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Definition of
Random and Systematic Uncertainties
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• Random Errors

— errors that differ from test to test in an uncorrelated random manner

• Systematic Errors

— errors that are effectively the same (perfectly correlated) from test to test

• Uncertainty regarding the actual values of random and systematic
errors in multiple tests are commonly called Random and
Systematic Uncertainties

— Commonly used and expressive terminology, but arguably improper in a
strict sense

— Alternate terms:
Aleatory Uncertainty re. the random values of error in the tests
Epistemic Uncertainty re. the single but uncertain value of an error

that is consistent across the tests
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Validation Application 
Coupled Thermal-Chemical-Mechanical
Response and Structural Failure
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Project Goal: assess predictiveness of thermal
transport, foam thermal-chemical pyrolysis, can
pressurization, and failure of lid weld
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Experimental Variation of Can Failure Pressures Sandia
National
laboratories
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Unit-to-Unit Variations in
Weld Depth and Can-Wall Thickness

lead to variations in can failure pressures

Bonnie Antoun,
Sandia

Sandia
National
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Test-to-Test Variations of Initial Conditions and
Heating Boundary Conditions
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Normalize Experimental Output Data

(experimental samples of Can failure pressure)
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• Subtract-out variability in response data due to test-to-test
differences of experimental inputs (inexact experimental control)

— more legitimate response variability to compare model predictions
against ("Apples-to-Apples" basis)

— more accurate estimate of prediction bias due to model-form error

• Normalize all test results to a set of reference input conditions
(perturb outputs as though the test occurred at the ref. conditions)

• Typically use the median test's input conditions as reference

— produces Independent and Identically Distributed (IID) response
samples for legitimate statistics from the experimental data

• In normalizing, also account for random and systematic
uncertainties in measurements of experimental inputs & outputs
- This part is equivalent to ASME VV20 proceduie in certain cases
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Measurement and Estimation Uncertainties
in model validation problem

Non-Traveling
Uncertainties

Experimental Test/Test Random 
• lid TC measurement/redundancy

test-test variations: I[±2%]
• ss304 emissivity can-can variations: I[±0.03]
• ambient temperature test-test variations

I[±10C]
• pressure measurement/redundancy

test-test variations: I[±2%]

Experimental Test/Test Systematic 
• ss304 emissivity effective value over

time, space: 0.69 + I[±20%]
• effective temperature for radiative,

convective losses: 29C + I[±15C]
• convection coeff. effective value over

time, space: 10W/m2-K + I[±40%]

Model Epistemic 
• mesh size error
• solver error

Traveling
Uncertainties

Model Aleatory
/

• material stress-strain curves for
lid, weld, & wall

• lid thermal contact: I[20%, 90%]
of distance between modeled
extremes of no heat transfer and
perfect-contact heat transfer

• wall thickness: I[0.062,0.0645]in.
• weld depth: 1[0.023, 0.031]in.

(next slide shows measured values)
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Model Epistemic 
• foam conductivity: f(temp.) + I[±20%]
• foam specific heat: f(temp.) + I[±20%]
• foam activation energy: value + I[±4%]
• foam pressure multiplier: 1[0.5, 2.64]
• ss304 conductivity: f(temp.) + I[±20%]
• ss304 specific heat: f(temp.) + I[±20%]

astrftielAI



5 Levels of Increasing Rigor in Treatment of
Experimental and Simulation Uncertainties
in Model Validation
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Procedure to Normalize Experimental Results

Taylor Series approach (linear example)

P f ailcan1 (5.re f Cetn6) '-s P f ailcani(iCan1) -I- E

//
Normalized
Failure Pressure
for Canl

Measured
Failure Pressure
for Canl

Failure Pressure
change per change in
temperature BC
• FROM empirical

relationship
(experimental)

• OR from model
simulations

a (F) f ailmodl sim) 

a (xi)

temperature BC
in reference test

/
• (y

v-i_re fCan6 - X i_Can1)

/
temperature BC
in test whose
results are being
normalized

• Random and Systematic uncertainties in most RHS quantities result in

Random and Systematic components of uncertainty in LHS quantity

• Linear and Quadratic Taylor Series with Monte Carlo propagation of RHS

uncertainties are transformed to MC sampling and propagation through

Linear and Quadratic polynomial response surfaces of Pfailmowsim(xi)



Real Space comparison for Stochastic

Experimental and Simulation Results
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• Compare decision-intuitive statistical measures of response, not CDFs

Aleatory &

Epistemic

uncertainty

experiments

e.g. compare
5th percentile v t Epistemic
of response e)k uncertainty

simulations

% Aleatory

%‘"--- 
uncertainty

• Intuitive visual indication of how accurate the model is, on several fronts:
— Means of the predicted and experimental populations

— Variances

— Percentiles

— Range of response %age, e.g. the "central" 95% between 2.5 and 97.5 percentiles

(These last two account for combined uncertainty in mean, variance, and possible higher
moments of stochastic response and are found to be the most useful in practice)

• Percentile comparisons are particularly useful for validation of models to be
used for analysis of performance and safety margins, e.g. QMU. 11



Dimension- and Order- Adaptive Response
Surface for Monte Carlo Propagation of
Experimental Uncertainties
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Uncertain Experimental Input Variables

• emissivity multiplier:
• convection coeff. mult.
• ambient temperature mult:
• Can lid thermocouple multiplier

4D Staged Mixed-Order
Polynomial Surrogate Model
based on 11 model runs
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Spreadsheet Sampling of Experimental Random and Systematic Uncers.

• Interval treatment via Monte Carlo sampling of uniform distributions

and appropriate processing and interpretation of propagation results
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S stematic uncertainties;
correlated across the Random; uncorrelated

  5 replicate experiments across experiments
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• samples of random and
systematic components
of uncertainty of a given
measurement Xi are
added to it to obtain a

perturbed value Xi' that is

propagated to response
surface evaluation:

Pfailcan j(145 = a
response sample

• Response samples
Pfailcan_j are correlated
across Cans according to
systematic components of
uncertainty for Xi
variables 13



95/90 Statistical Tolerance Intervals from
Realizations of Normalized Failure Pressures
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• A 95/90 TI is 90% confident to capture 95% of failure pressures of an asymptotically large
population of cans tested at the reference conditions IF the true population is Normally
distributed and the 5 Normalized failure pressures are 5 possible random samples from it.
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• High credibility that the true confidence is > 75%, based on testing over 144 Non-Normal
distributions.
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• A detailed methodology was summarized for processing
experimental data from replicate tests of stochastic
phenomena

• The methodology accounts for:
— realistically few replicate tests and data samples
— experimental control variability over the tests
— random and systematic measurement errors and uncertainties

• Standard EXCEL spreadsheet functions are used for
constructing Taylor Series response surfaces,
MC propagation, Sensitivity Analysis, statistical processing

• Detailed paper in review for submission to ASME J. WUQ
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