

Processing Random and Systematic Experimental Uncertainties in Replicate Tests of Stochastic Phenomena for Real-Space Model Validation*

Vicente Romero and Amalia Black (retired)

Sandia National Laboratories**

Albuquerque, NM

* Sandia National Laboratories document SAND20- C (unlimited release)

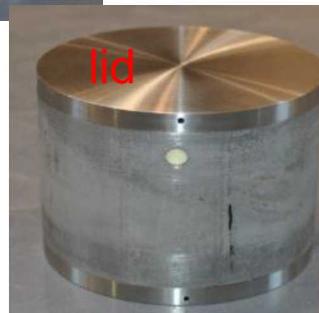
** Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

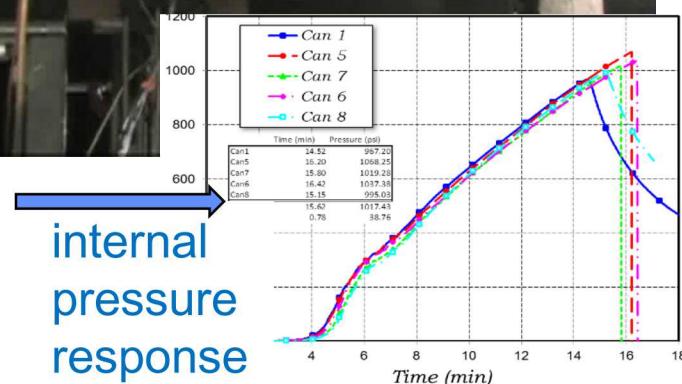
**ASME 2020 V&V Symposium
May 20-22, on-line**

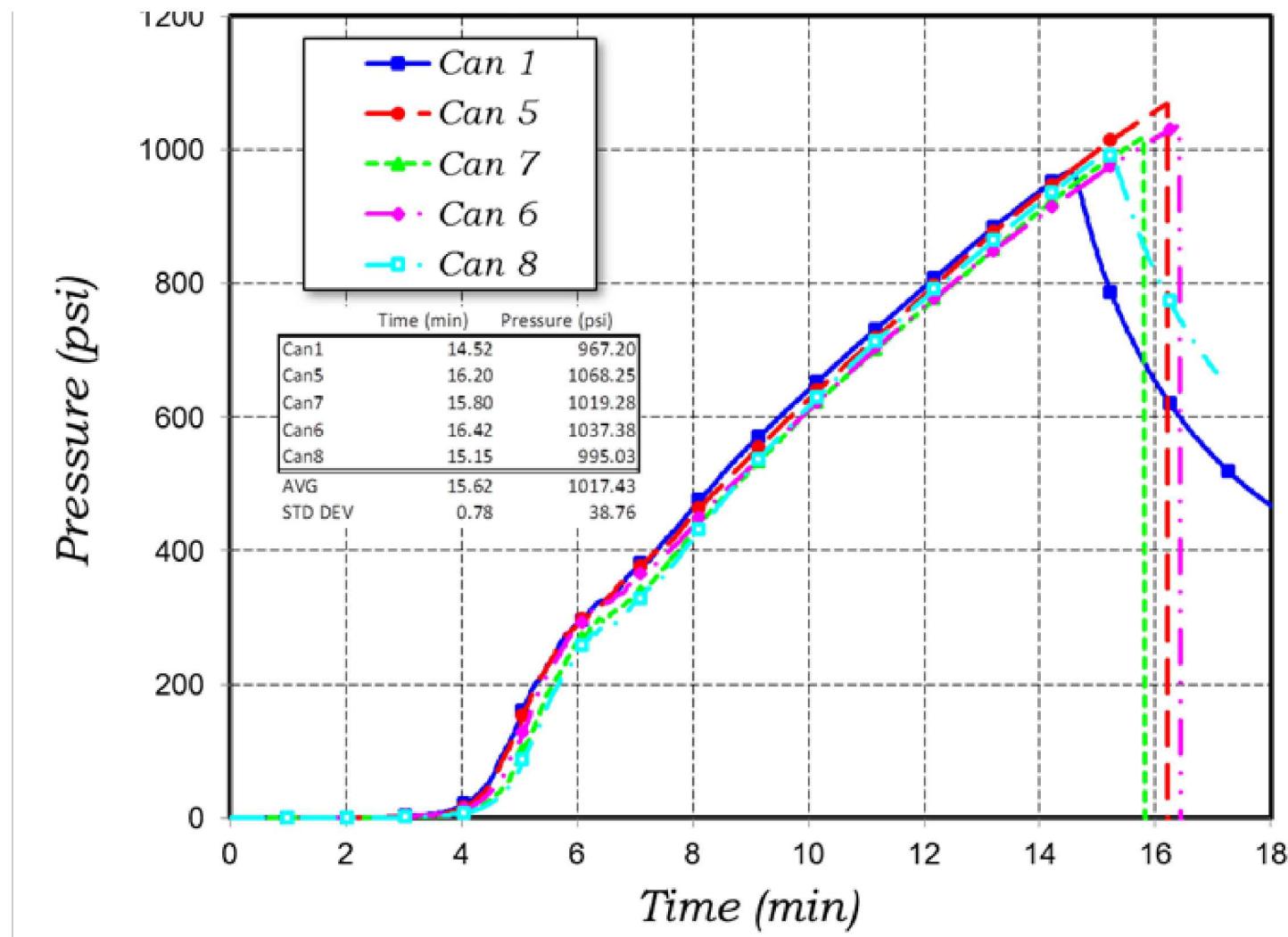
Definition of Random and Systematic Uncertainties

- **Random Errors**
 - errors that differ from test to test in an uncorrelated random manner
- **Systematic Errors**
 - errors that are effectively the same (perfectly correlated) from test to test
- **Uncertainty regarding the actual values of random and systematic errors in multiple tests are commonly called Random and Systematic Uncertainties**
 - Commonly used and expressive terminology, but arguably improper in a strict sense
 - **Alternate terms:**
 - Aleatory Uncertainty re. the random values of error in the tests
 - Epistemic Uncertainty re. the single but uncertain value of an error that is consistent across the tests

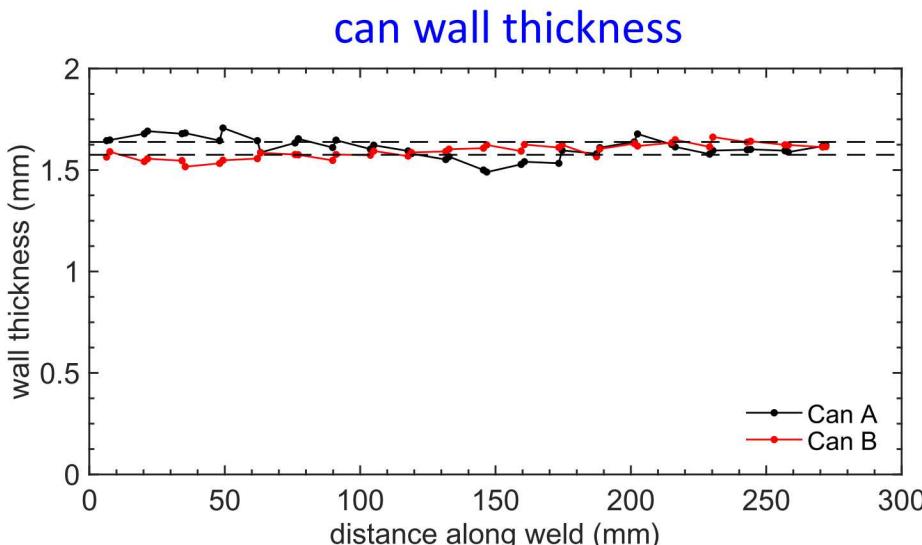
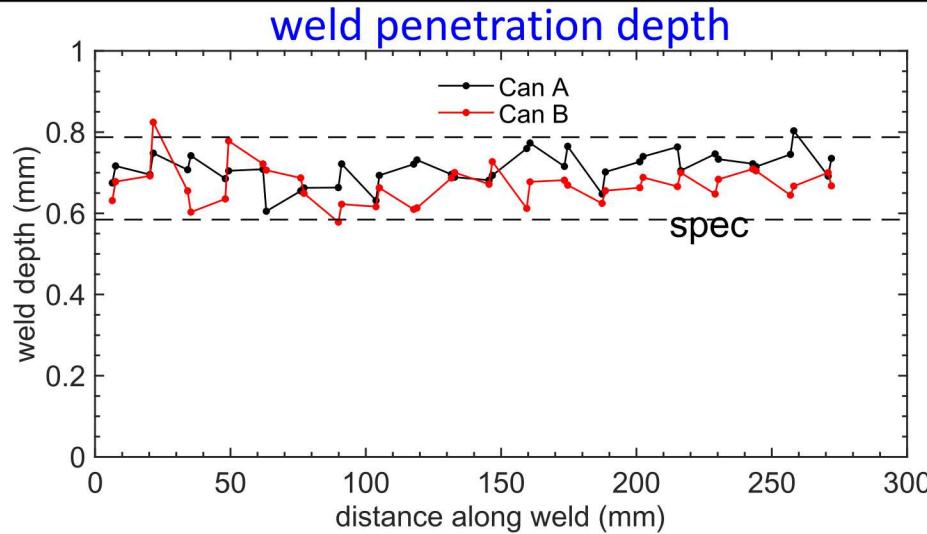
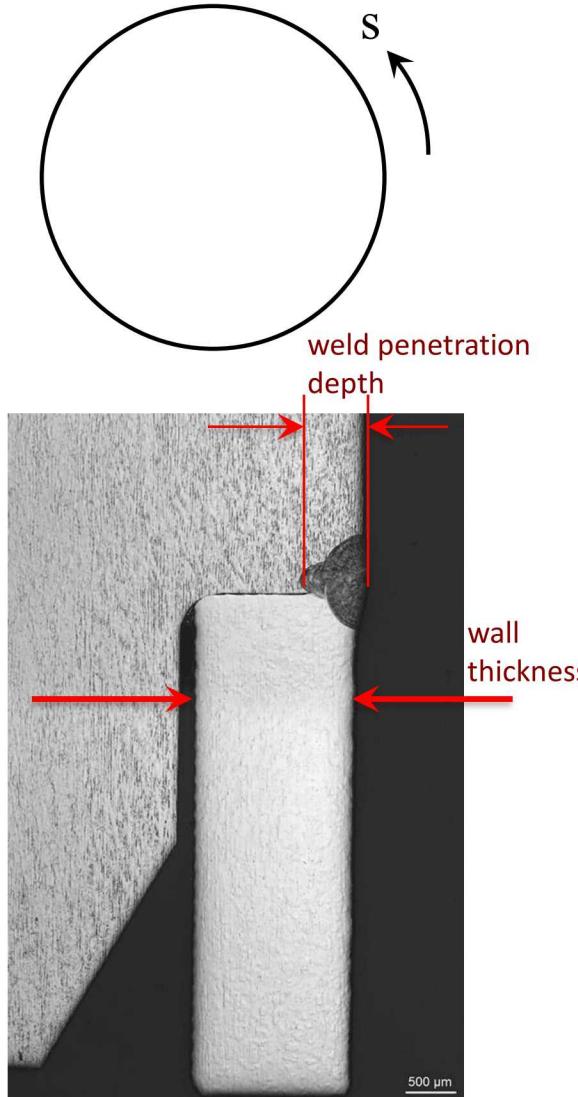
Validation Application


Coupled Thermal-Chemical-Mechanical Response and Structural Failure


Project Goal: assess predictiveness of thermal transport, foam thermal-chemical pyrolysis, can pressurization, and failure of lid weld

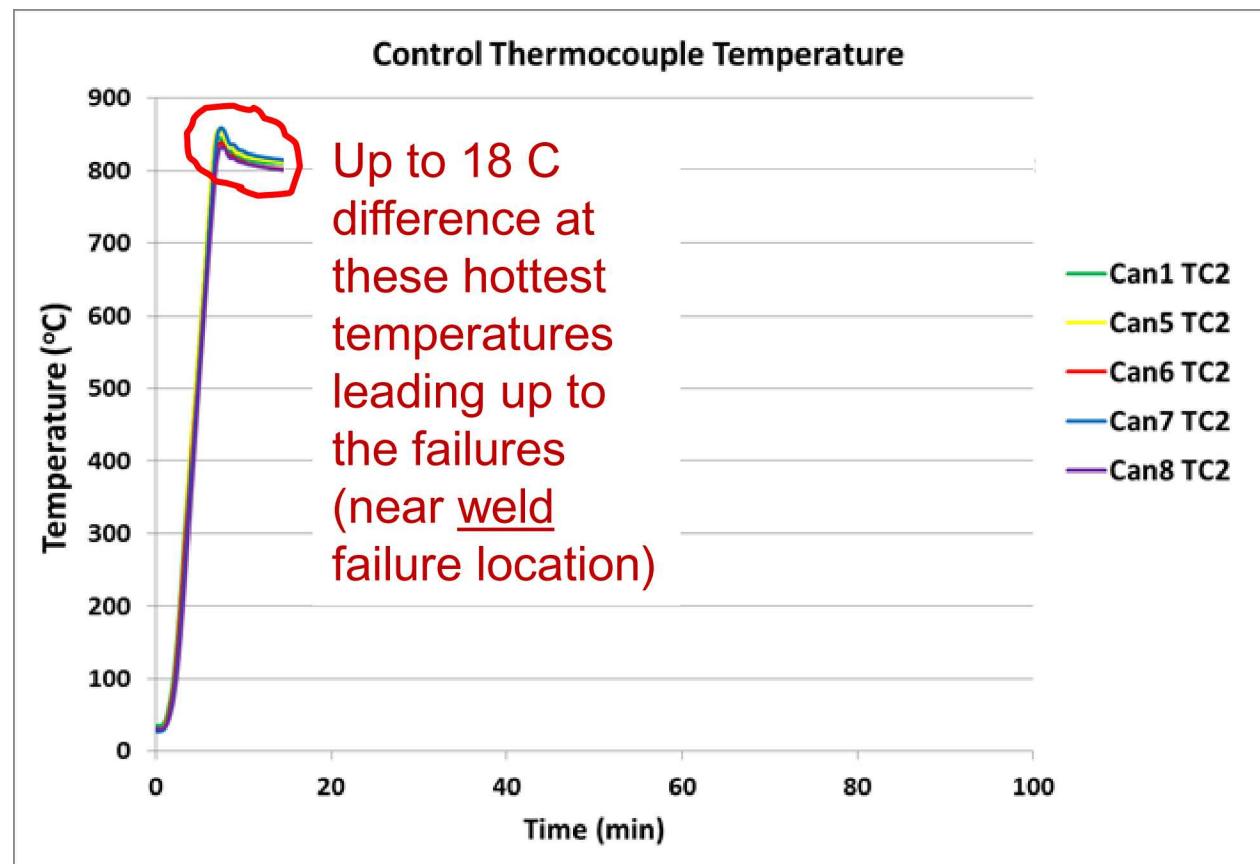

simplified geometry for V&V of phenomena modeling

[Play movie](#)

Experimental Variation of Can Failure Pressures

Unit-to-Unit Variations in Weld Depth and Can-Wall Thickness


— lead to variations in can failure pressures

Test-to-Test Variations of Initial Conditions and Heating Boundary Conditions

Upright Test	Can Initial Temperature (K)
Can 1	306.23
Can 5	302.69
Can 6	302.06
Can 7	300.17
Can 8	303.08

Normalize Experimental Output Data

(experimental samples of Can failure pressure)

- **Subtract-out variability in response data due to test-to-test differences of experimental inputs (inexact experimental control)**
 - more legitimate response variability to compare model predictions against (“Apples-to-Apples” basis)
 - more accurate estimate of prediction bias due to model-form error
- **Normalize all test results to a set of reference input conditions**
(perturb outputs as though the test occurred at the ref. conditions)
- **Typically use the median test’s input conditions as reference**
 - produces Independent and Identically Distributed (IID) response samples for legitimate statistics from the experimental data
- **In normalizing, also account for random and systematic uncertainties in measurements of experimental inputs & outputs**
 - **This part is equivalent to ASME VV20 procedure in certain cases**

Measurement and Estimation Uncertainties in model validation problem

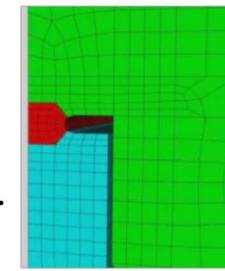
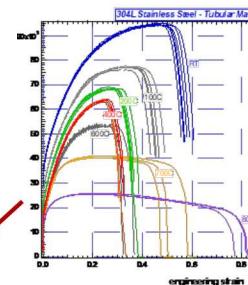
Non-Traveling Uncertainties

Experimental Test/Test Random

- lid TC measurement/redundancy test-test variations: $I[\pm 2\%]$
- ss304 emissivity can-can variations: $I[\pm 0.03]$
- ambient temperature test-test variations $I[\pm 10C]$
- pressure measurement/redundancy test-test variations: $I[\pm 2\%]$

Experimental Test/Test Systematic

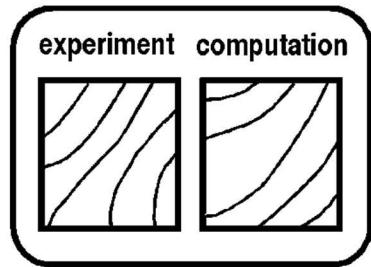
- ss304 emissivity effective value over time, space: $0.69 + I[\pm 20\%]$
- effective temperature for radiative, convective losses: $29C + I[\pm 15C]$
- convection coeff. effective value over time, space: $10W/m^2\cdot K + I[\pm 40\%]$

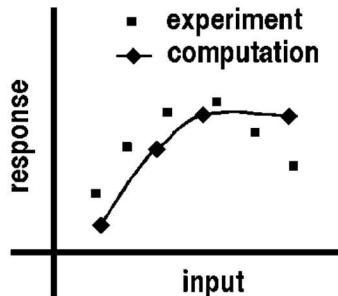


Model Epistemic

- mesh size error
- solver error

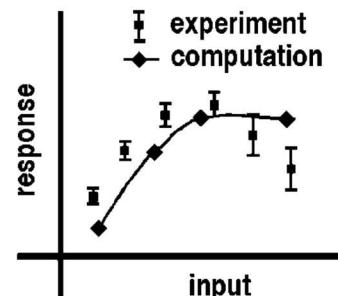
Traveling Uncertainties

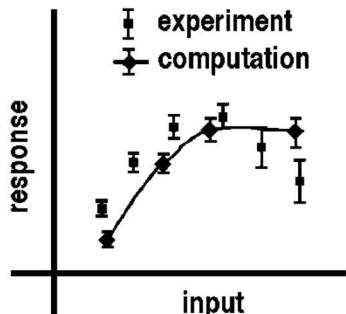
Model Aleatory

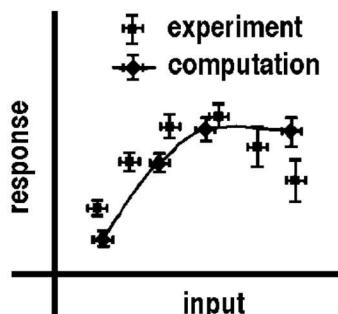

- material stress-strain curves for lid, weld, & wall
- lid thermal contact: $I[20\%, 90\%]$ of distance between modeled extremes of no heat transfer and perfect-contact heat transfer
- wall thickness: $I[0.062, 0.0645]in.$
- weld depth: $I[0.023, 0.031]in.$
(next slide shows measured values)


Model Epistemic

- foam conductivity: $f(temp.) + I[\pm 20\%]$
- foam specific heat: $f(temp.) + I[\pm 20\%]$
- foam activation energy: value + $I[\pm 4\%]$
- foam pressure multiplier: $I[0.5, 2.64]$
- ss304 conductivity: $f(temp.) + I[\pm 20\%]$
- ss304 specific heat: $f(temp.) + I[\pm 20\%]$


5 Levels of Increasing Rigor in Treatment of Experimental and Simulation Uncertainties in Model Validation


(a) Viewgraph Norm


(b) Deterministic

(c) Experimental Uncertainty

(d) Numerical Error

(e) Nondeterministic Computation

“Real Space” validation approach appropriately and pragmatically treats all uncertainties on inputs & outputs of experiments and simulations

Procedure to Normalize Experimental Results

Taylor Series approach (linear example)

$$P_{fail,Can1}(\vec{x}_{ref,Can6}) \cong P_{fail,Can1}(\vec{x}_{Can1}) + \sum \frac{\partial(P_{fail,mod/sim})}{\partial(x_i)} \cdot (x_{i,ref,Can6} - x_{i,Can1})$$

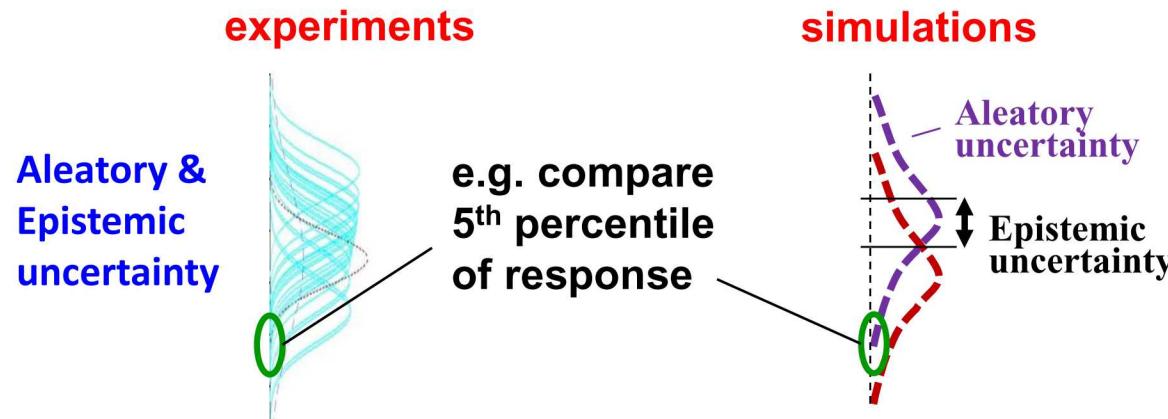
Normalized
Failure Pressure
for Can1

Measured
Failure Pressure
for Can1

Failure Pressure
change per change in
temperature BC

- FROM empirical
relationship
(experimental)
- OR from model
simulations

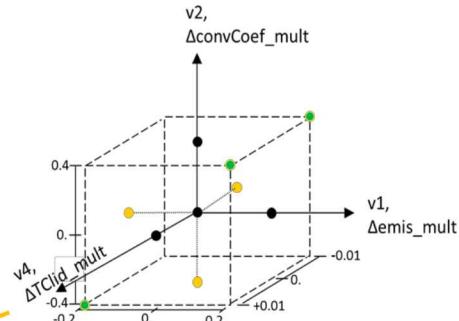
temperature BC
in reference test


temperature BC
in test whose
results are being
normalized

- Random and Systematic uncertainties in most RHS quantities result in Random and Systematic components of uncertainty in LHS quantity
- Linear and Quadratic Taylor Series with Monte Carlo propagation of RHS uncertainties are transformed to MC sampling and propagation through Linear and Quadratic polynomial response surfaces of $P_{fail,mod/sim}(\vec{x}_i)$

Real Space comparison for Stochastic Experimental and Simulation Results

- Compare decision-intuitive statistical measures of response, not CDFs


- Intuitive visual indication of how accurate the model is, on several fronts:
 - Means of the predicted and experimental populations
 - Variances
 - Percentiles
 - Range of response %age, e.g. the “central” 95% between 2.5 and 97.5 percentiles
(These last two account for combined uncertainty in mean, variance, and possible higher moments of stochastic response and are found to be the most useful in practice)
- Percentile comparisons are particularly useful for validation of models to be used for analysis of performance and safety margins, e.g. QMU.

Dimension- and Order- Adaptive Response Surface for Monte Carlo Propagation of Experimental Uncertainties

Uncertain Experimental Input Variables

- emissivity multiplier:
- convection coeff. mult.
- ambient temperature mult:
- Can lid thermocouple multiplier

4D Staged Mixed-Order Polynomial Surrogate Model based on 11 model runs

Linear terms in all 4 factors

Linear sens. analysis

higher-order in dominant 3 factors—
Quadratic main-effects terms

quadratic main effects identify best corners to sample for interactn. effects

quadratic interaction terms in dominant 3 factors

translated coordinates where local origin is at reference point from which main-effects perturbations are taken in the uncertainty space

$$f(v1, \dots, v4) = b0 + b1*v1 + b2*v2 + b3*v3 + b4*v4 + b1,1*v1*v1 + b2,2*v2*v2 + b4,4*v4*v4 + b1,2*v1*v2 + b1,4*v1*v4 + b2,4*v2*v4$$

row	Const	v1	v2	v3	v4	v1*v1	v2*v2	v4*v4	v1*v2	v1*v4	v2*v4	coeffs. {b} = y_predic	True Y
1	1	0	0	0	0	0	0	0	0	0	0	974.9308	974.93077
2	1	0.2	0	0	0	0.04	0	0	0	0	0	103.2241	992.5232
3	1	0	0.4	0	0	0	0.16	0	0	0	0	26.29418	985.72013
4	1	0	0	0.03	0	0	0	0	0	0	0	-12.6419	974.55151
5	1	0	0	0	0.01	0	0	0.0001	0	0	0	-1861.94	956.97387
6	1	-0.2	0	0	0	0.04	0	0	0	0	0	-76.3096	951.23357
7	1	0	-0.4	0	0	0	0.16	0	0	0	0	1.698033	964.68478
8	1	0	0	0	-0.01	0	0	0.0001	0	0	0	6624.772	994.21262
9	1	0.2	0.4	0	-0.01	0.04	0.16	0.0001	0.08	-0.002	-0.004	6.42673	1018.8304
10	1	-0.2	-0.4	0	0.01	0.04	0.16	0.0001	0.08	-0.002	-0.004	427.8135	919.26669
11	1	0.2	0.4	0	0.01	0.04	0.16	0.0001	0.08	0.002	0.004	855.6242	990.14792

Spreadsheet Sampling of Experimental Random and Systematic Uncers.

- Interval treatment via Monte Carlo sampling of uniform distributions and appropriate processing and interpretation of propagation results

**Systematic uncertainties;
correlated across the 5 replicate experiments** **Random; uncorrelated across experiments**

A	B								
1	RAND# =	6734							
2									
3		realization	v1sys = Δ emisMult = Unif[-0.2, 0.2]	v2sys = Δ convCoeffMult = Unif[-0.4, 0.4]	v3sys = Δ TambMult = Unif[-0.03, 0.03]	v4sys = Δ TidTCmult = Unif[-0.003, 0.01]	v5sys = Δ TambMult = Unif[-0.02, 0.02]		
4	RNGseeds ->		5301	4105	6999	9724	7490	52	4485
5		1	0.011786	-0.07179	0.011921	-8.9E-05	0.009904	-0.00987	-1.03732
6		2	-0.18207	0.190814	-0.02911	-0.00043	-0.01718	-0.00415	-2.313
7		3	0.040376	0.060903	-0.0119	-0.00032	0.019232	0.009941	4.824061
8		4	0.1541	0.078237	0.019105	-0.0002	-0.00455	-0.00478	3.046663
9									
10002		9997	0.118528	0.117203	0.012582	-0.00156	0.004796	-0.00029	-2.00415
10003		9998	0.132505	-0.21164	0.009023	-0.00195	-0.00206	0.006737	-6.05335
10004		9999	0.107163	0.179485	0.028414	-0.00137	-0.01185	0.008592	-0.78829
10005		10000	0.177795	-0.02533	-0.01103	-3.6E-05	0.004812	-0.00551	0.653401
10006									
10007									
10008	stats	mean =	0.0011	0.0005	0.0001	-0.0015	-0.0001	0.0000	-0.0317
10009	from	max =	0.2000	0.3999	0.0300	0.0000	0.0200	0.0100	9.9969
10010	10000	min =	-0.2000	-0.4000	-0.0300	-0.0030	-0.0200	-0.0100	-9.9988
10011	samples	stdev =	0.1156	0.2323	0.0173	0.0009	0.0115	0.0058	5.7716
10012									

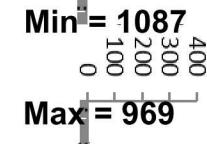
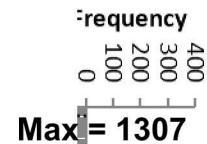
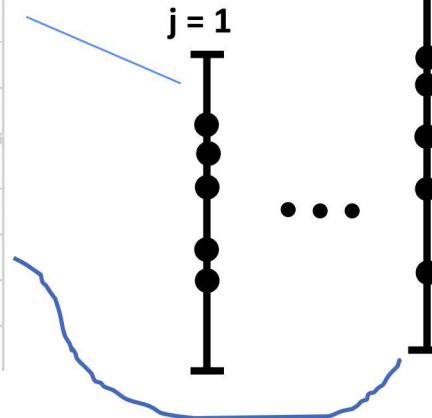
- samples of random and systematic components of uncertainty of a given measurement X_i are added to it to obtain a

perturbed value X_i' that is propagated to response surface evaluation:

$$\mathbf{Pfail}_{\text{Can}_j}(\vec{X}_i') = \text{a response sample}$$

- Response samples $\mathbf{Pfail}_{\text{Can}_j}$ are correlated across Cans according to systematic components of uncertainty for X_i variables

95/90 Statistical Tolerance Intervals from Realizations of Normalized Failure Pressures

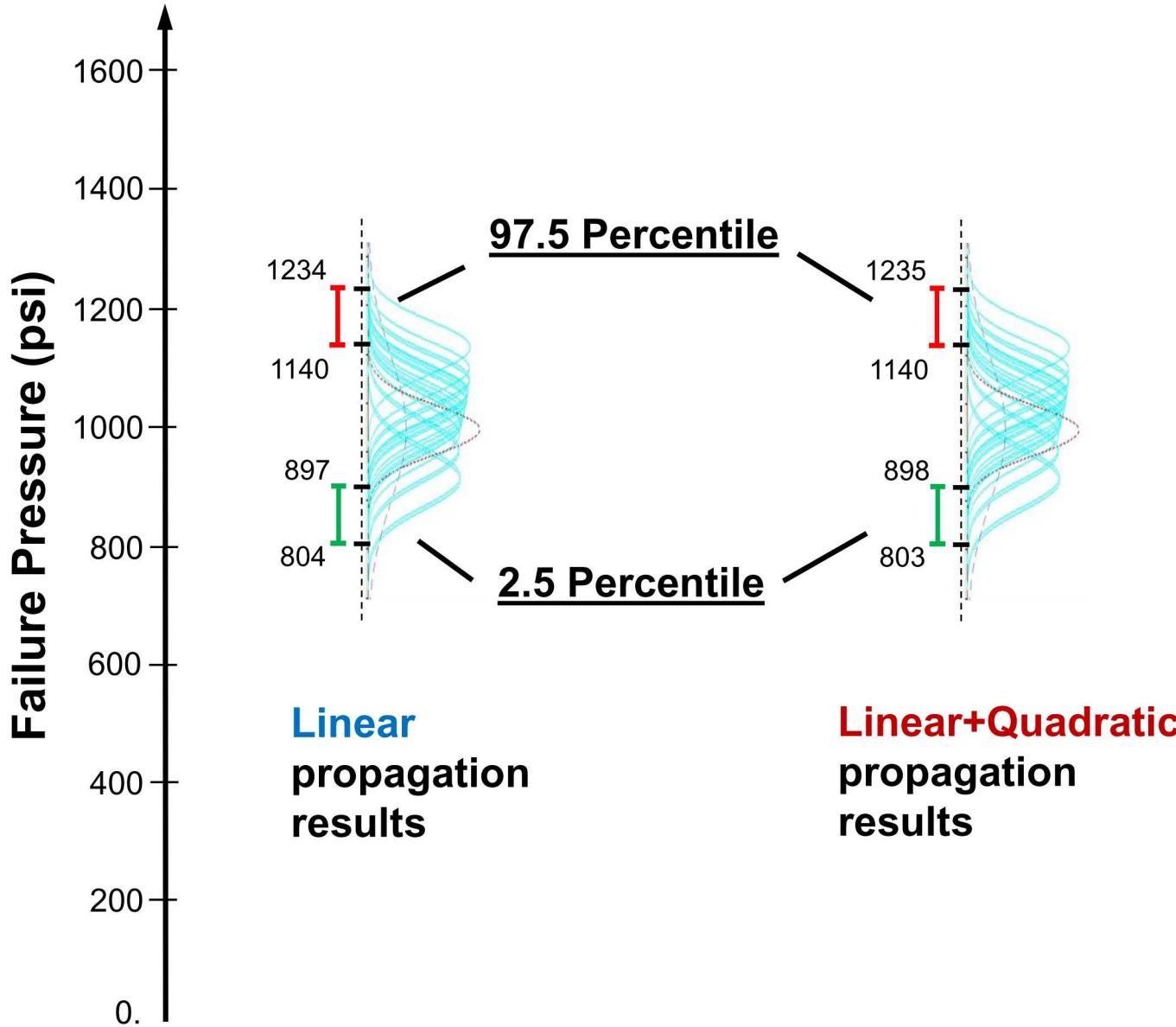




realization	Pfail-Exp6	Pfail-Exp5	Pfail-Exp7	Pfail-Exp8	Pfail-Exp1
1	1029.50	1054.015	1020.72	1015.175	966.478
2	1064.82	1077.199	1031.47	995.1603	990.9597
3	1040.20	1079.222	995.88	972.7477	951.9825
9998	1031.89	1079.139	997.55	977.3928	978.2092
9999	1020.46	1066.808	1007.25	971.7379	946.5493
10000	1049.55	1045.07	1014.45	1001.597	958.3771

figurative Tolerance Intervals

from row
j = 1

From row
j = 10,000



Histogram

Histogram

- A 95/90 TI is 90% confident to capture 95% of failure pressures of an asymptotically large population of cans tested at the reference conditions **IF the true population is Normally distributed and the 5 Normalized failure pressures are 5 possible random samples from it.**
- High credibility that the true confidence is $> 75\%$, based on testing over 144 Non-Normal distributions.

Effectively Converged ~Same Results from Linear and Linear+Quadratic Response Surfaces

Closing Remarks

- A detailed methodology was summarized for processing experimental data from replicate tests of stochastic phenomena
- The methodology accounts for:
 - realistically few replicate tests and data samples
 - experimental control variability over the tests
 - random and systematic measurement errors and uncertainties
- Standard EXCEL spreadsheet functions are used for constructing Taylor Series response surfaces, MC propagation, Sensitivity Analysis, statistical processing
- Detailed paper in review for submission to ASME J. VVUQ