamic response of a
structure more efficiently than the full finite element model, de-
pending on the number of boundary DOF that must be retained in
the nonlinear internal force vector. The quasi-static HCB model
is solved for the preloaded equilibrium state as,

FAH J) qi 1 + o 1 11,0 1 (5)
I_ O Kbbi tUpre j j,b(11pre) j pre

The joint force, F j,b(Upre), is modeled here using the node-to-
node penalty stiffness method using either normal gap elements
or triaxial gap elements. The former only applies penalty stiff-
ness in the direction normal to the contact surface, whereas the
triaxial spring applies additional in-plane stiffness when a con-
tact gap closes. Consider the jth node pair, such that the normal
gap is computed as,

= (4 — A4) — — 62.1) (6)
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where Z is the undeformed normal coordinate of each and AZ is
the relative normal displacement. AZ is the amount of displace-
ment present during the preload step. The penalty spring method
defines the normal contact force for the jth node pair as,

{F j kze g' <0z 0 g, > 0 (7)

The normal penalty spring stiffness is denoted as kz. For the tri-
axial penalty spring, an in-plane stiffness term is included, with
in-plane penalty stiffnesses kx and ky,

= {kx'6Xjx 0

Fj lkY".1
Y 10

gj <

gj>0

gj < 0

gj > 0

(8)

(9)

The joint force, F,j(u) is created by assembling the Fx, Fz
for all of the nodes at the interface. This is done in lieu of a fric-
tion element like Coulomb or Jenkins for the in-plane directions.
This avoids having to compute stick/slip states for closed ele-
ments, and is a simplified contact element to be able to capture
the approximate contact area in the joint, not necessarily to cap-
ture the frictional damping. Following the quasi-static preload
analysis of the model in Eq. 4, the model is linearized about this
equilibrium state yielding,

[ Mibi { 4i} + _

MN Mbb Kbb + dub
upre

1 0 .1
1{U11:} LFb j 

(10)

The partial derivative of the nonlinear force added to the HCB
stiffness matrix at the boundary DOF represents the stiffness of
the joint in either a fully stuck state in the case of the triaxial
penalty spring, or a fully slipped state for the normal penalty
springs.

System Level Characteristic Constraint Reduction (S-
CC)

The application of the System Level Characteristic Con-
straint (S-CC) interface reduction further decreases the number
of DOF in the Hurty/Craig-Bampton ROM in Eq. 10. This ap-
proach computes the eigenvectors from the boundary partition of



the linearized HCB model and uses a truncated set of the S-CC
modes as a basis for the reduction [11, 14]. The modes are com-
puted about the linearized state, and the subscript CC denotes
characteristic constraint modes,

(Kbb
aAb Upre

— (0,,Mbb 43,, = 0) (11)

Depending on the type of penalty springs used to linearize
the system, this equation produces either the fully stuck or fully
slipping S-CC modes. A truncated subset of the S-CC modes is
used to further reduce the HCB mass and stiffness matrices using
the transformation matrix,

T scc =
I 0
[0 Occ

(12)

Mscc = Cr SCOT[ I itIFICilibiTSCC (13)
Mbi ivibb

Aii 0

Kscc = (TKO
T dFi

Kbb 1T SCC (14)
u —dub

Upre

If all CC modes are kept in the reduction, the S-CC model is iden-
tical to the HCB reduced model. This reduction method captures
both the motion of the boundary and the global dynamics of the
structure, resulting in a reduction of the HCB model. Utilizing
the linearized EOM from the preloaded state in Eq. 10, the EOM
for the S-CC reduced model about the nonlinear preloaded state
is,

[
Mc/ ~jic] iic 

f 4,
e L O
1+ [,, 

Acc] 
o q, 

qcc 
1 

f(t)
(15)

where the c subscript indicates the reduction using CC modes.
The stiffness matrix is completely decoupled with Acc, a diagonal
matrix with the coc2c values. All coupling is through the mass
matrix off-diagonal terms, Mic and Ma.

Adding the S-CC lwan Element
A traditional interface reduction has a set of vectors describ-

ing the motion of a top surface and a second set for the bottom
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surface. The S-CC model presented here is different in that it
is a reduction applied after assembly. Deformations of the in-
terface are captured by the coordinates qcc, whereas motions of
the structure away from the interface are captured by qi. Hence,
one can capture friction in the joint by applying a 4-parameter
Iwan element between each qcc coordinate and ground in Eq.
15. In this way the joint is inactive if the structure vibrates in a
fixed-interface mode (with no deformation of the interface) and
is activated when the interface deforms.

In the case where the joint is modeled as a normal penalty
spring (i.e. fully slipped), the bolts are the only source of in-
plane stiffness, and the linearized natural frequency for the ith S-
CC mode shape is denoted as (0,20,,,,, which are the values on the
diagonal of Acc. in Eq. 15. Conversely, when the interface is fully
stuck, the linearized frequency is oeci. The relationship between
these two models can be explicitly shown with the EOM for the
S-CC coordinates. The quasi-static model of Eq. 15 appended
with an Iwan element to the ith S-CC coordinate in Eq. results
in,

fcc,i(qcc,i) = fi(t) (16)

where fcc,i(qco) is the nonlinear joint model applied to the ith
S-CC coordinate. The modal Iwan joint has a linearized stiff-
ness associated with it, termed KT , which can be chosen such
that Acc = coc.20,_ + KT . This constraint is placed on the selec-
tion such that the modes 1.) converge to the fully stuck solu-
tion at low response amplitudes, and 2.) converge to the fully
slipped solution at high response amplitude as the stiffness of the
modal Iwan element goes to zero. In this approach, the interface
DOF may be reduced while maintaining flexibility in the bound-
ary DOF and spanning all the possible joints in the structure. It is
important to note that the slipped and stuck models have different
S-CC shapes and frequencies thus requiring that one augment the
slipped model and its S-CC shapes with KT such that the stiff-
ness matches that of the stuck model. The resulting nonlinear
equations-of-motion with grounded S-CC modal Iwan elements
becomes,

[Mci It] {t} + [A: Ac.c,,, {qq:c} {1.,,(0qcc)} t(t)

(17)
For this paper, the S-CC model with a nonlinear joint is referred
to as nSCC.

Whole Joint Models
Segalman's 4-parameter Iwan element considered both ana-

lytical solutions for contact and empirical evidence that showed



that joints exhibit power-law energy dissipation versus force (or
vibration amplitude) [8]. An Iwan element is a collection of
slider or Jenkins elements in parallel, in which the slip force1 for
each slider is governed by several parameters, i.e. the friction
coefficient, normal force, etc.... Segalman's model recognizes
that the net effect of all of these parameters must be to produce
power-law dissipation versus vibration amplitude, which is now
governed by only two of the four parameters in the Iwan model.
The other two parameters control the transition to macroslip
when the joint slips completely. Macroslip is typically not ob-
served in engineered joints if they are tightened properly, except
perhaps under extreme loading. The four parameter Iwan model
can be represented by the parameters: FS,KT,z,and 3, given in
Table 1. For an in-depth discussion of the Iwan element, refer
to Segalman's original paper on Iwan elements [8] and Deaner's
paper on the modal Iwan model [15].

TABLE 1: Definition of Iwan Parameters (Physical Description)

Fs The force necessary to cause macroslip

KT The tangential stiffness of the Jenkins elements

(i.e. the joint stiffness when no slip occurs)

x The exponent that describes the slope of the energy

dissipation curve

The ratio of the number of Jenkins elements that slip

before microslip and then at macroslip

This element is general that it can be applied physically be-
tween two interfaces for the RBAR method or between an S-CC
shape and ground in the case of the nSCC ROM. The element
is fundamentally the same equations, but has different interpre-
tations of the forces (i.e. physical or modal). This enables the
model to capture the hysteresis in the joint when the surface slips
and generate curves that depict the amplitude dependent trends
of the natural frequency and damping of the global mode. For
this paper, the quasi-static method is utilized to generate these
curves with the Iwan joint model. In the case of the nSCC ROM,
it is important to note that adding these elements to S-CC shapes
allows the modes of the system to retain some level of coupling.
The reduced S-CC shapes are uncoupled, but allow coupling be-
tween different physical modes by having one shape contribute
to multiple modes.

l If all sliders have the same friction coefficient then the slip force is defined
by the normal force for each slider.
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Quasi-static Modal Analysis
The goal is to understand how each mode responds (decay

and frequency of oscillation) during free vibration after a large
initial force/displacement. This would require simulating the dy-
namic response and decomposing that into modes. However, that
is computationally expensive [?]. The Quasi-static modal anal-
ysis method is used in lieu of a dynamic analysis to generate
the hysteresis curve depicting the dependency of the modal fre-
quency and damping ratio on amplitude. The method used is a
variation to the one developed by Festjens et. al. [9] which was
extended to whole joint models by Lacayo and Allen [7]. Fest-
jens et. al. solved the quasi-static problem in which a distributed
load in the shape of the vibrational mode of interest is applied on
a structure at various amplitude levels. Together with Masing's
rules, the load — displacement hysteresis curve yields an approxi-
mation for the dynamic response of the system. A brief overview
of the method is presented here. See [7, 16, 17] for additional de-
tails and limitations Utilizing the undamped MDOF equation of
motion given in Eq. 1, at low amplitudes, the joint force Fj(u)
can be replaced by a low amplitude stiffness at the equilibrium
position given by

KT = 
(9Fj

du
(18)

The modes of the linearized system about the equilibrium point
are found by solving the linearized eigenvalue problem about the
preloaded state,

(K + KT — (01,rM)(1) = (19)

Applying a force in the shape of the mode F = MOi where (pi is
the mode of interest, results in the following quasi-static problem
where a are the different load levels. The acceleration term is
removed since the system is solved statically.

Ku — Fj(u) = (m)oia (20)

In this work, the nonlinear joint force comes from the Iwan ele-
ment and is a function of the displacements, u. After solving Eq.
20, one obtains the static response, u(a), from which the modal
amplitude, natural frequency, and damping ratio can be written
as function of a as shown in Eq. 12-17 in [7]. The damping ratio
is obtained by summing up the energy dissipated by friction from
each Iwan joint in the system. Given that all three variables are
functions of amplitude, the damping and natural frequency can
be plotted in terms of modal amplitude and this is the convention
that will be used in this work.



LINEAR REDUCTION TECHNIQUES
Structure of Interest

This work applies the S-CC Iwan reduction methodology to
a 2D structure built in Abaqus, and contrasts the method using
traditional MPC methods with RBAR-type elements connected
with a physical four-parameter Iwan element. The 2D cantilever
beam is made of steel with the properties shown in Table 2. The
2D Abaqus mesh and a diagram showing the bolt section, where
a preload is applied to the top and bottom surface, and the result-
ing contact patch (where the nodes come into contact) is shown
in Fig. 2. The beam has fixed boundary conditions on the left
side of the beam for no deflection.

TABLE 2: Material Properties and Dimensions for the 2D
Abaqus Model

Property Value (SI) Value (Imperial)

Length

Cross-Section

Density

Elastic Modulus

Poisson Ratio

20.32 cm

1.27 cm square

7.84e-3 kg 1 cm3

200 GPa

0.29

8.00 in

0.50 in square

7.34e-4 slinches 1 in3

2.9e7 psi

0.29

Lx
O Beam
O Beam
O Bolt Section

O Mid-Line
Contact Patch

FIGURE 2: (Top) Node diagram of the beam, (Bottom) Abaqus
beam model

The model has two beams of half the total height sand-
wiched to one another along the mid-line where contact occurs
along the midline of ther halves. A preload distributed force is
applied to the outer surfaces of the bolt section (red) and a contact
simulation is done to retrieve the first six modes of the structure
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after preload. The resulting nodes in contact from Abaqus after
preload are shown in yellow. The y direction displacement af-
ter the preload step from Abaqus for those nodes is scaled for
visualization as shown in Fig. 3.

FIGURE 3: Scaled Y displacement of the beam after the preload
step

The amplitude dependent frequency and damping curves are
generated from a quasi-static analysis in Abaqus for three modes
of interest: Mode 1 (first order bending), Mode 2 (second order
bending), and Mode 4 (third order bending). The deformation
shapes for the modes of interest are depicted in Figure 4. The
mode shapes scale is exaggerated to show the shape clearly and
colored by the deformation in the in-plane (x) direction.

(a) Mode Shape 1

(b) Mode Shape 2

(c) Mode Shape 4

FIGURE 4: Stuck mode shapes of the cantilever beam for the
first three modes of interest



To evaluate the effectiveness of the ROM methods, the mass
and stiffness matrices from Abaqus were exported to MATLAB
for the preloaded case with in-plane friction and a slipped model
with no in-plane friction. It was apparently not possible to export
a stiffness matrix from Abaqus that included the stiffness of any
penalty springs used when solving the contact problem. There-
fore to replicate those two cases, the penalty stiffness method
was used in Matlab to generate the stuck and slipped model for
the RBAR NLROM and the nSCC NLROM. The slipped model
has only a normal spring, whereas the stuck model has a the same
normal spring constant and an in-plane spring to account for
friction. The nodes in contact are determined from the Abaqus
preload solution. The spring constants were calibrated to min-
imize the frequency error between the penalty stiffness models
and the frequencies from Abaqus for the slipped and stuck case.
The resulting normal stiffness was 1.01e6 lb/in (1.77e8 N/m)
and the in-plane stiffness was 488.72 lb/in (8.56e4 N/m). With
these stiffnesses, the maximum error in any natural frequency
(comparing the Matlab model to the natural frequencies com-
puted by Abaqus) was 0.002%. The first six linear frequencies
for the penalty stiffness model for the slipped and stuck models
are given in Tab. 3. Error between the Abaqus frequencies and
the penalty stiffness frequencies could be attributed to the stress
straining affects present in the Abaqus solver which could per-
turb the results. Even with neglecting these effects, the Matlab
model agrees well with the Abaqus predictions, and are suitable
for developing the ROM strategy.

TABLE 3: Linear Frequencies for the MATLAB Slipped and
Stuck Penalty Stiffness Models against Abaqus

Mode Slipped Model

Freq. [Hz] Error

Stuck Model

Freq. [Hz] Error

1 139.09 0.001% 198.23 0.00%

2 861.5 0.00% 1035.8 -0.002%

3 1157.4 0.002% 1157.4 0.002%

4 2366.1 -0.002% 2531.6 0.001%

5 3177.7 -0.002% 3177.7 -0.002%

6 4571.9 0.00% 4713.6 0.001%

Linear Reduction
The full model containing 8684 DOF was reduced down to

a HCB ROM of the interface of 260 interface DOF (Static Con-
straint Modes) and 20 Fixed Interface Modes while maintaining a
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maximum frequency error of 0.002% for the first 10 modes in ei-
ther case. Using the HCB model, the MPC/RBAR method and S-
CC Reduction were examined on their effectiveness in modeling
the linear dynamics with a smaller set of DOF. The MPC/RBAR
method requires that the two beams be completely uncoupled to
one-another, each with their own mass and stiffness matrix. To
obtain the mass and stiffness matrix of each beam at the inter-
face, a rigid body transformation is required as given by Eq. 21
- 23 where TRBAR is the transformation matrix from the interface
DOF to the reduced RBAR DOF, 'I' are the rigid body unit defor-
mation shapes, and M/KRBAR are the resulting RBAR mass and
stiffness matrices.

I 0 0

TRBAR = 0 41 RBAR,Top 0
0 0 YRBAR,Bottom

[MRBAR] = [TRBAR] T [MHCB] [TRBAR]

[KRBAR] = [TRBAR] T [KHCB] [TRBAR]

(21)

(22)

(23)

'11 is generated for the interface DOF for each beam by applying
a unit deflection of the interface rigidly in the in-plane direction,
the normal direction, and the rotation direction. The latter was
calculated using IP Rotation = (XDOF - xc)19 where XDOF is the lo-
cation of all in-plane nodes, xc is the centroid of the interface,
and 0 is a unit rotation. This yields a IP matrix of size n in-
terface DOF for the top and bottom beams by two rigid body
displacements and one rotation for each interface (total 6). As
a result, the mass and stiffness matrices include 20 Fixed Inter-
face Modes, 3 DOF for the top beam (x, y, and rotation), and
3 DOF for the bottom beam. Springs were added between each
of the three DOF from the top and bottom halves of the beam
to calibrate to the HCB model. Since the full/HCB models were
generated with normal and in-plane springs, the slipped model
was used with the expectation that a negative spring constant
would be possible for the normal direction in the RBAR model
to counter this constraint. Using the direct search optimiza-
tion method [18] to minimize frequency error between HCB and
RBAR, the following spring constants were used: kx = 1.95e7
lb I in, ky = -7.88e7 lb I in, and ke = -7 .78e7 lb 1 in (3.42e9,
-1.38e9, -1.36e9 N Im). The resulting frequencies against the
stuck model are shown in Tab. 4.

Similar to the RBAR/MPC method, the S-CC method re-
quired 6 S-CC Shapes to correlate to the HCB reduced Model
for both the slipped and stuck cases. These S-CC shapes of the



stuck case are given in Fig. 5 with the color gradient describing
displacement in the x direction. The resulting frequencies for the
first six modes and errors are given in Tab. 4.

(a) S-CC Shape 1

(b) S-CC Shape 2

(c) S-CC Shape 3

(d) S-CC Shape 4

(e) S-CC Shape 5

(f) S-CC Shape 6

FIGURE 5: S-CC Deformation Shapes
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TABLE 4: Linear Frequencies for the Slipped Model for the
HCB, RBAR, and S-CC Cases

Mode HCB Model

Freq. [Hz]

RBAR Model

Freq. Error (%)

S-CC Model

Freq. Error (%)

1 198.23 -0.02 0.00

2 1035.6 -0.03 0.00

3 1157.4 0.2 0.00

4 2531.6 0.08 -0.001

5 3177.8 -0.18 -0.005

6 4717.2 0.30 -0.002

The first few S-CC mode shapes look very similar to the
first few global mode shapes of the structure. In essence, the
S-CC mode shapes are the modes of a model for the complete
structure after statically reducing the assembled model to the in-
terface. However, it is also important to note that all interface
DOF are free to move in the S-CC modes, so they can capture
relative slip between the surfaces, as is visible in some of the
higher S-CC modes. In Fig. 5, the S-CC Shapes are transformed
back to the full DOF space to describe their effect on the global
motion of the beam. In all 6 modes, the S-CC Reduced model
produces negligible errors much lower than the RBAR reduced
model. It is important to note that the reduced mode shapes for
both methods remained decoupled with a max off-diagonal MAC
(Modal Assurance Criterion) value of 0.48 and 0.49 for RBAR
and S-CC respectively between Modes 1 and 2 [19]. The larger
the off-diagonal value, the similar the mode shapes look in the
reduced space. The self-MAC between the mode shapes for the
Abaqus model showed the same similarity in mode shapes be-
tween Modes 1 and 2. The reductions do not increase the off-
diagonal value, therefore preserving the mode shapes as present
in the full model.

NONLINEAR REDUCTION TECHNIQUES
Nonlinear Extension of RBAR MPC Reduction

For linear analysis, three linear springs are placed between
the two halves of the beams at each DOF for the RBAR approach.
This is then extended to the nonlinear regime by placing an Iwan
element at the DOF in the slip direction (x-direction) and linear
springs elsewhere to capture the microslip of the joint of interest.
This is done with the goal to compute the amplitude dependent
frequency and damping curves (see Figs. 7,8) for the ROMs and
compare against those obtained from Abaqus. A 100,000 itera-



tion Monte-Carlo study was conducted randomly varying Fs, y,
X, and 0, where y is the scale of the linear tangential stiffness
found from the relationship between the stuck and slipped S-CC
stiffness matrices and given as KT,Scaled = YKT • Furthermore,
Singh et al. [6] found a correlation between a larger contact area
and a reduction in the error between expected QS curves and
those with an Iwan joint. To expand on this finding, this study
adjusts the contact area to 0.75 and 1.5 times the nominal con-
tact area from Abaqus. The results of the Monte-Carlo study on
the three contact areas are shown in Fig. 6 for Mode 1, which
depicts the RMS frequency percent error and RMS damping per-
cent error between the RBAR nonlinear model and the Abaqus
full model. The RMS error is calculated by computing the dif-
ference between the two models over the entire amplitude range
of the mode. Three solutions are examined. (1) the optimal so-
lution for the nominal contact area that minimizes frequency and
damping error, (2) the solution for the larger contact area that
minimizes frequency error, and (3) the solution for the larger
contact area that minimizes the damping error. The frequency
and damping curves for these solutions are shown Fig. 7 and 8
with the corresponding Iwan parameters in Tab. 5. It is impor-
tant to note that unlike Singh, the tangential stiffness scaling is
limited to ±2% to maintain accuracy in the linear regime. If the
linear frequency error is disregarded, a better solution is possible.
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TABLE 5: Iwan parameters for Mode 1 in the X - direction for
the RBAR model

Point Fs[lbf] 7 x 16
P1 90.32 1.0136 -0.892 0.01

P2 111.17 1.0072 -0.693 0.585

P3 118.68 1.0011 -0.8953 0.045

Increasing the contact area yielded much better results for
either the frequency or damping curves, but only a small im-
provement in both simultaneously. The percent frequency and
damping errors for the three points are shown in Table 6 clearly
showing that only one modal parameter can be optimized for a
given contact area within the current parameter space.

TABLE 6: Percent Errors for the RBAR Model against Abaqus
QSMA

Point Contact Area Frequency Error Damping Error

P1 Nominal 0.04% 86.27%

P2 1.5*Nominal 0.003% 78.90%

P3 1.5*Nominal 1.39% 8.89%

Extending the range of the f's from 1 to 50,000 did not result
in curves with a lower frequency or damping error. Modes 2 and
4 could not be correlated to the Abaqus results either and, for
brevity, are not shown here. In our past works we encountered
similar cases, where no set of model parameters would produce
a spidered model that correlated well with measurements, with-
out sacrificing the accuracy of the linear fit, i.e. significantly
changing Kt such that there was large percent error in the linear
frequency. although the agreement here is worse than in any of
our prior works [6].
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Proposed nSCC Method

Whereas nonlinear joint analysis in the physical domain
places a hysteretic (Iwan) model between the reduced joint inter-
faces, this approach places an Iwan element between the ground
and an S-CC modal coordinate, q„, to capture the slip at the joint
when the structure deforms in the shape of the S-CC shape in
question. The eigenvectors of the S-CC reduced mass and stiff-
ness matrices can provide insight into the contribution of each
S-CC Shape on the mode of interest. Table 7 shows the per-
cent contribution of each S-CC Shape and the 20 fixed interface
modes to the three modes of interest.

TABLE 7: S-CC Shape Percent Contributions to the Modes of
Interest

Mode 1 Mode 2 Mode 4

Fixed Interface Modes 2.05 46.26 62.73

S-CC Shape 1 97.93 17.86 10.63

S-CC Shape 2 0.02 30.84 26.39

S-CC Shape 3 0.00 0.00 0.00

S-CC Shape 4 0.00 0.00 0.00

S-CC Shape 5 0.00 0.00 0.00

S-CC Shape 6 0.00 0.04 0.25

The results show that Mode 1 is only influenced by S-CC
Shape 1, and so any nonlinearity in Mode 1 will be governed by
the Iwan joint connected to S-CC Shape 1. Hence, the parame-
ters for that Iwan joint can be determined using Mode 1 alone.
In contrast, both Modes 2 and 4 are affected by S-CC Shapes 1
and 2, and so, while one might obtain initial estimates for the
Iwan elements to apply at each S-CC shape using the individual
modes, in the end all modes must be considered simultaneously.
The KT value for each S-CC shape has already been determined
as explained previously, and so this was not allowed to vary by
more than 2% so as to not degrade the linear performance of the
model. Similar to the RBAR model, this is done by adjusting the
KT value with the scale factor, y. Placing a 4 Parameter Iwan
element at S-CC Shape 1 and updating each parameters sepa-
rately until the curves overlaid, returned the following amplitude
dependent frequency and damping curves for Mode 1 after the
model is solved using QSMA.
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The nSCC model can accurately capture the frequency and
damping behavior of QSMA for Mode 1 with Abaqus to within
0.007% and 2.99% respectively. The fit is done simultaneously
on the structure to produce these errors, whereas RBAR could
fit one or the other, but not both. The larger error with damping
is attributed to fitting the entire modal displacement range of the
Abaqus model which does not purely exhibit power law behavior.
Mode 1 can be tuned with ease since it is primarily dependent on
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Shape 1; however, Modes 2 and 4 require S-CC Shape 2 to be
tuned to minimize the error between the S-CC and Abaqus quasi-
static curves for both modes. For the purpose of the study, Modes
1 and 2, and Modes 2 and 4 were fit by fixing the parameters for
S-CC Shape 1 and tuning the parameters for S-CC Shape 2. All
parameters for nSCC NLROM for Modes 1 and 2 (nSCC1,2), and
Modes 1 and 4 (nSCC1,4) are given in Table 8. In parenthesis is
shown the Mode(s) to which the NLROM was tuned. Both nSCC
NLROMs preserve the quasi-static response for Mode 1.

TABLE 8: Iwan Parameters for the two nSCC NLROMs

Iwan Parameters

S-CC Shape 1

(Mi)

S-CC Shape 2

(M1 +M2)

S-CC Shape 2

(MI +M4)

Fs 5150 23481 16013

y 1.0019 1.0013 1.0000

x -0.287 -0.232 -0.015

P 0.7602 0.9344 0.12648

The results so far show that it is quite simple to determine
the parameters for the Iwan element connected to a particular
S-CC shape in order to very accurately replicate the behavior
of a particular mode. However, it is usually desired to have a
single NLROM to capture all of the nonlinear modes of inter-
est. Given that both Mode 2 and 4 are dependent on Shape 2, a
Monte - Carlo simulation was conducted with 100,000 iterations
randomly varying Fs, y, and x for Shape 2. These parameters
were bounded between the values required to calibrate nSCC1,2
and nSCC1,4. was not varied as it was the same for both mod-
els. The error metric used to find the optimal solution of the
Monte - Carlo simulation is given by Eq. 24. The total error is a
sum of the errors of each mode (denoted by the subscript i) which
is found using a weighted sum of the squares of the damping and
frequency errors defined by Eq. 25. Each mode can be weighted
separately (147i) as well as the damping and frequency (Wco,
The symbols co and refer to the damping and frequency points
from QSMA respectively, and the subscript ref refers to the refer-
ence data, in this case the points from Abaqus quasi-static curves.
The norm of these error vectors are calculated in Eq. 26 such that
they can be used in subsequent equations as scalars.

Etotai = (EE7 )1/2 (24)



(117,20 i • E,20 + W2 . • E2
Ei =147,  , 

\/(Wc20i+wli)
(25)

Eco,i = 11((wi wref4/ wref411 , E0=11(gi — Cref4/Cref4 li li
(26)

The optimal solution from Monte - Carlo simulation gen-
erated a single nSCC1,2,4 that can closely reproduce the
frequency and damping versus amplitude for the Abaqus truth
model. Although, the curves do not overlay completely with
those from Abaqus, the frequency and damping are within
0.02% and 8% of the Abaqus QSMA curves respectively for
both modes. The resulting parameters for this NLROM are given
in Table 9.
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TABLE 9: Iwan Parameters for the single nSCC ROM1,2,4

Iwan Parameters

Shape 1

(Mode 1)

Shape 2

(Mode 1 + Mode 2 + Mode 4)

Fs 5150 19079

1.0019 1.0011

x -0.287 -0.0927

0.7602 0.1026

A frequency weighting factor Wco = le8 and Mode 4 weight-
ing factor W4 = 100 were used leaving N and W2 at unity.
The model often chose parameters resembling those for nSCC1,2
therefore requiring a larger weight on the error from the Mode 4



calibration. Since the damping length scale is much smaller than
frequency, it is susceptible to higher errors, thus requiring a fre-
quency weighting factor to ensure the errors are around the same
order of magnitude.

Conclusion
This paper explored the extension of linear S-CC reduction

to nonlinear analyses, here dubbed as nSCC, against the tradi-
tional spidering approach with RBAR MPCs. This was done on
a 2D Beam whose nonlinear frequency and damping behavior
could be computed directly, in order to gauge the effectiveness
of these NLROMs at recreating these curves from a high-fidelity
model. The RBAR model used rigid bar constraints to reduce
each interface to a single point by enforcing the same deforma-
tion, whereas S-CC reduction maintains some flexibility in the
interface, depending on how many S-CC shapes are retained.
The viability of both methods were evaluated on their ability to
reproduce the linear natural frequencies of the beam, as well as
the amplitude dependent frequency and damping curves using
QSMA with Iwan joints.

The S-CC and RBAR and reduced models were able to accu-
rately capture the linear natural frequencies of the first 6 modes
of the HCB model within 0.5%. The S-CC model had errors sig-
nificantly below those for RBAR. Both models needed 20 Fixed
Interface Modes and 6 DOF to capture the linear dynamics by
reducing the 8684 DOF in the FEM by a factor of 1000.

Iwan elements were then inserted into both models to cap-
ture the nonlinearity in the structure due to the joint. The accu-
racy of the models was evaluated by comparing the effective nat-
ural frequency and damping as a function of amplitude, which
indicates the model's ability to more accurately predict the vi-
bration level (and stresses) at high amplitudes when the joints
are dissipating significant energy. The RBAR model was able to
reproduce the frequency or damping curves for Mode 1, but not
both, and the results for Modes 2 and 4 were also poor even after
a thorough exploration of the parameter space. In contrast, the
extension of S-CC to nonlinear (nSCC) allowed for relatively in-
tuitive tuning of the Iwan parameters for each mode separately,
and this provided initial estimates about which to center the op-
timization, making it far simpler. In the end, excellent correla-
tion for the 3 modes of interest was obtained. Although Mode
3 did not exhibit nonlinearity, this model is able to capture the
linear modal parameters of Mode 3. With Mode 1 dependent on
Iwan parameters for S-CC Shape 1, there was a much simpler
optimization problem to solve to capture the nonlinear effects of
Modes 2 and 4 through S-CC Shape 2.

The S-CC reduction method performed efficiently enough
on the 2D Abaqus beam to be viable for multi-joint structures.
In future work we will apply the S-CC method to other models
and explore whether this method can capture coupling between
the modes due to the nonlinearity. The hope is that the inherent

13

flexibility and more intuitive updating of this method will make
it easier to capture the nonlinear dynamics in larger systems that
exhibit more complicated phenomenon.
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