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Digital Accelerators: Google TPU @&

= Tensor Processing Unit: B
Machine learning
accelerator in use by .
Google since 2015 — 3{ -

g =

= Used for TensorFlow

= Accelerates neural network
inference; new versions st
may include training @gﬁm

= Core: matrix multiply unit




Digital Accelerators: Google TPU @&

= TPU v1 Performance results released at ISCA 2017
= Die level performance of 2.3 TeraOps/W

= - ~ 1 plJ per 8 bit operation!

= Contemporary Intel Haswell die comparison:
= 18 GigaOps/W
= — 55 pJ per 8-bit operation

Die Benchmarked Servers
Model 2 . Measured | TOPS/s | On-Chip : - Measured
mm~ | nm (MHz| TDP Jdle | Busy | 8b | P GBIs Mamain Dies| DRAM Size IDP Bl | By
“g;‘_s;g; " 662 | 22| 23000 145W| 41W| 145W] 2.6 | 13| 51 51 MiB| 2 256 GiB 504W| 159W | 455W
NVIDIA K80 . 256 GiB (host)
2 dies/card) 561 | 28| 5600 150W| 25W] 98W| -- [2.8] 160 8MiB| 8 | 5 GB X8 1838W] 357W | 991W
TPU <331% | 28 | 700 75W| 28W| 40w| 92 | - | 34 28 MiB| 4 ZSESC‘}?B(TZ‘) 861W[ 290W | 384W

N. P. Jouﬁgi et aIi 2017 ACM/IEEE 44th Annual International S‘mﬁosium on Comﬁuter Architecture ‘ISCAh TorontoI ONI 2017
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Exemplar Synapse: Oxide ReRAM @&

Ve

ReRAM (OxRAM)
= Starts as insulating MIM structure TiN

O anions
exchange

= Forming: remove 0% - soft breakdown o
. . . Ta (15 nm) : switching
= Bipolar resistance modulation ‘o0 _channel

TaOy (5-10 nm) (+) charged

= Excellent memory attributes: Switching in vacancies

less than 1ns, less than 1 pJ demonstrated, TiN
scaling to 5nm, >102 write cycles possible

= Potential for 100 Thit of ReRAM on chip
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Analog Computation with a @
ReRAM Crossbar

= Electronic Vector Matrix Multiply

Mathematical Electrical
VW=l A W |
v, v, v, |[[Wi, w, w, | V] i
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Mapping Neural Network to Crossbar@m_
for Backprop

Backpropagated error

T from following layer
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_Convert analgg Outputs to next layer
Inputs to varying

length voltage

pulses
Vector Matrix Multiply, Matrix Vector Integrate current to get
Multiply, Rank 1 Update: an analog output value

Key kernels used in many algorithms




Key Circuit Block/Kernel Analysis &

Vector Matrix Multiply Rank-1 Update
(Classification) (Training)
Vi, Va,—V3, =V}
H [V, Va, —V3, ~Vi]
\_ / Voltage Coding fl
K BN § 7Vo]tage Coding
empor: ow
| Coc%(r)lg Drivers Two [ Temporal | Row
1024 x 1024 . | Coding | Drivers Two
Crossbars = | — | Logic 1024 x 1024 .
& | & ‘:‘ _,r“r‘ Crossbars =
LR W DS
|| Edge Logic e - : %
M Counter 1 | || Edge Logic '/‘/’L .
- — Counter
Neuron Offset
: ? Corre?:?ion f Offset
- l Correction
/S.:l Integrators Integrators
i
ADC Ramp —/ ? Coputaioes ADC| | Ramp — :> Comparators
2, TSI Twesen ] NI
yZ e W’L]:E’L J‘ 7%2 = Sz H _J Register 2

Marinella, Agarwal, et al, IEEE JETCAS, 2018




Device Assumptions =

Quantity Value

Interconnect Full Pitch(Wy piecn) 64 nm
Capacitance ~200 aF/pm
Resistance ~30 Q/um
Logic Transistor Area ~0.04 pm?
Voltage 0.8v
High-Voltage Transistor Area ~0.35 pm?
Voltage 18v
Crossbar Dimensions (N owsX Neols) 1024 x 1024
Minimum Pulse Width 1ns
ReRAM & Select Device ReRAM ON/OFF Ratio 10
Capacitance (Creram) 35 aF
Analog ReRAM & Select On State Read Current 1 nA (R,, =100 MQ)
Qeyice On State Write Current 10.3 nA (R,, = 100 MQ)
Read Voltage 0.785V
Write Voltage 18V

Marinella, Agarwal, et al, IEEE JETCAS, 2018.



Analysis of 1024x1024 Operations @&

[Va, Va, —Va, Vi)
6”9 N Component Vector Matrix
_ - Voltage Coding Matrix Vector
emppr ri?::lrs T = -
;= tose | 1%24 32024 ¢ Multiply Multiply
rossbars =
'-Jt>§~ B; @Jy s Energy
Wi, Analog ReRAM Total 12.8 nJ 12.8 nJ 2.2 nd
ofei | Digital ReRAM Total 2140 nJ 2140 nJ 3250 nJ
! (II Digital SRAM Total 2850 nJ 4855 nJ 4300 nJ
ADC| Ramp _/ —> : Comparators Latency
S; l ' | Regiver2 e Analog ReRAM Total 0.384 ps 0.384 ps 0.512 ps
Digital ReRAM Total 176 ps 176 ps 340 ps
Digital SRAM Total 4 us 32 us 8 us
Energy Latency Area
430 — 6,900X over SRAM 35 — 800X over SRAM 11 — 20X over SRAM \
10° p— : . 10% g T
10° 10° <2 fJ I (o p
s 2
210° z 10
§ 5 qE) 10!
LGC: e F 10°
10* 10!
0 -2 0
Analog Digital SRAM Analog Digital SRAM Analog Digital SRAM
(@) ReRAM ReRAM (b) ReRAM ReRAM (C) ReRAM ReRAM

8 bit in/out 4 bit in/out
B 5 it weights 8 g pit weights

2 bit in/out

B 5 it weights

Marinella, Agarwal, et al, IEEE JETCAS, 2018

Agarwal, et al, IEEE E3S Symp, 2017
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Experimental Device Nonidealities @&

= Analog architecture trade off digital precision for significant
performance/watt and performance/area gains
= Best suited for applications requiring ~8 bits precision or less

= Backprop training: Ideally weight would increase and decrease linearly
proportional to learning rule result

= Key issue in experimental devices: altered the relationship between
intended and actual update: Write Nonlinearity, Asymmetry,

Stochasticity, Read Noise
Conductance versus Pulse
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Calculating Accuracy from Device Data

Measure Pulsing
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Lookup Table Generation
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Device to Device Variation () =,

= Extended the CrossSim platform to draw upon a library of look up
tables (LUTSs)

= LUTs assigned prior to online training and remain constant during it
= |ndividualized updates -> slowdown (somewhat mitigated)

Old New Online Updates
. [ T
by px0 VWV
Ev v ?{-g.={} 33 * “"'.IH ‘\"ﬁ ‘\‘1” lﬂ:d
E ) v [ t* ‘\' \\
L 22

n
0 iy
5 o,
i‘;'ins- net
nz
i
o
Fii) 24 25

SET table RESET table
Master LUT o’
Uniform Variable SETLUT:ws  RESET LUT: wr




ReRAM algorithm accuracies: i)
Small Digits (OCR Database)

Small Digits: LUT Variability
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0.3 A

0 2 4 6 8 10 12 14
Training Epoch

# Training # Test Network Size
Examples | Examples
UCI Iris Dataset [1 100 50 4x8x3

Data set

UCI Small Digits[ 1 1.797 64x36x10
File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10
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Problems with Filamentary s
Mechanism for Analog Training

Nonlinearity
1. Tunneling current, esp in high resistances
2. Current crowding — high temperature

Displaced required for change give runaway effect
Oxygen 3. Nonlinear E-field
Anions (0%?)
Positivel Asymmetry
1 Inherent property
Charged " : :
Vacancies - gf :lpt;iarl .dkewced—
(Vo) chotiky-like an
\ , ohmic junctions
Vie o -|||

— Stochasticity

G depends on
position of a few
atoms




Period Carry: Multi-Synapse Method 0
High Accuracy in Nonideal Devices

1 1/4 99 TaO, MNIST
= Example for TaOx: Each Ideal Num
igh 2 >
weight uses 2 synapses N 5 Periodic Carry
= Carry once every 1000 O 590
updates for the LSB, and = < : g
every 2 updates on others ;2 Single Device ]
[ R -
= High variability TaOx device: 0 0 10 20 30 40
accuracy improves from -1 -1/4 Training Epoch

<89% to >97%, only ~1%
under ideal

Weight During Training

-

Digit 1
Weight

= Requires tradeoff of _E
energy/latency for accuracy -0.
0
0
0

U WNIHORNW
T

— exact tradeoff depends on
algorithm regs.

Digit 0
Weight

o 1 2 3 4 5 6
Agarwal et al, VLSI 2017 Update Count (x10,000)




Semiconductor-Oxide-Nitride-Oxide- &
Semiconductor (SONQOS)

Parallel Wirite:wj, = wy; 4.3, X 3y

Wirite Don'tWrite Wiite
n-type paly -15v +{ .5V -1.4V

‘ top oxida

£ 4 & & & |silicen nitride or oxynitride

tunnel oxide

M* source - M* erain T
; petypa silican
@ v (k)
-11V Euls}a-sIII +{ 10V Eulses
1.0 !-:3 |
gO.S
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§ 0.6 jod
= c
No.4 =
e o
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C.‘ﬂ | 10' T mak
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S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 5, 52-57, 2019.



SONOS Accuracy and Energy

100

Lo -11V E!l:ﬂsesl |+TCW’ ?ufsesl : : ;
$0.8 ;,;\_ . 95 W i
3 J P
©0.6 ©
? 5 90 -
20.4
5 <
5 02 85t ~
=
0.0 ’ - .
‘ 80 I 1 1
0 50 100 150 200 , ‘
() Pulse Number 0 10 20 30 40
Training Epoch
Component Vector Matrix Outer
Matrix Vector Product Low
Multiply Multiply Update X
Encray/Op ReRAM (1)) 122 122 2.1 ——inference
F
Energy/Op SONOS (fJ) 13.7 13.7 532 energy
Energy/Op SRAM (fJ) 2718 4630 4102
Array Latency ReRAM (us) | 0.38 0.38 [ 0.51 Slow
Array Latency SONOS (us) | 0.40 0.40 i
Array Latency SRAM (us) 4 32 8

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 2019.



Li-lon Synaptic Transistor for Analog e

Computation (LISTA) G-V for LISTA
C 250
= Alternatively, novel devices may 250r
offer promise @ 200)
= LISTA: modulate the doping of & 1501
Lithium battery cathode 100}
= Resistivity across cathode 50
changes linearly with battery Ok =
charge/discharge
o s 500 nm anode/gate current-collector

‘ electrolyte/insulator
4 N |

anode/gate

Vv ; _ . =

G electrolyte/insulator i = >

' E ()]
— Liy. Li* + xh
LiCoO, Li1.xCop + xLi" + ‘ EE WDMVV"‘" W NGETYeYY v e
_'<80urce cathode/channel  drain 5 \

g — r cathode/channel SiO [

VesT T — source 2 _drain

V E. Fuller et al, Adv Mater, 2017




Analog State Characterization W=

Y]
N
1)
o

200

Gsp (1S)

10 20 30 40 50 60 70
t (ks)

TaOxy ReRAM

LISTA > 200 states sool 10
3 0.8
& |
S0 06
400 0
= 0.4 ©
2200
0.2
o
0.0
1000 2000
Conductance {p5)

PCM Array
4l Measured
3 AG-per-pulse
[uS]

180 200 220 240
Go (1S)

W From all 31 million .
< partial-SET pulses G [uS

E. Fuller et al, Adv Mater, 2017 GW B§" et .}.,‘?EEElTED 20%9



LISTA-device Performance for Backprop Algorith@%

Small Digits File Types Large Digits
N R N T R G prmepemmn e - —TT B B [ S

¥ L] J

— LISTABased — LISTA Based | . — Exp. Devived
=~ Ideal Numeric ; = Ideal Numeric - - = Ideal Numeric -
0 bk m_“_']‘m "I o 3 T N T N = o 1 T T T T T T -
0 510152025303540 0 5 10152025303540 0 5 10152025303540
Training Epoch Training Epoch Training Epoch
# Training # Test Network Size
Data set
Examples | Examples
UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10

E. Fuller et al, Adv Mater, 2017
—



lonic Floating Gate =

0%
, Ag I »0 ]
i — g >
migration Sio, diffusion ® -
(OFF)
199

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).



IFG Array Demonstration =

Near ideal
accuracy

Accuracy
o
wl

i

10 20 30 40
Training Epoch

a8

Viet

Soo boo boo
Qo0 o OO

Vel 'V

read-write operation

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).



Programming Demonstration =

A B GG, (1S)
\Y O 1+100
Ve O VO . v +
Y — Y ov Y [ ov Y] ov |

fﬁ}v\ A ooy oy

VA

200

203

-248

A4

zZ'[1]

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).




IFG Energy Comparison =

120-430X Energy Advantage 2-34X Latency Advantage 9-11X Area Advantage

107 gy n , : : [ 1 Je— : , ﬂ ;
? EE VMM 7
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BN OPU

N Total

[
o)
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Latency (s)
ot
<
Area (mm?)

=
o
&

SONQS F———y
ANalog  i—
ReRAM =S

107 ‘
— — — —_ 0p] — — P
5252 88 2, 52352 88 8, 83 55352 88 8, 82
S5 ok 32 S 2z 2% 25 TL 2G 3588 E0 2 B8
own o <8 < On 0Oy <5 < < On 0y <p < <x

1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
- Vector Matrix Multiply - Matrix Vector Multiply - Outer Product Update

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices

Agarwal et al, VLSI-TSA 2019



Magnetic Synapse Concept @
(a) Pinned layer OUT 2t
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layer

Domain wall (DW)
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Summary =

= As CMOS scaling slows (or ends), a new direction will be
needed to achieve the continue the exponential improvements
in performance per watt (or energy efficiency)

= Deep neural networks and related algorithms being adopted
for many big data and embedded applications

= Analog crossbar VMM and training operations can extend
performance per watt 10-1000x beyond digital CMOS limits

= |deal analog “synapses” are a topic of continued research

Component Vector Matrix Vector Outer 100

Matrix Multiply Product 95

Multiply Update
Energy/Op IFG (fJ) 11.9 11.9 0.2 > 90| — |deal -
Energy/Op ReRAM (fJ) 12.2 12.2 21 o — IFG
Energy/Op SONOS (fJ) 13.7 13.7 68.2 - 83 — SONOS |
Energy/Op SRAM (fJ) 2718 4630 4102 ﬁf 80 —_ Ta0x -
Array Latency IFG (ps) 0.39 0.39 1.9 75
Array Latency ReRAM (us) 0.38 0.38 0.51 ‘
Array Latency SONOS (us) 0.40 0.40 20 70 ] | !
Array Latency SRAM (us) 4 32 8 0 _%0 ] ME 3@h 40

- —— raining cpoc —



Conclusions and Future Work () s,

= Key challenges at the device level must be addressed to make
analog accelerators a reality. Required properties include
= Linear conductance change with pulse, regardless of starting state
= Low nudge current, voltage, and energy, high endurance, <100 ns nudge

= Filament & thermal switching devices (RRAM, CBRAM, PCRAM)
have fundamental challenges for analog operation
= Three terminal devices work better

= Extend architectural energy/latency analysis to system level
= Demonstrate improvements on large datasets with >10M parameters

= Novel ionic floating gate and magnetic domain wall devices
may mitigate these issues:

= |FG has demonstrated offers significant potential as a low energy, high
accuracy neural network accelerator synapse

= Future challenges: continue to improve and scale IFG — and
demonstrate CMOS integration

NVMTS 2019 34
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CrossSim Model of TaOx ReRAM:
MNIST, Backprop Training
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Examples | Examples
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File Types[2] 4,501 900 256x512x9
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Neural Core Energy Analysis 0

8 bits In/out 4 bits In/out 2 bits In/out
8 bit weights 8 bit weights 8 bit weights

ADC

Integrator

Array Write
Array Read
Temporal Drivers
Voltage Drivers
Data Movement

Analog
ReRAM

Multiply & Add
Data Movement
Write Memory
Read Memory

Digital
ReRAM

RONE (NONRECHE

Multiply & Add
Data Movement
Write Memory
Read Memory
Read Transpose

SRAM

12.010 nJ 10,150 nJ 8,970 nJ
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Pulse Width Analog Measurements @&

100 on->off cycles,
(200k pulses)

A YN ¥y A

| il i i - o
t P Humben(#)

|
2000 pulses per
on->off cycle




Crossbar Theoretical Limits | =

= Potential for 100 Thit of ReRAM on chip " ] "] ] T -
= If each can perform 1M computations of Rk \L”\ s -
interest per second (1 M-op): PENEICN NN NN
= 102 active devices/chip x 10° cycle per [ peice
second —>10!8 comps per second per chip F {:d_l: [ ] E
= Exascale-computations per sec on one chip! 2F {Ejﬁa: (1§
= In order to not melt the chip, entire area ReRAM Density v Min. Feature Size
must be limited to ~100W o Basumes 47 coll, Lhitonl
" Allowed energy per operation = P x t/op < 00 e i |
= 100W / 10 = 1016 = 100 aJ/operation 3 .| |
= 10nm line capacitance = 10 aF ‘* \\
= Can charge line to 1V with 10 aJ '

PR | " " " PR S S | " "
0.81 2 4 6 810 20 40

= Drawback: “only” ~100B transistors/chip Minimum Fuature Size. F (v




Multi-ReRAM Synapse: Periodic Carry

If we need more bits per synapse, use multiple memristors

 Three 10 level ReRAMs could represent 1-1000!
« Adding to the weight requires reading every

ReRAM to account for any carries and serially
programming each ReRAM: VERY EXPENSIVE

x100 x10 %1

>3

>4 A

»"’A. ]
)

|

—_—

* Use >10 levels to represent a base 10 system

» Ignore carry and program the crossbar in parallel.

» Periodically (once every few hundred cycles) read
the ReRAM and perform the carry

/
Extra levels 10 levels
store the } represent the
carry weight
conductance




Periodic Carry Compensates for Write Noise () i

1 1/5  1/25 1/125 |
.3.0

52.5
22.0
215

: : 51.0
1 -1/5 -1/25 -1/125 205

~Nfueny”

Read and reset every 100 pulses Weight
Do 300,000 small (0.02% of weight range) updaies
* net of 1500 positive training pulses

Noise Sigma = 1.4% for single device Learn from a 0.5% Signal

* (from Gnoise/Grange = O'l\/AG/Gmnge )
» Write noise applied during updates and carries




Periodic Carry Mitigates Write Nonlinedfiis,

Write Nonlinearity

1.0 | i
.,/1 ‘
05 . -
4 .. ‘.
L ) o
200 L S -
@ [ ]
= o
—0.5 ®

@
®
05 e _
—-1.0 r | ] i‘\.
0

10 20 30 40
Pulse Number

Use center linear range of weights

1 115  1/25 1/125

\AJJBQ /

1 -1/5 -1/25 -1/125

Alternating Pulses Cause Weight Decay

}L@) [] L] [}
5 -
= L i1
< g ‘
—51? Positive Alternating -
’  Pulses Pulses
_]l@ I il il I ] i il

) &
0 10 20 30 40 50 60 70 80
Pulse Number

Periodic

» Train with 1% signal
| - Idealresultis 0.6

~—@4-@2@@ 0.2 0.4




TaO, Results )

1 1/4 g9 130, —File Types 99 _ Ta0,—MNIST
| P Ideal Numeric
N > L I b o >
O § : deal Numeric - 5 A —
Q) 590 k= .. = 590
5 O Periodic Carry | o
< - < B
— : : Single Device -
?mglef Deche z
0 0 | | 32
1 -1/4 0 10 20 30 40 0 10 20 30 40
Training Epoch Training Epoch

Carry once every
1000 updates

A/D and D/A is modeled, Serial operations modeled
«  When resetting weight, need to adjust pulse size based on current state to compensate for nonlinearity
* When reading a single weight, need to adjust readout range to be smaller (change capacitor on the integrator)




Electrochemical Neuromorphic s
Organic Device (eNode)

a Open ’ 2 600 : i |
_pPRmS CK:,\F Vpr& o 800
: et @_l 0 2500 5000 7,500 10,000 12500 15,000
L ] ‘ S
- @_ 550 1 I 2
N i N <
5 600 ] _ §
g 650 1 T ] A
£ 700 - f - 5
S ] : =
T 750 - - 1
o | i ~
Source UASOO 1 - %
. >
E o
- vpus.l '|'pn55r £ -
> ! T ¥ T T T i T ¥ T ¥ T 7 T ¥ T
4,000 4,500 5,000 5,500
Pulse #

van de Burgt et al, Nature Mater., 2017




Electrochemical Neuromorphic s
Organic Device (eNode)

b 1.0 E 1.0
2 -
0.8 | 0.8
'2; 1 0.6 o @ 0.6 Q
2 04 7 g 04 "
D ‘ -
0.2 - 0.2
-1 0.0 : 0.0
600 700 BOO 600 700 800
Conductance (pS) Conductance (pS)
| File types ¢ Small digits f Large digits
99 95 99
o o 3 o 3
= 3 90 = 3 90
o ¥ ¥]
=T < <L
= Exp. derived ] =— Exp. derived B = Exp. derived
= |deal numeric : = |deal numeric 1 = |deal numeric
OF—T—F 71T 7T 1717 0 +— T T T T 1 0T 7T 7T T 71T 71
0 10 20 30 40 0 110 20 30 40 0 10 20 30 40
Training Epoch Training Epoch Training Epoch

van de Burgt et al, Nature Mater., 2017




Programming Demonstration @

F G
-4 -4
10 T 10 ' F
. | 8bit
1 N . S L
S . _- 4 bit @10
@1 0_7 - 2 bit LC>;.~_|0—6 !
::j10 B &
sl
10_8 —I 10
oL m . NN | TN
IFG SRAM IFG SRAM IFG SRAM
E
99 MNIST
& 98
3 .
< 97F © o ideal array
¢ o IFG array
96

O 10 20 30 40
Training epoch



Accuracy

Three Terminal Devices Tend to

Have Higher Accuracy

100
95

~ < 00 00 WO

0

] ] ]

10 20
Training Epoch

Delta G (m5S)

30 40

=

ReRAM SONOS
-11V pulses, +10V pulses
%
14 —p——— L0 F=r——
1.2 o :
1.0 0081 ¢ :
0.8 % = 40§ A
0.6 |7t %ut. ° C06/ f .
© &
0.4 Q AC
0.2 =0.4 .
0.0 €
-0.2 50.2 -
-0.4 <
18 20 22 24 26 28 0.0 —~
Starting Conductance (mS) 0 50 100 150 200
(a) Pulse Number
0.0 I
c [
I
. ) ) I .
7)) SR IR s L T RS N
o) = - e A e -
4 : Y
- |
| I
-1.0- T T T T T T T T
170 180 190 200 210 220 230 240
Go (uS)

lonic Floating-Gate




Initial Study: o
Effect of Si lon Irradiation on Training

= 2.5 MeV Silon irradiation, neural training between steps

= Training accuracy for higher resistance devices may be
degraded following ion irradiation at high fluence

= |nline with TaOx ReRAM heavy ion degradation results

Fluence fions lom™)
100 1" gtz 08w 100 —
. ey 100 F————————————— 5 ] . o .
[12A SB4B Hid6Lo19f E : I 1
15510 90F : g |
o, F A 08}
£ 2 8o} .
= W/ C E -
- ~ Accuracy Degradation §  Zos
@ 1.0x10” 3 ; ] c
= 5 70F { =2
5 3 [ o8}
5 z : ] 8
2 : : e I
= 50ety® 60F Pre Rad] 3 « .
3 : ——1E10 1 Post
—1E13 £
F ——1E14 a .
00 : . e R TECTEE T TS T
o 4DHSE 800D 420000 450000 200000 0 S5 10 15 20 25 30 35 40

i | Fl lons / cm’
Pulse Mumber {#) Training Epoch () uence (lons / cm®)

R Jacobs-Gedrim, DR Hughart et al, TNS, 20718




Digital Accelerators: Apple A1l =

= Apple’siPhone 8 and X main SoC processor
= TSMC 10nm process

= No formal technical papers or presentations
given yet

= 600 GigaOps/s claimed, no other info

= Rough order of magnitude analysis still
possible:

= Assume “Op” is 8-bit fix point
= Entire smartphone CPU <600mW

= Almost certainly > 1 TeraOp/W, or
<1pl/op
= Next challenge: moving beyond this!

www.ifixit.com




Why should we continue these gaindP&.

= Google Deep Learning Study

= What would they like to do?

v

Feature 1 # ° "ﬁ “ * “‘

16000 core, 1000 machine GPU cluster
Trained on 10 million 200x200 pixel images ... k& |
Training required 3 days o ——
Training dataset size: no larger than what e

can be trained in 1 week s § R 3 1AL A TANATY

~2 billion photos uploaded to internet per day (2014) 3
Can we train a deep net on one day of image data? nge wih s hamteky
Assume 1000x1000 nominal image size, linear scaling ol
(both assumptions are unrealistically optimistic)
Requires 5 ZettalPS to train in 3 days

(ZettalPS=10?! IPS; ~5 billion modern GPU cores)
World doesn’t produce enough power for this! =

Data is increasing exponentially with time Q. Le, IEEE ICASSP 2013

= Need >10'6-108instruction-per-second on 1 IC

= Less than 10 f) per instruction energy budEet



General Purpose Neural Architecture

Run any neural algorithm on the cositive [D/A| A \
same hardware . _
weights

] [ ] &~ Router
|R Bus ‘Jl}_{_ Bus J-E] @ L @ Y )
é (
Neural E Digital Neural E Digital D/A % i’;>ﬁ A/D
Core(s) Core Core(s) Core —%‘ &
. J .

IR = Bus JB_( Bus J'}_{J D/A 1ap

Neural Digital Neural Digital )
Core(s) Core Core(s) Core .
g JARLY b negative

A/D

R Bus R Bus R Weights
L] L] L]
> /
Neuromorphic core: Digital Core:
« Evaluate vector matrix multiplies along * Process neural core inputs/outputs
rows or columns * For NxN crossbar, the crossbar accelerates
* Train based on input vectors O(N?) operations leaving only O(N) operations

for the digital core
NVMTS 2019




Modeling Device Requirements

Small Images

Asymmetric Nonlinearity
T T T

Negative Pulses

99 I I T I Symmetric Nonlinearity
L | g
<k Own=0______ I SRS I
© 90 1 8 Q
< o Indeper'1dent g 2
(=== Proportional W . ) Wmin|"  Positive Pulses
o Inverse min Positive Pulses | Negative Pulses 0 05
E 0 0.5 1 0.5 0
(a) 0.0 0.1 0.2 03 O. 4 Nomalized Pulse Number
Normalized Sigma (Oyy)
Small Large File Types
Images Images
Read Noise o (% Range) 3% 5% 9%
Write Noise o (% Range) 0.3% 0.4% 0.4%
Asymmetric Nonlinearity (v) 0.1 0.1 0.1
Symmetric Nonlinearity (v) >20 5 5
Maximum Current 160 nA 13 nA 40 nA
Minimum Retention (@ 85°C) 7 days 7 days 7 days
Minimum Nudge Endurance 10’ 10’ 10’

1

0.5 0

Normalized Pulse Number



ReRAM Measurements

= DC Current-voltage “loops” sweeps
are not time-controlled
= Excessive heating and early wearout
= Do not provide info on dynamics
= Physical switching < 10ns

= Need pseudo RF setup to measure
= Ground/signal, conductor backed
= Agilent B1530 module
= 10 ns RT/FT, 10 ns PW
= 1V nominal, ~140 mV overshoot

Vie
O anions
TiN exchange
P00 _~~channel
TaO (5-10 nm) (+) charged
vacancies
TiN

(V)

Voltag

) -
o
3

Oscilloscope

RSU

. Rise =12.8 ns

- Amp =114V

Fall=11.4 ns

-4x10° -2x10® O
Time (S)

2x10® 4x10°%




Si0,-Cu _—

Conductance (S)
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=  For comparison all devices at 100 ns due to impedance limitation

= Device operation voltages found by increasing amplitude by 0.1 V until switching
occurred — must survive 200,000 nudges so lowest possible voltage used

= Chalcogenide SET = +0.8 V RESET =-0.8V
= Si0,-Cu SET =+1.4 V RESET =-1.6 V

= TaO, SET +1.0V RESET=-1.0V
-



] Sandia
Learning Netoral

Algorithm

Wi WMo Wi

Neural Core Wy Wy Wy
Simulator Wy Wy, Wi,

@ National
Laboratories CROSS SIM

Crossbar Simulator OO0E -

Physical Numeric
ZZROSS SIM Crossbar Hardware Crossbar

il Grassii Circuit Model Crossbar Simulator
Detailed but Fast but

CrossSim s a crossbar simulator designed to model resistive memory v \
for both and (in a future release) =X\

RS B B
digital memories. It provides a clean python API so that different V. =X o\ B -
algorithms can be built upon crossbars while modeling realistic device 2 ;\Jw;l\ Wl Wl woN S I ow a p p rOXI m ate
properties and variability. The crossbar can be modeled using multiple V1=X3—@ R T e ey
fast approximate numerical models including both analytic noise h B — Wil Wil Wi3t Wiy
models as well as experimentally derived lookup tables. A slower, but V =X O 5| % % %
more accurate circuit simulation of the devices using the parallel spice Wart Wyt Wit Wy M d AI L} t h .
simulator Xyce is also being developed and will be included in a future L 2 ¥ 9 $ eas u re g o rl m I c
release

Devices Performance
Download

Download the user manual here: CrossSim_manual.pdf
Download CrossSim v0.2 here: cross_sim-0.2.0 targz
Download example scripts here: gxamples tar gz

TaO,—MNIST
Ideal Numeric

O
(e}

Contact Us

Please email Sapan Agarwal for any questions or if you would like to contribute to the source code: sagarwa@sandia gov

Periodic Carry

Selected Publications Using CrossSim

SAg jarwal R B. Jacobs-Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller, A. A Talin, C. D. James, S. J. Plimpton, and M

Accuracy
O
o

J. Marinella hi g Ideal in Analog phic Computing Using Periodic Carry,” in 2017 IEEE
Svmp sium of VLSIT chnology Kyoto J p 2017
0 da Burct £ E | Eullar na G O Faria § Anaowal M 1| Marinalla A Alac Talin and A

s} , Single Device
Simple Python API: el 1 0 I

- 0 200 400 600 8001000
# Do a matrix vector multiplication Bulss Nomber 0 10 20 30 40

result = neural_core.run_xbar_mvm(vector) Training Epoch




Effect of System Precision on M
Backpropagation Classification Accuracy

Deterministic Rounding Stochastic Rounding
99 MNIST MNIST —4 bit
T T T T T 1 99 —— — T
Ideal Ideal

8 bit

Stochastic update\

Deterministic:

Accuracy
O
o
Accuracy
O
o

_ 2 bit :
Pt I Y [ I SN B
0 510152025303540 b 0O 510152025303540
(a) Training Epoch (b) Training Epoch

0

0

Agarwal et al, IEEE E3S, 2017
"



Al Across Power Envelopes () i,

loT, Edge, and Self Driving Cars, Datacenters, HPC
Mobile Unmanned Arial
Computing Vehicles, and Satellite B o e

Computing

Nvidia Self-Driving
Processor '

5 e s 4G v / \
TUESDAY 11:13 e 3 ~ A — y 3 \
{ LR ., -
¥ & e P & S 3 S
¥ - ¢ M E = y ; N
nest.com b 4 ‘ o

ASCI Red Supercomputer

wikimedia.org




