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Digital Accelerators: Google TPU

• Tensor Processing Unit:
Machine learning

accelerator in use by
Google since 2015

• Used for TensorFlow

• Accelerates neural network
in▪ ference; new versions
may include training

• Core: matrix multiply unit
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Control
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Digital Accelerators: Google TPU

• TPU vl Performance results released at ISCA 2017

• Die level performance of 2.3 TeraOps/W

• fu 1 pJ per 8 bit operation!

• Contemporary Intel Haswell die comparison:

• 1.8 GigaOps/W

• 4 55 pJ per 8-bit operation

Sandia
National
labotatodes

Model

Die Benchmarked Servers

1111112 11771 MHz TDP
Measured TOPS/s

GB/s
On-Chip
Memory

Dies DRAM Size TDP
Measured

Idle Busy 8b FP Idle Busy

Haswell
E5-2699 v3

662 22 2300 145W 41W 145W 2.6 1.3 51 51 MiB 2 256 GiB 504W 159W 455W

NVIDIA K80
(2 dies/card)

561 28 560 150W 25W 98W -- 2.8 160 8 MiB 8
256 GiB (host)
+ 12 GiB x 8

1838W 357W 991W

TPU <331 '8 700 75W 28W 40W 92 -- 34 28 MiB 4
256 GiB (host)
+8 GiBx 4

861\\ 190W 384W

N. P. Jouppi et al, 2017 ACM/1EEE 44th Annual International Symposium on Computer Architecture (1SCA), Toronto, ON, 2017
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Exemplar Synapse: Oxide ReRAM
VTE

ReRAM (OxRAM) 

• Starts as insulating MIM structure

• Forming: remove 02- 4 soft breakdown

• Bipolar resistance modulation

• Excellent memory attributes: Switching in

less than lns, less than 1 pJ demonstrated,
scaling to 5nm, >1012 write cycles possible

• Potential for 100 Tbit of ReRAM on chip
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-6.0x104

SET-RESET

-2.5 • -2.0 • -1.5

Highest current
switching process

-0.5 •

Voltage (V)

0.0 0.5 1.0
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r4

c c
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7iisRim
74nuitilial
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Device "

r- ------ •

TiN

Sandia
National
labotatodes

0-2 anions
exchange

switching
channel

(+) charged
vacancies

ReRAM Density vs Min. Feature Size

Assumes 4F2 cell, 1-bit cell

1000

0.1

0.01
0.8 1 2 4 6 8 10 20

Minimum Feature Size, F (nm)

40

NVMTS 201r11.



Analog Computation with a

ReRAM Crossbar

• Electronic Vector Matrix Multiply

Evl

Mathematical Electrical

V2 V31

Eii=Evi,iwi,i

VTW=1

W1,1 W1,2

W2,1 W2,2

W3,1 W3,2

12=EVi,2VVi,2

v w
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i

Mapping Neural Network to Crossbar,

for Backprop
45
>,
c o
ci)

.8 *
5
02
0_
'r

2
u)
m
0_
0

Convert analog
inputs to varying
length voltage
pulses

Vector Matrix Multiply, Matrix Vector
Multiply, Rank 1 Update:

Key kernels used in many algorithms

Backpropagated error
from following layer

• .

444

ik.

ik.

4k.

ik•

4%.

‘,. N4. **e.

i I *
Outputs to next layer

*

*
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Integrate current to get
an analog output value
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Key Circuit Block/Kernel Analysis

Vector Matrix Multiply

(Classification)

Voltage Coding

Temporal
Coding
Logic

Row
Drivers

Edge Logic

Counter

Two
1024 x 1024
Crossbars

Neuron

ADC

=

Offset
Correction

Integrators

Ramp _/ Comparators

Register 2

Rank-1 Update

(Training)

\__/ Voltage Coding

Temporal
Coding
Logic

Row
Drivers

Edge Logic

Counter

Two
1024 x 1024
Crossbars -

ADC

Offset
Correction

E Integrators

Ramp / Comparator,.

Marinella, Agarwal, et al, IEEE JETCAS, 2018

Register 2
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labotatodes
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Device Assumptions

Interconnect

Logic Transistor

High-Voltage Transistor

Crossbar

ReRAM & Select Device

Analog ReRAM & Select
Device

Full Pitch(wmlyitch) -62migir-
Capacitance -200 aFlpm

Resistance -30 0/pm

Area -0.04 pm2

Voltage

Area

Voltage

0.8 v

-0.35 pm2

1.8 v

Dimensions (nrowsx nc015) 1024 x 1024

Minimum Pulse Width

ReRAM ON/OFF Ratio

Capacitance (CReRAM)

1 ns

10

35 aF

On State Read Current 1 nA (Ron = 100 MO)

On State Write Current 10.3 nA (Ron = 100 MD)

Read Voltage 0.785 V

Write Voltage 1.8 V

Marinella, Agarwal, et al, IEEE JETCAS, 2018.
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Analysis of 1024x1024 Operations
Dili, VI

Component
/.111m0\__/Voltage Coding

Temporal
Coding
Logic

Row
Drivers Two

1024 x 1024
Crossbars

L'

Edge Logic
Analog ReRAM TotalCounter 

Offset
Correction

Digital ReRAM Total

Digital SRAM Total
Integrators

ADC Ramp _/ Comparators

Si Eli>
I Analog ReRAM Total

Register 2 -
Digital ReRAM Total

Digital SRAM Total

Energy
430 — 6,900X over SRAM
105

10°
Analog Digital

(a) ReRAM ReRAM
SRAM

10

103

— 10

cv 10

10

10-1

Vector Matrix Outer
Matrix Vector Product
Multiply Multiply Update

IM—iergy

12.8 nJ 12.8 nJ TWO

Soda
Natimal
laboratories

2140 nJ 2140 nJ 3250 nJ

I 2850 nJ 4855 nJ 4300 nJ I

Latency

0.384 ps

176 ps

4 ps

Latency
35 — 800X over SRAM

102
Analog

(b) ReRAM
Digital SRAM
ReRAM

0.384 ps 0.512 ps

176 ps 340 ps

32 ps I 8 ps 

Area
11 — 20X over SRAM

106

105

io4

(c)
Analog
ReRAM

8 bit in/out 4 bit in/out 2 bit in/out
8 bit weights 8 bit weights 8 bit weights

Marinella, Agarwal, et al, IEEE JETCAS, 2018

Digital SRAM
ReRAM

•

<2 fJ/op

Agarwal, et al, IEEE E3S Symp, 2017
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Experimental Device Nonidealities

• Analog architecture trade off digital precision for significant
performance/watt and performance/area gains
• Best suited for applications requiring —8 bits precision or less

• Backprop training: Ideally weight would increase and decrease linearly
proportional to learning rule result

• Key issue in experimental devices: altered the relationship between
intended and actual update: Write Nonlinearity, Asymmetry,
Stochasticity, Read Noise

Conductance versus Pulse 

A

0 

0

0

•

0

o

• = !deal = Write Variability o = Nonlinear

0

0 0 0 0

.
42

00 00
0
•••0 ID

0 i
• •

0 • 0
•

0 
0
0

Pos. Pulses Neg Pulses
0
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Symmetric and Linear
• Asymmetric, Nonlinear

0

Pulse Number (Vwrite +1v, tpuise lOns)
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Calculating Accuracy from Device Data National
Sandia

labotatodes

Measure Pulsing AG Scatterplot 
Cumulative

positive
weights

D/A-

1D/A
-() 

negative
weights

0 2
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40
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g, 101152025360 540
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Lookup Table Generation
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Device to Device Variation
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• Extended the CrossSim platform to draw upon a library of look up
tables (LUTs)

• LUTs assigned prior to online training and remain constant during it

• Individualized updates -> slowdown (somewhat mitigated)
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ReRAM algorithm accuracies:
Small Digits (OCR Database)

Small Digits: LUT Variability

%
 C
or

re
ct

 T
e
s
t
 S
e
t
 

—0- Numeric

—A— Standard LUT

—0— Variable LUT: Good

—A— Variable LUT: Adaptive -

0 2

0 \ .2 473 ii-
S. 6 7 i el

4
i .
6 8

Training Epoch

Sada
National
laboratories

Data set
# Training
Examples

# Test
Examples

Network Size

UCI Iris Dataset 1-11 100 50 4x8x3
I UCI Small Digits[1] 3,823 L797 64x36x10 I

File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10

NVMTS 2019 18
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Problems with Filamentary

Mechanism for Analog Training

Displaced
Oxygen

Anions 0-2)

Positively
Charged
Vacancies
(V.++)

VTE

Sandia
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Nonlinearity
1. Tunneling current, esp in high resistances
2. Current crowding — high temperature

required for change give runaway effect
3. Nonlinear E-field

TaOx Pt

Asymmetry
Inherent property
of bipolar device —
Schottky-like and
ohmic junctions

Stochasticity
G depends on
position of a few
atoms

NVMTS 2019 20



Period Carry: Multi-Synapse Method
High Accuracy in Nonideal Devices

1 1 /4
• Example for TaOx: Each

weight uses 2 synapses

• Carry once every 1000
updates for the LSB, and

every 2 updates on others

• High variability TaOx device:
accuracy improves from

<89% to >97%, only -1%

under ideal

• Requires tradeoff of
energy/latency for accuracy
- exact tradeoff depends on
algorithm reqs.

?. 
0.3
0 

1)-5. 8.6
=8:i

c)..) 40.05
:0 -5. 0.00

—0.05

Agarwal et al, VLSI 2017

-1 /4

99

'5 90
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Ta0 —MNIST
Ideal Numeric

Single Device

lE

0 10 20 30 40
Training Epoch

Weyht During Trainil

0 1 2 3 4 5
Update Count (x10,000)

6
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Semiconductor-Oxide-Nitride-Oxide-

Semiconductor (SONOS)
•

ri-tyrw poly

N- source

lop eAelct

Ake!, ratride or orsonitrIcte
%urincl 424idc

Pi* e rain

(a) (b)

-1111 ses 10V .ulses

50 100 150
Pulse Number

10-4

10'5

< 10.6

10-7

108

10-9

10-1°
200 0

(b)

OV 
-1.5V

-11V pulses +10V pulses 

50 100 150 200
Pulse Number

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 5, 52-57, 2019.
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SONOS Accuracy and Energy
-i Ises + f CIV pufšes

LO

E 0.8

u 0.6
-0
tv
0.4

0.2
z
0.0
0

(a) Pulse Number
50 100 150 200

100

95

u

'5 90

ct:E.)
85

MNIST

80 
0 1 20 3 40

Training Epoch

Component Vector

Matrix

Multiply

Matrix

Vector

Multiply

Outer

Product

Update

Energy/Op ReRAM (fJ) 12 2 12 2 2.1
Energy/Op SONOS (fJ) 13 7 13.7 8.2

Energy/Op SRAM (fJ) 2718 4630 4102

Array Latency ReRAM (µs) 0.38 0.38 0.51
Array Latency SONOS (p) 0.40 0.40 20
Array Latency SRAM (p) 4 32 8

Sada
National
laboratories

Low
inference
energy

Slow
write

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 2019.
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Li-lon Synaptic Transistor for Analog

Computation (LISTA)
c

• Alternatively, novel devices may 250

offer promise 200

• LISTA: modulate the doping of E 150

Lithium battery cathode 100

• Resistivity across cathode
changes linearly with battery
charge/discharge

anode/gate

electrolyte/insulator

LiCoO2 Li1,Co2 + xLi+ + xh

 • source cathode/channel drain

vsoT 

L
i
t
h
i
u
m
 I
o
n
 

50

0

G-V for LISTA

-4 -3 -2 -1
Vc (V)
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500 nm anode/gate

imisr• b t

source cathode/channel

current-collector

electrolyte/insulator

4 • •

Si02 drain

E. Fuller et al, Adv Mater, 2017
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Analog State Characterization
a 250

200 \N VV
10 20

LISTA > 200 states

40

t (ks)

Tany RARAM

1000 2000
Co tie n (pSi

PCM Arra
Measured
AG-per-pulse
[uS]

-1
5 1 15 20 25E. Fuller et al, Adv Mater, 2017 GW Burr et al,

0 
IEEE TED 2015

ko
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From all 31 million
partiai-SET pulses
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LISTA-device Performance for Backprop Algorith

99

0
0 5 10 15 20 25

Ttainiing Ep

ft
Sandia
National

.....d.h.iiihi.Increasing Network Size

S a 11 Di1gits

STA

Numeric
1) o M I

9)9)

40

F Types

STA. Based

WW1 NUITIMIC
11 11 II 11 11 II 

0 5 10 1.5 20 25 30 35 40
Training Epoch

9 )
Large Digits

tabotatodes

Ex ) Derive I

ideall Numeric
. 11 • 
0 5 10 1.5 20 25 30 35 40

Training Epoch

Data set
# Training
Examples

# Test
Examples

Network Size

UCI Small Digits[1] 3,823 1,797 64x36x10

File Types[2] 4,501 900 256x512x9

IVINIST Large Digits[3] 60,000 10,000 784x300x10

E. Fuller et al, Adv Mater, 2017
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lonic Floating Gate
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control gift -
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E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).

Sandia
National
labotatodes

NVMTS 2019 27



IFG Array Demonstration
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E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).
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Near ideal
accuracy
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Programming Demonstration
A

_Z]

_Z]

XOR gate
X1 X2 Z1

1 0 1

0 1 1

1 1 0

0 0 0

D

V.

+250

-250

x

Y

G -G GtS)u 0
0 mom +100

0.4V OV +0.4V

-1 0 0

0

0 0 0

0.4V OV +0.4V

0

-1 0 0

0

1

-

OV +0 4V OV

0 -1 0

+2

-1 0 +1

OV +0.4V OV

+1

-1 -1 0

0 0

197

199

-

-147

251

1

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).
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IFG Energy Comparison
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120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage

>, 7

a)

lo-1.

V M M

M V M

PU

Tota I

T„ g) O g 8)z
.2) a) c c0 w 0 < w < <

o -3
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V M M
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P U
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2 0) cm 0)To To < o 0 0  <
< To z To u_ co rYcm Et • — c CE w 0 < < <
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0.7

0.6

0.5

0.4

0.3

.2

0.1 • ■
(75 Q g g 0 g

Z Li_ T2

° W ° LI) < Q Li)

1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
- Vector Matrix Multiply - Matrix Vector Multiply - Outer Product Update

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices
Agarwal et al, VLSI-TSA 2019
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Magnetic Synapse Concept
(a) Pinned layer OUT zt_0(

IN    CLK
Free _r
layer 1— ■

Domain wall (DW)

64 nm
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Summary
Sandia
National
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• As CMOS scaling slows (or ends), a new direction will be
needed to achieve the continue the exponential improvements
in performance per watt (or energy efficiency)

• Deep neural networks and related algorithms being adopted
for many big data and embedded applications

• Analog crossbar VMM and training operations can extend
performance per watt 10-1000x beyond digital CMOS limits

• Ideal analog "synapses" are a topic of continued research

Component Vector
Matrix
Multiply

Matrix Vector
Multiply

Outer
Product
Update

Energy/Op IFG (fJ) 11.9 -"Pri.9 0.2

Energy/Op ReRAM (fJ) 12.2 12.2 2.1

Energy/Op SONOS (fJ) 13.7 13.7 68.2

Energy/Op SRAM (fJ) 2718 4630 4102

Array Latency IFG (ps) 0.39 0.39 1.9

Array Latency ReRAM (ps) 0.38 0.38 0.51

Array Latency SONOS (ps) 0.40 0.40 -

Array Latency SRAM (ps) 4 32
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Conclusions and Future Work
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• Key challenges at the device level must be addressed to make
analog accelerators a reality. Required properties include

• Linear conductance change with pulse, regardless of starting state

• Low nudge current, voltage, and energy, high endurance, <100 ns nudge

• Filament & thermal switching devices (RRAM, CBRAM, PCRAM)
have fundamental challenges for analog operation

• Three terminal devices work better

• Extend architectural energy/latency analysis to system level

• Demonstrate improvements on large datasets with >10M parameters

• Novel ionic floating gate and magnetic domain wall devices
may mitigate these issues:

• IFG has demonstrated offers significant potential as a low energy, high
accuracy neural network accelerator synapse

• Future challenges: continue to improve and scale IFG — and
demonstrate CMOS integration
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CrossSim Model of TaOx ReRAM:

MNIST, Backprop Training
Increasing Network Size

Performance
Gap

2 Exp-, f .1

Num ic

0 al 11 11 11 • 11
0 5 101152025

Training E
31540

Filme licypmes
111

Performance
Gap

I

illo;516)15
Training E

2

Performance
Gap

. M1W .1•-•

NN RIME
5 10 na 253035
Training E h

Data set
# Training
Examples

# Test
Examples

Network Size

UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9

MNIST Large Digits[3] 60,000 10,000 784x300x10

[CROSS SIM
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Neural Core Energy Analysis

Analog
ReRAM

Digital
ReRAM

SRAM

8 bits ln/out
8 bit weights

28 nJ

7,520 nJ

12,010 nJ

4 bits ln/out
8 bit weights

2.7 nJ

5,580 nJ

10,150 nJ

2 bits ln/out
8 bit weights

1.3 nJ

4,340 nJ

8,970 nJ
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•

ADC

Integrator

Array Write

Array Read

Temporal Drivers

Voltage Drivers

Data Movement

us

11

_-111

IMM

Multiply & Add

Data Movement

Write Memory

Read Memory

r 1

ii

11 IN

I

•

Multiply & Add

Data Movement

Write Memory

Read Memory

Read Transpose
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ReRAM Analog Characterization

6.0x10-4

0 1000

SET

' Rise = 12.8 ns
Fall = 11.4 ns

- Amp = 1.14 V

4x1 0' -al 0' O 2x10'

Time (S)

500
Pulse Number (#)

SET Programming

Re
Measu

SET SEf SET

6.0x10-4

5.0x10-4
a)

z 4.0x10
-4

0

3.0x10-4

RESET

-1-0

-1.2

Rise =1122 ns
Fas1= ns
Amp = -1.111 10

1000 1500
Pulse Number (#)

2000
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Pulse Width Analog Measurements
100 on4off cycles,

(200k pulses)

2

2000 pulses per
on4off cycle
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Crossbar Theoretical Limits

• Potential for 100 Tbit of ReRAM on chip

• If each can perform 1M computations of
interest per second (1 M-op):

• 1012 active devices/chip x 106 cycle per
second 41018 comps per second per chip

• Exascale-computations per sec on one chip!

• In order to not melt the chip, entire area
must be limited to fu100W

• Allowed energy per operation = P x t/op (.4-E-
= 100W / 1018 = 10-16= 100 aJ/operation g,

• lOnm line capacitance = 10 aF

• Can charge line to 1\/ with 10 aJ

• Drawback: "only" fw10013 transistors/chip

r1

r2

r3

r4

c c
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PISM11151

7111110E1
71E1=

71 74 71 71

1000

100

10

0.1

0.01

Device

O
Cell

,'" ------

ReRAM Density vs Min. Feature Size

Assumes 4F2 cell, 1-bit cell

0.8 1 2 4 6 8 10 20

Minimum Feature Size, F (nm)

40
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Multi-ReRAM Synapse: Periodic Carry
If we need more bits per synapse, use multiple memristors

• Three 10 level ReRAMs could represent 1-1000!
• Adding to the weight requires reading every
ReRAM to account for any carries and serially
programming each ReRAM: VERY EXPENSIVE

x100 x10 xl

.41% \a Ns*

N. N. '122,.

Neuron

1

• Use >10 levels to represent a base 10 system
• Ignore carry and program the crossbar in parallel.
• Periodically (once every few hundred cycles) read

the ReRAM and perform the carry

Extra levels
store the
carry

1 10 levels
J represent the

weight
conductance
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Periodic Carry Compensates for Write Noise

1 1/5 1/25 1/125

-1/5 -1/25 -1/125
00.5

DI/

Read and reset every 100 pulses
Do 300,000 small (0.02% of weight range) updaLus
• net of 1500 positive training pulses

Noise Sigma = 1.4% for single device

• (from anoisel Grange — 0.1VAG Grange )

• Write noise applied during updates and carries
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Periodic
Carry

Single
Device

.0 0.5 .0 0.5
W ight

Learn from a 0.5% Signal
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Periodic Carry Mitigates Write Nonlineari

0.5

Write Nonlinearity

10 20 3 40
Pu se Nu ber

Use center linear range of weights

1 1/5 1/25 1/125

Alternating Pulses Cause Weight Decay

10

Positive Alternating
Pulses Pulses

11 P l 11 11 11 11

10 2 0 3 0 4 0 50 GO 10 SO

Pulse Number

Single
Device

10000000

Periodic
Carry

• Train with 1% signal
• !deal result is 0.6

-1/5 -1/25 -1/125
0.4 0 2 0.0 0.2 0.4

ight



Ta0), Results

1 1 /4 
99 

Ta0x —File Types

N >,
u
oz)

CD 
'5 90
u—1‘. 1

-1 -1 /4

Carry once every
1000 updates

0
0 10 20 30 40

Training Epoch

I I I

- Ideal Numeric :_

Periodic Carry_

ingll Deyice E
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Ta0 — MNIST99   x  . 
nIdeal Numec

Periodic Carry

Single Device 
I I IE 

0 10 20 30 40
Training Epoch

A/D and D/A is modeled, Serial operations modeled
• When resetting weight, need to adjust pulse size based on current state to compensate for nonlinearity
• When reading a single weight, need to adjust readout range to be smaller (change capacitor on the integrator)
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Electrochemical Neuromorphic
Organic Device (eNode)

PEDOT:PSS

Drain

(-2_ 600
0'800

,-;-) 550

600
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0
800 N
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van de Burgt et al, Nature Mater., 2017
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Electrochemical Neuromorphic

Organic Device (eNode)

b 1.0 c—
2

0.8 1 -

1 0.6 "2 0 -

0.4 -n
-

0
0.2

—2 -

—1 0.0
600 700 800

Conductance (1.6)

File types

0  ii
0 10 20 30 40

Training Epoch

.„„
600 700 800

Conductance (0)

Smallcligit
99 99

>,

Lp

0

0.8

0.6

0,4 -11

0.2

0.0

Large digits

— Exp. derived
— Ideal numeric

10 20 30 40 0 10 20 30 40

Training Epoch

van de Burgt et al, Nature Mater., 2017

Training Epoch
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Programming Demonstration
F

1 04

1 0 
5

6
>,1 0
P
c10 

7

L.LJ
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8

109

E

8 bit

4 bit

2 bit

99
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C.)

L' 97

96

1
IFG SRAM

o
o

MNIST

ideal array
0 IFG array

0 1 0 20 30 40

Training epoch

G H

1 0
8

IFG SRAM

1 0
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6
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2
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I FG SRAM
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Three Terminal Devices Tend to

Have Higher Accuracy

ReRAM

100

ll 5

>▪ , 90

15 85

< 80

75

"eneYMEimMisilwams=

70  
0

1 ea I

1FG

SONOS

a0x

10 20 30 40
Training Epoch
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1.2
1.0
0.8
0.6
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0.2
0.0

—0.2
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El)
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Starting Conductance (mS)

0.0

-0.

-1 0 -

c
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-N 0.4
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'c5 0.2

0.0
0
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SONOS
-11V pulses +10V pulses 
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Pulse Number
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=
•
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- I

1
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Ionic Floating-Gate 56
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Initial Study:
Effect of Si lon Irradiation on Training

• 2.5 MeV Si lon irradiation, neural training between steps

• Training accuracy for higher resistance devices may be
degraded following ion irradiation at high fluence

• In line with TaOx ReRAM heavy ion degradation results

Mows

10115

MIN SB4B Hi46L019

elan
Mesa lam

m
u
u
u
[
d
u
y
 k

 7
0
)
 

10 15 20 25 30 35 40

Training Epoch (#)

0 9

1,0 8

0 7

o

5,0.6

8

o
0.5

R Jacobs-Gedrim, DR Hughart et al, TNS, 2018

1E10 1E11 1E12 1E1:

Fluence (Ions! an')
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Digital Accelerators: Apple A11

• Apple's iPhone 8 and X main SoC processor

• TSMC 10nm process

• No formal technical papers or presentations
given yet

• 600 Gigaops/s claimed, no other info

• Rough order of magnitude analysis still
possible:

• Assume "Op" is 8-bit fix point

• Entire smartphone CPU <600mW

• Almost certainly > 1 TeraOp/W, or

<1pJ/op

• Next challenge: moving beyond this!
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1,3ezz.;•:i• • 
'011 le

Int •

www.ifixit.com
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Why should we continue these gains?

• Google Deep Learning Study
• 16000 core, 1000 machine GPU cluster
• Trained on 10 million 200x200 pixel images
• Training required 3 days
• Training dataset size: no larger than what

can be trained in 1 week

• What would they like to do?

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

• -2 billion photos uploaded to internet per day (2014)

• Can we train a deep net on one day of image data?
• Assume 1000x1000 nominal image size, linear scaling

(both assumptions are unrealistically optimistic)

• Requires 5 ZettalPS to train in 3 days
(ZettalP5=1021 IPS; -5 billion modern GPU cores)

• World doesn't produce enough power for this!

• Data is increasing exponentially with time

• Need >1016-1018instruction-per-second on 1 IC
• Less than 10 fJ per instruction energy budget

input to another lmer abme

(image with 8 channels)

Number of output

H

w
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channcls = 8

Size = 5

Size = 5

k Number

of maps =

18

ik Number of input
channels — 3

Hine Size = 200

Q. Le, IEEE ICASSP 2013
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General Purpose Neural Architecture

Run any neural algorithm on the
same hardware

Bus
7

[Neural Digital
Core(s) Core

Bus

Neural Digital
Core(s) Core

Bus

Router

Bus

Neural
Core(s)

1

Digital
Core

Bus

Neural
Core(s)

1/4_ 

Digital
Core

Bus R

Neuromorphic core: 
• Evaluate vector matrix multiplies along

rows or columns
• Train based on input vectors

positive
weights

D/A

D/A

negative
weights

D/A

A/D

D/A

A/D

A/D

Digital Core: 
• Process neural core inputs/outputs
• For NxN crossbar, the crossbar accelerates

O(N2) operations leaving only O(N) operations
for the digital core
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Modeling Device Requirements

99

0".

cu 90

Small images
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Symmetric Nonlinearity
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Asymmetric Nonlinearity

0.5 1 0.5
Normalized Pulse Number

Small

images

Large

images
File Types

Read Noise a (% Range) 3% 5% 9%

Write Noise a (% Range) 0.3% 0.4% 0.4%

Asymmetric Nonlinearity (v) 0.1 0.1 0.1

Symmetric Nonlinearity (v) >20 5 5

Maximum Current 160 nA 13 nA 40 nA

Minimum Retention (@ 85°C) 7 days 7 days 7 days

Minimum Nudge Endurance 107 107 107

0
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ReRAM Measurements

N DC Current-voltage "loops" sweeps

are not time-controlled
• Excessive heating and early wearout

• Do not provide info on dynamics

• Physical switching < lOns
• Need pseudo RF setup to measure

• Ground/signal, conductor backed

• Agilent B1530 module

• 10 ns RT/FT, 10 ns PW

• 1 V nominal, —140 mV overshoot

TiN -(

Ta (15 nm)

TaClx (5-10 nm)

TiN

VTE
T

&
0.2 anions
exchange

switching
channel

(+) charged
vacancies

1.2

1.0

, 0.8
>

24) 0.6
2
Z 0.4
>

0.2

0.0

Rise = 12.8 ns
- Fall = 11.4 ns
Amp = 1.14 V

-0.2
-4x10-8 -2x10-8

. ,
0 2x10-8 4x10-8

Time (S)

NVMTS 2019 6 2



Analog Device Comparison

1 1 1 1 11 ' 1' 11 ' 1 1 1 i,1l 
„

Ta0,

60 100009
Pulse Number 11111

Ag-Chalcogenide ...

211020 40000 60000 80009 100900 120000 140000 160000 180000 2000
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182000 184000 188000 188000 190000
ThPulse Number (

182000 184000 186000
Pulse Number (#)

182000 184000 188000
Pulse Number (Th

181;000 190000

%wow

188000

• For comparison all devices at 100 ns due to impedance limitation

• Device operation voltages found by increasing amplitude by 0.1 V until switching

occurred — must survive 200,000 nudges so lowest possible voltage used

• Chalcogenide SET = +0.8 V RESET = -0.8V

• Si02-Cu SET = +1.4 V RESET =-1.6 V

• Ta0. SET +1.0 V RESET = -1.0 V

190000
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https://cross-sim.sandia.gov
X

Sandia National Laboratories: ... X +

c) SandiaNational
Laboratories CROSS S.1 ,̂1

Crossbar Simulator

CROSS SIM
About CrossSim

CrossSim is a crossbar simulator designed to model resistNe memory

crossbars for both neuromorphic computing and (in a future release)

digital memories. It provides a clean python API so that different

algorithms can be built upon crossbars while modeling realistic device

properties and vanability. The crossbar can be modeled using multiple

fast approximate numerical models including both analytic noise

models as well as experimentally derived lookup tables. A slower. but

more accurate circuit omulation of the devices using the parallel spice

simulator Xyce is also being developed and will be included In a future

release.

Download
Download the user manual here: CrossSim manual qdf

Download CrossSim v0.2 here: cross sim-0.2.0.tar 

Download example scripts here: exan

Contact Us
Please email Sapan Agawal for any questions or if you would like to contribute to the source code: sarvarwansandiaram

Selected Publications Using CrossSim
• S. Agarwal, R. B. Jacobs-Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller, A_ Talin, C. D. James, S. J. Plimpton, and M.

J. Marinella, "Achieving Ideal Accuracies in Analog Neurornorphic Computing Using Periodic Carry; in 2017 IEEE

Symposium on VLSI Technology Kyoto, Japan, 2017.

Xyce
Crossbar

Circuit Model

Simple Python API:
1:t a matrix vertnr multinlication

result = neural core.run xbar mvm(vector)

Detailed but
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Effect of System Precision on
Backpropagation Classification Accuracy

Determ inistic Rounding

99 
MNIST

Ideal

8 bit

4 bit

2 bill
0 i 
0 5 10 15 20 25 30 35 40

(a) Training Epoch

Stochastic Rounding

99 
MNIST — 4 bit

laeal I

tochastic updge, VMM
/_,404=•,,,vesc4=0"0":"7 1̀0<

All stoch

Stochastic update\

Deterministic-

0  111111'- 
0 5 10 15 20 25 30 35 40(b) Training Epoch

Agarwal et al, IEEE E3S, 2017
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Al Across Power Envelopes
loT, Edge, and

Mobile
Computing

Self Driving Cars,
Unmanned Arial

Vehicles, and Satellite
Computing

Nvidia Self-Driving
Processor

wikimedia.org

1W 10W 102W 103W 104W
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Datacenters, HPC

Q. Le, IEEE ICASSP 2013
Feature

Feature 2

Feature 3

Feature 4

Feature 5

F111.111

eme AOMPw"

ASCI Red Supercomputer
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