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why automating?

« algorithms are hard to find

* “programming” is non-intuitive
“Quantum Algorithm Zoo” website:
about 70 algorithms, 400 papers on quantum algorithms

» known algorithms may not be the most efficient
(gate count, number of ancilla qubits)

* known algorithms can’t be directly executed

« quantum hardware is not perfect
—tailoring algorithms for specific machine counteracting their bias
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approach

» task-oriented with minimal input

task
& >  algorithm
resources
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approach

» task-oriented with minimal input

task
& > algorithm
resources

task: compute
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approach

» task-oriented with minimal input

task
& >  algorithm
resources
1
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|
: 10) A
, |
! |O>J' A
resources: 5 qubits
constrained connectivity, small gate alphabet >
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v Backend: ibmqgx4 (5 Qubits)
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approach

» task-oriented with minimal input

task
& > algorithm
resources
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approach

» task-oriented with minimal input

task
& > algorithm
resources
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classical post-processing €
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approach

 task

given z, compute f(x)

ancilla
qubits

il

NAPNIPA

3

. » [O—
* training set =
{za, f(za)} %

© o

|

classical
post-processing

 cost function

C= Z‘f za) — O(A, 5)| O(A, Q) ZZCiPi
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approach

* optimize cost function C

—algorithm A
 gate positions

+ gate choice (CNOT, H, %, ..))

— measurement
— classical post-processing ¢

— initialization
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optimization

* universal set of gates: {G,CNOT} , where
G = G(01,92,93), 0; € [0, 271‘)

optimize > optimize
structure < continuous variables
—U <> —{ N
g ¥ Gl D
e =
D & -+ gate position =
* gate removal D &
* compress
* rewrite
0o minimize the cost function
S over G = G(6,,6,03)
O —.
—0 D D
discrete continuous
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example: state overlap (general)

+ given states|¥) and |®), compute |(2|¥)|?

» textbook version
D)
)

SWAP
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example: state overlap (general)

+ given states|¥) and |®), compute |(2|¥)|?

» textbook version
D)
)

SWAP

* textbook version using available gates

0) — H s . /L T l H A
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(16 gates)
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example: state overlap (general)
* textbook (human generated)
0) H ¢ * /L T J\ H A
D) H T—D—/ T —D

w4

SPam
=3
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N
SPam
=3
S¥

(16 gates)

 computer generated (Ancilla-Based) Odr—T—T T T 1 T 1 T]

« assumptions: 1 ancilla, measure 1 qubit 2z 0.3 _

c=(,-1) g 02'_ ]
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(8 gates) 1 2 3 4 5 6 7 8 9

gate count
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example: state overlap (general)

* textbook (human generated)

0) | H " * /L T J\ H— A
|®) l H l l THO T —b
&) —b ST T T —D

(16 gates)

« computer generated (Bell-Based)

e
o
&

« assumptions: 1 ancilla, measure everything

80.06 |- -
:% »
10) A g KOS B N
o |
0 ' é
) —b A e=a1,1,-1) 1 2 3

gate count
O = poo + po1 + P10 — P11

Los Alamos National Laboratory 2/26/20




discover the scaling: Ancilla-Based algorithm

* solve larger problem

4—L
g=(1,-1)
) {v—eviy{v-eo—=ouvi+{uequviHA %
N ©
) _ & 22‘
v & E
o = z

2 4 6 8 10 12 14
gate count

)
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discover the scaling: Ancilla-Based algorithm

* solve larger problem

4—L
&= (1,-1)
0 {10 3
N e
(D N>
| >{ VY CD .22 i
N =
M & E
O L 1 | | L | 1 | L
2 4 6 8 10 12 14
gate count
* look for patterns |
one-qubit two-qubit
g=(1,-1) ¢=(1,-1)
0T}t —+{v-o-{ut HA 0) {v—=e¢-{utl+{U}l-9 (vt {uHo-{ut HA
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discover the scaling: Ancilla-Based algorithm

* solve larger problem

4—L
= (1,-1)
0) HUF—- —{U-o—o{ut U

(R
%

o) )

w{

V

D
'

minimum cost
Do
[

D
3V

O | |
2 4 6 8 10 12 14
gate count
* look for patterns
- two-qubit
one-qubit g block 9 building block building block
I I g=(1,-1) I I I ¢=(1,-1)
|
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) | < I o 1 - I J |
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discover the scaling: Bell-Based algorithm

* solve larger problem

c=(1,1,1,-1)®2
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discover the scaling: Bell-Based algorithm

* solve larger problem

* look for patterns
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can be used to Compute Renyi entropies’ Y. Subasgi, L. Cincio, P. Coles, J. Phys. A 52, 044001 (2019)
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comparison on IBMQX4

—_—  exact
1
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L. Cincio, Y. Subasgi, A. Sornborger, P. Coles, New J. Phys. 20, 113022 (2018)
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comparison on IBMQX4

—  exact

e—e computer-gen.
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L. Cincio, Y. Subasi, A. Sornborger, P. Coles, New J. Phys. 20, 113022 (2018)
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comparison on Rigetti

—  exact

e—e computer-gen.
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example: Quantum Fourier Transform (machine specific)

- given state |¥) , compute Ugpr|¥)
« target IBM Ourense (5-qubit)

 basis gate set

. — ccpulsen _ e—i'er/4

e
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example: Quantum Fourier Transform (machine specific)

- given state |¥) , compute Ugpr|¥)
« target IBM Ourense (5-qubit)

 basis gate set, error model

—r > &

l—)

RO ———

» evaluate cost function using noisy gates
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example: Quantum Fourier Transform (machine specific)

- given state |¥) , compute Ugpr|¥)

» textbook version
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example: Quantum Fourier Transform (machine specific)

* textbook (human generated)

.
R. R.|-&—+—© ) &—+— R. O R.[-®
—{R.-{PHR.[-&{R.-®&{R.] o ORI O O
e computer generated
R HPH R [{PHE. &— R: [ H{ P} B. [ { P} . |
—&] G| R. [ —O—] . | P &—{PHR.|
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—less CNOTs: 12— 7
— more noise-free gates with variational parameters

L. Cincio, K. Rudinger, M. Sarovar, P. J. Coles, in preparation
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example: Quantum Fourier Transform (machine specific)

* textbook (human generated)

mO=0:020 l(Dl\@>l<Dl\@>l/k-Pl
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—less CNOTs: 12— 7

— more noise-free gates with variational parameters
—less qubit idling: 18 x (1) — 3 x 1)

L. Cincio, K. Rudinger, M. Sarovar, P. J. Coles, in preparation
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comparison on noisy simulator
e 1000 random states |¥ )

o ertror = || p; — [USW(TS| || ,where |U5) = Uqpr|¥;)
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0.2 _
” LR [ WL | —— human-gen.

0.1

1 I 1 I 1 | 1 I 1
0 200 400 600 800 1000
U5)

L. Cincio, K. Rudinger, M. Sarovar, P. J. Coles, in preparation
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comparison on noisy simulator
e 1000 random states |¥ )

o ertror = || p; — [USW(TS| || ,where |U5) = Uqpr|¥;)

\

2.6 X reduction

Yy of error
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L. Cincio, K. Rudinger, M. Sarovar, P. J. Coles, in preparation
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summary

* this is not a compiler!

0
oo

 framework for automated algorithm discovery
— optimize structure of an algorithm and continuous gates
— optimize over classical post-processing

N
N

« algorithm structure optimization also used in
— Variational Quantum Linear Solver
C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820
— Variational Quantum State Diagonalization
R. LaRose, A. Tikku, E. O’Neel-Judy, L. Cincio, P. J. Coles, npj Quant. Inf. 5, 8 (2019)

— Quantum-assisted Quantum Compiling

S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, P. J. Coles, Quantum 3, 140 (2019)
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summary
—(—P
. . G
* this is not a compiler!
 framework for automated algorithm discovery S> \%

— optimize structure of an algorithm and continuous gates

— optimize over classical post-processing
THANK YOU!

« algorithm structure optimization also used in
— Variational Quantum Linear Solver
C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, arXiv:1909.05820
— Variational Quantum State Diagonalization
R. LaRose, A. Tikku, E. O’Neel-Judy, L. Cincio, P. J. Coles, npj Quant. Inf. 5, 8 (2019)

— Quantum-assisted Quantum Compiling

S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, P. J. Coles, Quantum 3, 140 (2019)
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