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Outline

» Motivation:
° Field data and the challenges it poses to model calibration

» Principal component analysis (PCA):
> What is it?

> How can it improve model calibration with field data outputs?
» Example problem

» Conclusion




Field data and its challenges
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> Field data, in the form of spatial, temporal, or
spatio-temporal outputs, is common for many
computational models.

» Examples:

Thermal models of the ISS and other spacecraft
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Field data output is common for computational models

Statistical weather forecasting [2]
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Population pharmacokinetics modeling 3]
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Models with field data outputs can be challenging to calibrate

» Objective function formulation
» Identifying a unique solution
»Surrogate model formulation

» Likelihood function formulation and computation
> High dimensionality of output space

o Correlation in covariance matrix




Principal component analysis
(PCA)




PCA: what is it and how does it help us?

» Principal component analysis (PCA) is an approach that maps a high-dimensional
and highly correlated space onto a set of linearly uncorrelated principal directions,
called the latent response space.

» By applying PCA to field data outputs, models can be calibrated in the latent

response space instead of physical space:
°> Reduced dimensionality

o Minimized correlation

»PCA can be performed in two ways:
° Eigenvalue decomposition of output covariance matrix

° Singular value decomposition (SVD) of output matrix




Converting simulation data to latent response space

»Given an n X p output matrix, 4, performing SVD results in:

A[nxp] = U[nxr]S[rxr]V[Z:Xp]

° n — number of samples

> p — number of output locations (spatially, temporally, or both)
o r —rank of A;r < min(n,p)

o U,V — column-orthonormal matrices

o § — singular values along diagonal

»'The rows of A are projected onto k columns of V, resulting in the latent response

space, Y :

Vinxk] = AnxplV[pxk]

% -1
° Vipxk] = (Viexp1)
ckKLr

»The number of dimensions, or latent variables, k, to retain depends on the desired
fraction of variance in the physical output to be represented in the latent response space.




Converting experimental data to latent response space

»1n order to calibrate in the latent response space, the simulation and experimental
data must be in the same latent response space:

{Vinxi},,, = 1Amxor) g Vs )

sim

Y imxier} .y, = VAot g Vi)

sim

§ V[pxk] is created from the simulation data and used to transform both the simulation and
experimental data

> m — number of experimental samples

»To convert back to physical space, the following transformations can be used:

{A nxp]} { [nXk]}Sim{kap]}

sim sim

Aol gy = Wit} g Voot g,




o I General approach to calibrating in latent response space

»Sample model parameter space

»Run physics simulation to generate field data for each sample

»Transform simulation field data to latent response space using SVD

» Create surrogate models mapping the model parameters to the latent response space
»Transform the experimental field data to the same latent response space

» Perform calibration in latent response space

»Transform back to physical output space and cross-check results via physics simulation

Experimental _ Latent
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Example problem




Electrical behavior of a single cell of a thermal battery

»Thermally activated batteries use a molten salt electrolyte that remains solid at room
temperature. At elevated temperatures, the electrolyte melts and the battery 1s activated. The

battery activation process is complex and involves:

> Heat transfer
Single cell of a thermally activated battery [5]

o Electrochemical reactions
Axis
. Collector
> Jon and species transport '
° Porous ﬂOW ' Cathode § 5'
: I Separator s S
o Capillary effects ; 2 |5|a
! Anode S 3
° Phase change
o Mechanical deformation ! Collector

»Sandia’s Thermally Activated Battery Simulator (TABS)
° Suite of thermal battery simulations for full battery and single cell configurations
o Characterize thermal, electrochemical, and species behavior over time

° Varying degrees of simulation complexity available (full multi-physics model down to thermal only)

»Model of interest: 1D electrochemical simulation of single cell of a LiSi/FeS,
thermal battery
> Model parameters: 23

> Observations: time-dependent voltage traces




3 | Experimental data: 5 boundary conditions

Case Thermal BC Electrical BC # of Exp.
Traces

400 °C Data Constant, 400 °C  Pulsed

475 °C Data Constant, 475 °C ~ Pulsed 4
550 °C Data Constant, 550 °C ~ Pulsed 3
1 A/cm? Data  Constant, 525 °C  Constant, 1 A/cm? 1

2 A/cm? Data  Constant, 525 °C  Constant, 2 A/cm? 1

Mean experimental traces:
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14+ I Simulation data

» 320 samples of input parameter space using Latin hypercube sampling (LHS)

> Experimental data in black
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Transform to latent response space and choose number of
latent variables to retain

»>'The number of latent variables for each data set should be based on the minimum
number of latent variables required to capture a desired amount of variance in the
original dataset

° The latent variables capture variance in the data in decreasing order, 1.e. the first latent
variable captures the largest amount of variance in the data

o Higher latent variables may be mostly capturing noise and can make it difficult to build
surrogate models when included

» For the 400 °C data set:
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Simulation Reconstruction |Error|
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Simulation reconstruction error

>Transforming back to physical space and comparing the reconstructed traces to the
original traces can also help indicate an appropriate number of latent variables to

retain during calibration.

» For the 400 °C data set:

Cumulative error for all traces:
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7 | Experimental reconstruction error

»Similar to the simulation data, it can helpful to reconstruct the experimental data in
physical space to assess an appropriate number of latent variables to retain.

» For the 400 °C data set:

Reconstruction error for a single trace:
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s | Calibration in latent response space

» Latent variable retained per data set:

Case Thermal BC Electrical BC # of Exp. # of Latent
Traces Variables

400 °C Data Constant, 400 °C ~ Pulsed

475 °C Data Constant, 475 °C ~ Pulsed 4 6
550 °C Data Constant, 550 °C ~ Pulsed 3 6
1 A/cm? Data  Constant, 525 °C  Constant, 1 A/cm? 1 2
2 A/cm? Data  Constant, 525 °C  Constant, 2 A/cm? 1 2

» Bayesian calibration:
> Gaussian process surrogate models

o Iterative importance sampling with genetic algorithm [4]







20 | Trace reconstruction

»For each data set, the calibrated traces can be reconstructed in physical output
space.

» For the 400 °C data set:
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21 I Comparison to other calibration approaches

» Four sets of results compared:
1. Legacy parameter values:

° Values present in the model prior to any model
calibration

° Based on literature, internal research, and SMEs
2. Model calibration in physical space:

> Objective function based on weighted cumulative
error term

> NCSU DIRECT optimization algorithm
3. Model calibration in latent response space:

° Input parameter set chosen based on maximum

likelihood
4. Model calibration in latent response space:

° Input parameter set chosen based on minimum

cumulative weighted error (objective function value)
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2 | Comparison to other calibration approaches

0. Experiments

1. Legacy Values

2. Model Calibration in Physical Space

3. Model Calibration in Latent Response Space
(Max Likelihood)

4. Model Calibration in Latent Response Space
(Min Cumulative Error)
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23 | Observations

» Calibration efforts using two very different techniques produced similar results
o This lends credibility to the resulting calibrated model parameter values

° This lends credibility to the model calibration in latent response space

» Both calibration approaches result in much closer agreement to experimental data
than the legacy parameter values

o This, along with validation approaches, lends credibility to the resulting calibrated model
parameters

>Calibrating in latent response space required a minimal level of effort in
comparison to calibrating in physical output space

o Calibrating in physical output space required formulating an appropriate objective function

o Calibrating in latent response space required selecting an appropriate number of latent
variables




24 | Conclusions

» Introduced an approach utilizing principal component analysis (PCA) to calibrate
models with field data output in latent response space

>Applied the PCA-based calibration approach to a 1D electrochemical model of a
single cell of a LiSi/FeS, thermal battery

> Model calibration in latent response space produced similar results to model calibration in
physical output space but at a much lower level of effort

» For models with field data outputs, model calibration in latent response
space could offer a more robust and efficient calibration approach than
calibrating in physical output space.
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8 | 475 °C Dataset
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2 | 550 °C Dataset
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30 | | A/lcm? Dataset
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31 I 2 A/lcm? Dataset
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» | LatentVariables per Dataset: 400 °C Dataset
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1 | LatentVariables per Dataset: 475 °C Dataset
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Latent Variables per Dataset: 550 °C Dataset
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5 | Latent Variables per Dataset: | A/cm? Dataset
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% | Latent Variables per Dataset: 2 A/cm? Dataset

Simulation Reconstruction Error Rﬂﬂ_ﬂﬂsﬁ'udnd Simulation
%1073 (Dataset 5) . _ Spatio-Temporal (Dataset 5)
3 ’ ‘ ' ' ' , [= = Actual
1.4 — Aprx. (k=1)| |
1,3 [ Aprx. (k=2)| |
?DJ 2l For comparison, | —_
s MSE with mean: =12 4
= 0.025917 Sqql |
=) ]
2 2 1 |
Q1
o 0.9t 4
L n.a
0 R SRS A A A A 0.7
0 5 10 15 20 25 30
# of Latent Variables, k Time
Experiment Reconstruction Error Reconstructed Experimental
(Dataset 5) Spatio-Temporal (Dataset 5)
0.01 = . - 19 . - . - — .
\\ = = Actual
— (k=1
0.008 | ] 187 —ﬁ Eﬂg_
("})" For comparison, .
= 0.006 | MSE with mean: =17
T 0.001121 2
3 s
-g 0.004 - :—? 16
o
0.002 sl
0 e |
0 10 20 30 L

# of Latent Variables, k

Time




