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plan

• introduction / motivation

• automating the algorithm discovery

— general framework

— methods of evolving quantum algorithms

• examples
— general: state overlap

— machine specific: Quantum Fourier Transform
• tests on IBM, Rigetti and noisy simulator

• conclusions
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why automating?

• algorithms are hard to find

• "programming" is non-intuitive
"Quantum Algorithm Zoo" website:

about 70 algorithms, 400 papers on quantum algorithms

• known algorithms may not be the most efficient
(gate count, number of ancilla qubits)

• known algorithms can't be directly executed

• quantum hardware is not perfect

—tailoring algorithms for specific machine counteracting their bias
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approach

• task-oriented with minimal input

task
&
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algorithm
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approach
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approach

• task-oriented with minimal input

task
&

resources
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resources: 5 qubits

constrained connectivity, small gate alphabet
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approach

• task-oriented with minimal input
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approach

• task-oriented with minimal input
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approach

• task

given x, compute f (x)

• training set

{xc„ f(x(y)}

• cost function

cn
.
-C

X ->"-

C = gx a) — 0(A, 012 (A, = cipi

f(x)

- measurement and post-processing

c 0,11
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approach

• optimize cost function C

— algorithm A
• gate positions

• gate choice (CNOT, H, 
eiex

, • • )

— measurement

— classical post-processing e

— initialization
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optimization

• universal set of gates: {G, CNOT} , where

G = G(01, 02, 03), Oi E [0, 27)

optimize
structure

discrete

• gate position

• gate removal

• compress

• rewrite
•

optimize

continuous variables

minimize the cost function

over G = G(91,02,03)

continuous
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example: state overlap (general)

• given states H1f) and VD) , compute 1(4)Hil)

• textbook version

SWAP
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example: state overlap (general)

• given states H1f) and VD) , compute (4)Hil)

• textbook version

SWAP

• textbook version using available gates

H

Tt T Tt

T-0-

T

(16 gates)
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Aanc

example: state overlap (general)

• textbook (human generated)

10)

43)
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• computer generated (Ancilla-Based)
• assumptions: 1 ancilla, measure 1 qubit
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example: state overlap (general)

• textbook (human generated)

10)

4))

H

T)  Tt T Tt

T 0 

• computer generated (Bell-Based)
• assumptions: 1 ancilla, measure everything

10)

ABen =

T) (1, 1, 1, —1)
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discover the scaling: Ancilla-Based algorithm

• solve larger problem
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discover the scaling: Ancilla-Based algorithm

• solve larger problem

Ut U U U U

e= (1,-1) 4

C.)

• look for patterns
one-qubit
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discover the scaling: Ancilla-Based algorithm

• solve larger problem

Ut U U U U

e= (1,-1) 4

/-71

C.)

• look for patterns
one-qubit building block
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discover the scaling: Bell-Based algorithm

• solve larger problem

{

• look for patterns
one-qubit

building block

5= (1,1,1, —1)

6.= (1,1,1,_1)®2

two-qubit

building block building block

2 3 4
gate count

e.= (1,1,1, —1)02

5
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discover the scaling: Bell-Based algorithm

• solve larger problem

{

• look for patterns
one-qubit

building block

can be used to compute Renyi entropies,

5= (1,1,1, —1)

6.= (1,1,1,_1)®2

two-qubit

building block building block

{
{

Y. Submi, L. Cincio, P. Coles, J. Phys. A 52, 044001 (2019)

2 3 4
gate count

1,1,1,-1)02

5
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comparison on IBMQX4
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L. Cincio, Y. Submi, A. Sornborger, P. Coles, New J. Phys. 20, 113022 (2018)
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comparison on IBMQX4
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L. Cincio, Y. Submi, A. Sornborger, P. Coles, New J. Phys. 20, 113022 (2018)
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comparison on Rigetti
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example: Quantum Fourier Transform (machine specific)

• given state IT) , compute UQFT HP)

• target IBM Ourense (5-qubit)

• basis gate set

H PH = "pulse" = e—i7rX/4

T
H11,(0)H

o o
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example: Quantum Fourier Transform (machine specific)

• given state IT) , compute UQFT HP)

• target IBM Ourense (5-qubit)

• basis gate set, error model

P EPH

T-)10- ECNOT

11,(0)H HR,(0)H

• evaluate cost function using noisy gates

o o
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example: Quantum Fourier Transform (machine specific)

• given state IT) , compute UQFT 111)

• textbook version

H R,

• textbook version using available gates

z P R, R,

R,

R,

P R,

R,

R, o R,

z P z
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example: Quantum Fourier Transform (machine specific)

• textbook (human generated)

P R, R, Rz

P R„

• computer generated

Rz P Rz P R,

P Rz 0 P

R,

R,

Rz P

P

— less CNOTs: 12 —> 7

Rz •

R,

P

Rz

P

R,

R,

R„ O Rz

P R,

R,

P

P

R,

Rz

Rz P

P

P

— more noise-free HRz09) H gates with variational parameters

Rz

R,

P Rz

Rz P Rz

L. Cincio, K. Rudinger, M. Sarovar, P. J. Coles, in preparation
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example: Quantum Fourier Transform (machine specific)

• textbook (human generated)

0000 0 0 0 0
 O

= 0 e = = 0 = 0 0 0
• computer generated

TE  P  P 

Rz

P

Rz Rz

Rz P  17 P 77k P P

P

R,
P P

P

P

RI

P P

— less CNOTs: 12 —> 7

— more noise-free H R.MH gates with variational parameters

— less qubit idling: 18 x 3 x

L. Cincio, K. Rudinger, M. Sarovar, P. J. Coles, in preparation
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comparison on noisy simulator
• 1000 random states

• error = 11 pi — Inc) ( Trl , where I Tr) = UQFT
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14/j) L. Cincio, K. Rudinger, M. Sarovar, P. J. Coles, in preparation
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comparison on noisy simulator
• 1000 random states

• error = 11 — Inc) ( Trl , where 1r = UQFT
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14/j) L. Cincio, K. Rudinger, M. Sarovar, P. J. Coles, in preparation

2.6 x reduction
of error
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summary

• this is not a compiler!

• framework for automated algorithm discovery
— optimize structure of an algorithm and continuous gates

— optimize over classical post-processing

• algorithm structure optimization also used in
— Variational Quantum Linear Solver

C. Bravo-Pricto, R. LaRosc, M. Ccrczo, Y. Subasi, L. Cincio, P. J. Colcs, arXiv:1909.05820

— Variational Quantum State Diagonalization

R. LaRose, A. Tikku, E. O'Neel-Judy, L. Cincio, P. J. Coles, npj Quant. Inf. 5, 8 (2019)

— Quantum-assisted Quantum Compiling

S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, P. J. Coles, Quantum 3, 140 (2019)
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summary

• this is not a compiler!

• framework for automated algorithm discovery
— optimize structure of an algorithm and continuous gates

— optimize over classical post-processing

HANK YOU!
• algorithm structure optimization also used in
— Variational Quantum Linear Solver

C. Bravo-Pricto, R. LaRose, M. Ccrczo, Y. Subasi, L. Cincio, P. J. Colcs, arXiv:1909.05820

— Variational Quantum State Diagonalization

R. LaRose, A. Tikku, E. O'Neel-Judy, L. Cincio, P. J. Coles, npj Quant. Inf. 5, 8 (2019)

— Quantum-assisted Quantum Compiling

S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, P. J. Coles, Quantum 3, 140 (2019)
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