This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020-2718C

Componentized hieratical build and test infrastructure and processes for CASL VERA'

Roscoe A. Bartlett,*

*Software Engineering and Research, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, rabartl@ sandia.gov

INTRODUCTION

Developing, testing, and deploying complex computa-
tional science and engineering (CSE) software created by dis-
tributed teams is a daunting endeavor. This was well demon-
strated in the Consortium of the Advanced Simulation of Light-
water reactors (CASL) project. The CASL Virtual Environ-
ment for Reactor Applications (VERA) software [1] integrates
the development efforts of many different teams, code bases,
and institutions into multi-physics executables. The software
engineering and process challenges to achieve an integrated
product that is continuously upgraded with new contributions
are enormous. While the modern software engineering (SE)
community has made great strides in developing principles,
processes and best practices to manage such projects [2, 3], it
takes non-trivial tools to effectively implement such processes.
In addition, just the mechanics of configuring, building, and
installing complex compiled multi-language software on a va-
riety of platforms is very challenging. Today’s CSE software
must be able to be run on platforms ranging from basic Linux
workstations and Microsoft Windows machines to the largest
bleeding-edge massively parallel supercomputers.

In order to address these challenges, a framework called
the Tribal Build, Integration, and Test System (TriBITS) was
constructed and applied to VERA. TriBITS creates an orga-
nized framework built on top of (and implemented using) the
Kitware CMake [4] tools to handle a potentially large number
of semi-independent development efforts while still allowing
for seamless integration and deployment for large stacks of
related software. At the low end, TriBITS can be used to
quickly develop a small independent software product with all
the bells and whistles of agile software development including
pre-push and post-push continuous integration [5, 3]. At the
high end (such as with VERA), TriBITS can be used as a
meta-build, testing and deployment system to integrate several
smaller semi-independent TriBITS-enabled software projects.
TriBITS is focused on the development and deployment of
software written using primarily the compiled languages C,
C++, Fortran — and mixed-language programs involving these
— which use MPI and various local threading approaches to

I'This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor
any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed,
or represent that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontrac-
tors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of
their contractors.

achieve performant parallel computation.

TriBITS was initially developed as a package-based ar-
chitecture build and test system for the Trilinos [6] project.
This system was later factored out of Trilinos as the reusable
TriBITS system and adopted as the build architecture for
VERA. Since the initial extraction of TriBITS from Trilinos,
the TriBITS system was further extended and refined; driven
by VERA development and expansion. After the initial ex-
traction of TriBITS, it was quickly adopted by several CASL-
related projects including SCALE [1] at ORNL, MPACT [1]
from the University of Michigan, and COBRA-TF [1] from
the Pennsylvania State University. Because these different
repositories used the same TriBITS build system, it proved
relatively easy to keep these various codes integrated together
in the VERA TriBITS meta-build. In addition to being used in
CASL, all of these codes also have a significant life outside
of CASL. TriBITS additionally well served these independent
development teams and non-CASL projects apart from CASL.

Why CMake?

Many different build and test tools have been created
and are available in the open-source community. Many CSE
projects just use raw Make or GNU Make and devise their
own add-on scripts to drive configuration, building, and testing.
For simple projects that don’t need to be very portable and
only need to run on Linux, writing raw Makefiles is attractive.
However, raw Makefiles will not automatically rebuild object
files, libraries and executables when C and C++ header-files
change and they will not build Fortran files in the correct
order given Fortran module dependencies. Another popular
set of tools used in the CSE community are the so-called GNU
Autotools which are comprised of Autoconf, Automake, and
related programs. Using Autotools over raw (GNU) Make
offers several advantages but these tools were never designed
to manage the development and deployment of large complex
software projects.

Enter CMake. When CMake is installed (which just re-
quires a basic C++ compiler when building CMake from
source to get the key functionality), it provides the executable
tools cmake, ctest and cpack. CMake is a portable config-
uration and build manager that includes a complete scripting
language. CMake configures software for building libraries,
executables, and other targets that leverages native build sys-
tems and IDEs (e.g. CMake can generate build/project files
for Make, Ninja, MS Visual Studio, Eclipse, XCode, and
more). CTest is a tool to handle running tests efficiently in
parallel and reporting results locally and (optionally) also to
a CDash server. CPack is a cross-platform source and/or bi-
nary packaging tool, with installer support for many different
systems. In addition, Kitware also provides CDash which is
a CTest-compatible free open-source web-based dashboard
tool provided by Kitware built on PHP, CSS, XSL, MySQL,

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

and Apache HTTPD. CDash defines various view and query
mechanisms that can be used to review build and test data
over time. Together, these tools can be used to create a very
effective build, test, and deployment process for a complex
software project like VERA.

While CMake, CTest, and CPack include numerous fea-
tures (see [4]), some of the more significant features that make
this set of tools attractive for CSE projects include:

o Built-in support for all major C, C++, and Fortran compil-
ers for all major vendors and implementations including
GNU, Clang, Intel, PGI, IBM, and Cray.

e Automatic built-in full dependency tracking of every kind
possible on all platforms (header file to object file, object
file to library, library to executable, and any build system
changes to impacted build targets, etc.).

o Built-in automatic dependency tracking for Fortran 90+
module files and object files to allow robust parallel com-
pilation and linking (e.g. using the Ninja build tool).

o Built-in support for shared libraries and library versioning
on a variety of platforms and compilers.

o Built-in support for MS Windows (Visual Studio projects,
NMake files, Windows installers, etc.) and OSX (bundles,
frameworks, code signing, etc.).

o Support for cross-compiling (i.e. build on a compile node
and then run on a compute node which has a different
CPU architecture).

e Built-in support for portable determination of
C/C++/Fortran mixed-language bindings.

o Parallel running and scheduling of tests and robust test
time-outs (e.g. schedule 1000s of MPI tests to run on a
64-code node — where each test uses a different number
of MPI processes and threads per MPI processes — while
keeping all 64 cores busy without overloading the node).

o Built-in support for memory testing (Valgrind, Clang
Address Sanitizer, etc.) and line coverage testing (gcov,
bulls-eye, etc.) and submitting results to CDash.

In recent years, the adoption of CMake has greatly in-
creased in the broader community, and CMake is now a domi-
nant build configuration system in many communities, includ-
ing (increasingly) in the CSE community.

Why TriBITS?

While the built-in features that one gets with the straight-
forward usage of CMake are significant, there are several prob-
lems and shortcomings with directly using only raw CMake
commands in a large project. Problems include lots of du-
plicate low-level details, poor management of intra-project
optional dependencies, and other issues that will be highlighed
below. TriBITS is designed to address these problems and
shortcomings and has been demonstrated to do so successfully
(at least in the context of CASL VERA).

At its most basic, TriBITS provides a framework
for CMake-based projects that leverages all the advan-
tages/features of raw CMake/CTest/CPack/CDash, but in ad-
dition provides the following additional features (in relative
order of significance):

o TriBITS provides a set of wrapper CMake functions and
macros to reduce boiler-plate CMake code and enforce

consistency across large distributed CMake projects.

e TriBITS provides a subproject dependency and names-
pacing architecture (i.e. a package architecture) with
required and optional dependencies and namespaced iden-
tifiers for tests and other global targets.

e TriBITS provides additional tools to enable better and
more efficient agile software development and deploy-
ment processes.

e TriBITS adds some basic additional functionality missing
in raw CMake.

e TriBITS changes default CMake behavior when neces-
sary and beneficial for a given project (or set of related
projects) in a consistent way.

OVERVIEW OF THE TRIBITS FRAMEWORK

Primarily, TriBITS defines an architecture and framework
for large structured CMake projects. In such a project, there
is a single cmake configure step, followed by a single make
- j<N> build step, followed by a single ctest -j<N> test suite
invocation. A single CMake project greatly simplifies and
improves the producitivity of the co-development, testing and
deployment of a set of actively developed and integrated soft-
ware. Such projects are partitioned into smaller pieces to
make them easy to work with, even for very large amounts of
software.

The most important requirement for TriBITS when it was
first designed for Trilinos was to support the Trilinos concept
of a Package and to support required and optional dependen-
cies between packages. Prior to TriBITS, it was difficult to
maintain the dependencies between Trilinos packages. The
primary goal for the new CMake-based system was to provide
explicit support for defining and managing packages and to
make a “package” a first-class citizen in the build, test, and de-
ployment system. (It turned out that this concept of a TriBITS
package mapped well with the CMake concept of an external
“Package” located with £ind_package().)

Beyond requirements that CMake automatically satisfies,
the primary requirements for TriBITS are:

e Make it exceedingly easy to write CMakeLists. txt files
for new packages and to define libraries, executables,
tests, and examples in those packages.

e Automatically provide uniformity of how things are done
and allow changes to logic and functionality that ap-
ply to all packages without having to touch individual
(MakeLists. txt files.

e While aggregating as much common functionality as
possible into the TriBITS system and top-level project
files, allow individual packages (and users) to refine the
logic globally and on a package-by-package (or finer-
grained) basis if needed.

e Provide 100% automatic inter-package dependency han-
dling. (For example, if package A is enabled, recursively
enable all of the upstream packages on which it depends.
Likewise, if package B is disabled, recursively disable
all of the downstream packages that depend on it. Such
logic applies to required or optional dependencies and to
library or test/example dependencies.)

e Avoid duplication of all kinds as much as possible. (This

is just a fundamental software maintenance issue. Raw

CMakeLists.txt files have a lot of duplication.)

e The build system should be able to reproduce 100%
update-to-date output by simply rebuilding a given tar-
get (i.e. typing 'make’). (This allows efficient rebuilds
of the software for incremental changes over months of
development and upgrades, greatly reducing build times.)

e Where there is a trade-off between extra complexity at
the global framework level versus at the package level,
always prefer greater complexity at the framework level
where solid software engineering design principles can
be applied to manage the complexity.

o Provide built-in automated support for as many beneficial
software engineering practices as possible. This includes
proper and complete pre-push testing when asynchronous
continuous integration is being performed.

e As much as possible, make a TriBITS CMake project
behave like a raw CMake project (except with different
defaults in some cases like build optimized code and
shared libraries by default). That is, the user should be
able to set any raw CMake variable and it should behave
in the same way as with a raw CMake project. (This
avoids any extra learning curve for a user just trying to
configure and build a CMake project that uses TriBITS
as its build system.)

Most of these requirements were explicitly listed at the
very beginning of the design of TriBITS way back in 2008
when the precursor for TriBITS was first designed.

The TriBITS package-based architecture is designed ac-
cording to software engineering (SE) packaging principles. In
the book “Agile Software Development” [2], Robert Martin
describes six SE principles for packaging software. Of those,
the two that most directly apply to the design of TriBITS are
the Common Reuse Principle (CRP) and the Acyclic Depen-
dencies Principle (ADP). The TriBITS system does not allow
cycles in the package dependency graph due to the ADP. Also,
the assumption of the CRP is taken advantage of to simplify
linking between packages in that if you link against one of the
libraries of a package, you link against them all (and therefore
most TriBITS SubPackages have just one library).

TriBITS is divided into a few different bits of functionality
that can be installed and/or adopted incrementally (or not at
all). With each part, additional functionality is provided but at
the cost of additional external dependencies and less flexibility.
TriBITS is divided into the follow major pieces, listed in order
of increasing functionality and dependency:

o TriBITS Core: Basic CMake package-based architecture,
configure, build, test, install, distribution support, etc.
(This part only depends on raw CMake with no other
dependencies; i.e. no Python or Git dependence.)

o TriBITS Continuous Integration Support: Consists pri-
marily of the checkin-test.py tool which requires
Python 2.6+ and Git 1.7+.

e TriBITS C(Test Driver Support: Additional
CMake/CTest and Python code to support the cre-
ation of ctest -S driver scripts that do package-based
configure, build, test and submissions to CDash.

TriBITS Core

TriBITS Core is set a of CMake modules which are used
to construct CMake projects and provides a basic package-
based architecture. This is used to configure, build, test, in-
stall, and deploy software that uses TriBITS/CMake. It only
depends on raw CMake/CTest/CPack and is used by customers
of the software in installation and deployment. This is the first
part of TriBITS that every project has to adopt in order to
use any part of the TriBITS system. TriBITS Core allows
for the seamless configuration, build, and testing of differ-
ent integrated (but independent) software development efforts.
However, TriBITS Core does not assume any software devel-
opment process or make any assumptions about the version
control (VC) tools or other aspects of the projects that use it.

The basic architectural components of TriBITS Core in-
clude TriBITS Internal Packages, TriBITS External Packages
(TPLs), TriBITS Repositories and TriBITS Projects.

TriBITS Internal Package: Collection of related soft-
ware that typically includes one or more source files built
into one or more libraries and/or executables and has as-
sociated tests to help define and protect the functionality
provided: In addition, TriBITS packages can optionally
be broken down into TriBITS SubPackages that allow for
finer-grained dependency handling and enable/disable behav-
ior. Each Package and SubPackage contains at least one
(CMakeLists. txt file that specifies the libraries, executables,
and tests for the package. Packages and SubPackages list
dependencies on other Packages and SubPackages through a
Dependencies.cmake file. The dependency information in
these Dependencies.cmake files is used to create a directed
acyclic graph (DAG) that is used in dependency analysis.

TriBITS External Package (TPL): Specification for a
particular external package/third-party library (TPL) that is
required or can be used in one or more downstream 7riBITS
Internal Packages: A TPL typically provides a list of libraries
or a list include directories for header files. The specification
of how to find an external package/TPL is determined through
a provided FindTPL<tplName>. cmake file (which can call
find_package(<tplName>)).

TriBITS Repository: Collection of one or more TriBITS
Internal Packages and zero or more TriBITS Internal Package
(TPL) specifications referenced by those packages: A TriBITS
Repository contains a file PackagesList.cmake that lists the
names and source locations of the TriBITS Internal Packages
in the repository and a file TPLsList.cmake that lists the
names and locations of FindTPL<tplName>.cmake files.

TriBITS Project: Collection of one or more TriBITS
Repositories and therefore TriBITS Packages which con-
stitutes a complete CMake “PROJECT* defining soft-
ware which can be directly configured with cmake and
then be built, tested, and installed. A TriBITS project
must contain a base-level CMakeLists.txt file and a
ProjectSettings.cmake file but may contain a number of
other *.cmake files as well to tap into additional TriBITS
functionality. For example, a meta-project can be constructed
out of multiple TriBITS Repositories by listing them in a
cmake/ExtraRepositoriesList.cmake file.

Many TriBITS CMake projects like Trilinos only involve

a single TriBITS Repository. More complex multi-repository
TriBITS projects like VERA contain many TriBITS repos-
itories, each containing TriBITS Packages. Every TriBITS
project must define at least one TriBITS package and most
TriBITS projects have at least one (perhaps optional) external
package/TPL dependency such as a library like BLAS or LA-
PACK and therefore will specify at least one TriBITS External
Package (TPL).

Extended TriBITS

In addition to TriBITS Core, TriBITS also contains an
extended set of tools to support continuous and nightly testing
processes and integration workflows. Using these tools comes
with an additional set of software dependencies (just Python
2.6+ and Git 1.7+).

TriBITS Continuous Integration Support contains a
small collection of software to support continuous integra-
tion which primarily includes the Python checkin-test.py
tool. The checkin-test.py tool implements robust pre-push
continuous integration and can be used to implement light-
weight post-push continuous integration and nightly testing
processes that rely on email notifications. At the low end,
almost every software development project that uses TriBITS
should consider using the checkin-test.py tool to imple-
ment pre-push CI testing for the project. At the high end, the
checkin-test.py tool has all the functionality needed to im-
plement sophisticated multi-repository integration processes
that take only minutes-to-hours to set up and maintain. The
checkin-test.py tool requires that Python 2.6+ and Git
1.7+ be installed on the system and it requires all of the VC
repositories to use Git (or be snapshotted into Git repositories).

TriBITS CTest Driver Support exploits the package-
based architecture of a TriBITS CMake project to provide
testing of a large CMake project using CTest and submits re-
sult on a package-by-package basis to CDash. In addition,
each TriBITS package can have its own targeted regression
email list and CDash displays results on a package-by-package
basis as well as for the whole project for each build. This
extra functionality is primarily implemented in the function
tribits_ctest_driver () whichis called in custom ctest
-S scripts. It also requires the setup of a CDash server.

VERA USAGE OF TRIBITS

VERA is composed of approximately 25 different Git VC
repositories of which 17 are TriBITS Repositories that define
more than 500 TriBITS Packages and Sub-Packages (of which
the full VERA build enables about 230)'. Those TriBITS
packages contain more than 3600 CMakeLists. txt files and
over 2600 *. cmake files (not including files in TriBITS itself).
There are a total of over 60K C, C++, and Fortran source files
and over 12M non-comment lines of code in these repositories.
While not all of this code is built, tested and deployed as
part of VERA and much of it was not developed under the
CASL program, a sizable portion was developed under CASL
and other software in these repositories was extended through

I These statistics about VERA were taken from a development version of
the code base around the beginning of 2019.

Cicada
f (Multi Inst.)
Trilinos (SNL)
DatraTransferKit
(ORNL)
TeuchosWrappersExt \ 3
(Multi Inst.)
T MOOSEExt
Futility MOOSE /
MAMBA | | VERAIExt (ORNL) Bison (INL)
(Multi (Multi Inst.) T
Inst.) T
([’;A:AA'C: SCALE
.Mich.,
coBRATF | ORn) (ORNL)
(Multi Inst.)
™ Tiamat
DakotaExt / (Multi Inst.)
. L vuQbDemos
D(:NOLt)a (SNL) Verashift VERAView
(Multi Inst.) (Multi Inst.)
Fig. 1. Selection of VERA TriBITS and Git Reposi-

tories and some dependencies that exist between them:
These repositories are listed in the file VERA/cmake/-
ExtraRepositoriesList.cmake which is used to construct
the TriBITS meta-project. There are no explicit dependencies
between TriBITS Repositories. Instead, the dependencies
between repositories are defined implicitly through the depen-
dencies of the TriBITS packages in those repositories. Some
of the repositories like VERAView contain stand-alone pack-
ages that do not depend on packages in other repositories but
are built along with the other VERA packages in the single
VERA cmake meta-build for convenience.

close collaborations with CASL. The point is that VERA is a
large piece of software to build and test. To make changes in
the way one builds or tests software of this size, one does not
simply go change 3600+ CMakeLists.txt files. One needs
a systematic approach to deal with build and test issues in a
consistent way in a project of this size. Applying changes to
build and testing approaches consistently across the entire set
of packages is where TriBITS has proven most useful.

The set of VERA TriBITS Repositories that make up
VERA and some of their dependencies are shown in Figure 1.
The aggregation of TriBITS Repositories and Packages into
the VERA TriBITS Meta-Project is depicted in Figure 2. All
of the software integrated into VERA uses TriBITS as their
native build and test system with the exception of Dakota and
MOOSE/Bison. In the case of Dakota, it is wrapped using
the DakotaExt TriBITS Package to allow the Dakota executa-
bles to be built and installed. The DakotaExt package has
a dependency on the Trilinos package Teuchos but that is a
minor complication. The situation with MOOSE/Bison is
more complex. The MOOSEExt TriBITS package wraps the
native MOOSE/Bison build which uses the libmesh Autotools
system to configure the code and then a customized Make-
file system is used to build the MOOSE/Bison software. To
complicate matters, the MOOSE Makefile build system only
allows in-source builds while the VERA CMake system only

VERA

VERAInExt MPACT
Trilinos
VERAIn MPACT_libs
Teuchos
MPACT_exe
[Care] z
SCALE
ParameterList
Nemesis || Shift
Insilico

COBRA-TF

Neutronics

Fig. 2. Aggregation of VERA TriBITS Repositories, Pack-
ages and SubPackages into the TriBITS Meta-Project:
This shows the TriBITS Repositories Trilinos, VERAInExt,
SCALE, MPACT, and COBRA-TF and some TriBITS Packages
and SubPackages inside each of these repositories. For exam-
ple, it shows the Trilinos Package Teuchos which contains the
SubPackages Core, Comm, and ParameterList. Downstream
packages refer to these as TeuchosCore, TeuchosComm, etc.
in their Dependencies. cmake files.

allows out-of-source builds. To reconcile this incompatibil-
ity, the MOOSEEXxt TriBITS wrapper package automatically
copies the MOOSE/Bison/libmesh source to the build direc-
tory where it is configured and built. The generated libraries
are then exported for downstream TriBITS packages to use
like in Tiamat. The MOOSEExt wrapper package can also au-
tomatically detect when source files or upstream dependencies
have changed that require MOOSE/Bison to be reconfigured
and rebuilt from scratch. This maintains an automated and
robust rebuild process but also creates a more complex and
inefficient development environment for VERA developers
and complicates upgrades of MOOSE/Bison into VERA. It is
estimated that developer costs for upgrading MOOSE/Bison
into VERA were higher than for all of the other software
repositories integrated into VERA combined, largely due to
the inconsistencies between the incompatible build systems.

One of the reasons why TriBITS was so quickly adopted
by the different teams and software efforts was that it not only
allowed the different components to be easily integrated into
the single multi-physics VERA meta-build, but it also allowed
them to maintain their own software projects independent from
CASL and VERA using the same build and test system, just
by rearranging the existing TriBITS Repositories into different
TriBITS Projects. This is depicted in Figure 3 for the Trilinos,
COBRA-TF, SCALE, and MPACT projects.

Another area where the TriBITS framework has proven
useful is in driving automated testing supporting development
and deployments. For this, the checkin-test.py tool is
used to drive pre-push asynchronous continuous integration
testing before pushing to the *master’ branch (using the fast-
running BASIC test suite) using the standard VERA driver
script checking-test-vera.sh --do-all --push for a
single build configuration. Since asynchronous integration
can lead to broken code on the *master’ branch (because two
or more incompatible independent branches can be tested
and pushed at the same time), a post-push continuous inte-

Trilinos SCALE
| Trilinos || VERAInExt
COBRA-TF | SCALE |
COBRA-TF
MPACT

| Trilinos | | VERAInExt | [SCALE |

| COBRA-TF || MPACT |

Fig. 3. Rearrangement of the TriBITS Repositories into
different TriBITS Projects: This shows the same TriBITS
Repositories and TriBITS Packages from Figure 2 rearranged
into different TriBITS Projects. In the case of Trilinos and
COBRA-TF, one can just clone their Git repositories and di-
rectly configure them as stand-alone CMake projects (where
the TriBITS Repository and TriBITS Project live in the same
base directory). SCALE and MPACT use some other TriBITS
Repositories as well as their own TriBITS Packages to imple-
ment their own applications and projects independent from
VERA.

gration build (running a slightly larger and more expensive
CONTINUOUS test suite) is run which posts to the VERA CDash
project and triggers emails sent to developers if there are any
build or test failures. That way, developers can react imme-
diately if such a case occurs. (Breakages of the CONTINUOUS
VERA test suite only occurred a few times a year on average
and they were usually addressed that same day.) Finally, a
set of nightly builds are run for different build configurations
(e.g. debug and release, shared and static libraries) and for a
set of HEAVY tests for one fully optimized build. (The HEAVY
test category was added to TriBITS to support VERA and the
VERA HEAVY test suite takes an entire 24 hour day on a fast
128 core node with 256G of memory.) These test categories
are subsets of each other. That is, the HEAVY test suite contains
all of the NIGHTLY tests which contain all of the CONTINUOQUS
tests which contain all of the BASIC tests. Without having
standardized test categories, it is very difficult to drive auto-
mated testing of a large number of independently developed
software components.

Figure 4 shows the CDash dashboard for the VERA
nightly builds from around 2016 showing the package-by-
package breakdown for one of those builds. This shows the
usage of the CDash SubProjects feature where a subset of
TriBITS packages that make up VERA are specifically se-
lected as meta-project packages from the different TriBITS
repositories and the tests and examples are enabled and run for
this subset of packages. In this version of VERA, only 20 of
the over 90 enabled top-level TriBITS packages are included
in this subset of tested packages.

Finally, another area where the TriBITS package-based
framework approach has proven useful with VERA is in cre-
ating distributions of the software. VERA puts out several

[Build Name

Files [Error Warn [Error Warn

ail P35S [sartTimew [Labels
Linux-GCC-4.8.3-
SERIAL_RELEASE_SHARED

Linux-GCC-4.8.3-
SERIAL_RELEASE_DEBUG_SHARED

Linux-GCC-4.8.3-
MPI_RELEASE_STATIC
Linux-GCC-4.8.3-

MPI_RELEASE_DEBUG_STATIC

20
shoursago |

2
10 hours ago abels)

20
13h

OUrS 390 kabels)
20

15hours ago o orey

Linux-GCC-4.8.3-
MPI_RELEASE_SHARED
Linux-GCC-4.8.3-
MPI_RELEASE_SHARED_HEAVY
Linux-GCC-4.8.3-
MP|_RELEASE_DEBUG_SHARED
Linux-GCC-4.8.3-
MPI_DEBUG_DEBUG_SHARED

20
abels)
19
abels)

18 hours ago
22 hours ago
20
22 hi
RO 209 abels)
20

22 hours ago
9 Jabels)

ST
Build Name: Linux-GCC-4.8.3-MPI_RELEASE_STATIC A
Number of SubProjects Built: 20

SubProject

vuQDemos
vuQCore
DakotaExt

Tiamat

VeraAPl &
MPACT_exe
MPACT_Drivers
MPACT_libs
XSTools
Insilico

CASL_MOOSE

DataTransferkit
VERAout
VERAIn
COBRA_TF
MAMBA

Cicada
ForTeuchos
CTeuchos
TrBITS

Fig. 4. VERA CDash Builds and Package-by-Package
Detail: Top shows summary of nightly VERA builds
for different build cases. Top summary line for build
LINUX-GCC-4.8.3-MPI_RELEASE_STATIC shows 1 fail-
ing test and 1273 passing tests. Clicking the build
name LINUX-GCC-4.8.3-MPI_RELEASE_STATIC goes to
the package-by-package breakdown page shown at bottom.
Shows that the failing test is in package VeraAPI. Package-
by-package breakdown includes build and tests results and test
run-times for each package.

different distributions of the software which contain different
subsets of repositories and packages. For example, several of
the repositories are currently not released in any of the distribu-
tions of VERA which include MAMBA, Cicada, VERAView and
VUQDemos. These repositories are explicitly excluded from dis-
tribution source tarballs of VERA. In addition, any packages
that are not enabled in the configuration process are automati-
cally excluded from source tarball distributions by the TriBITS
system. (TriBITS knows all of the packages and will automat-
ically exclude the source directories for packages that are not
enabled when generating the source tarball distributions.) And
the TriBITS package dependency system will automatically

disable downstream packages when upstream packages are
missing when the reduced untarred source is built on the target
system (or in the Docker distribution container). The configu-
rations of future VERA distributions are also tested every day
by creating a source tarball off the *'master’ branch, untarring
it, doing the configure, build and running the full NIGHTLY
test suite, then running the install and finally running some
installed “smoke tests” to ensure the VERA executables and
supporting files have been installed correctly. These TriBITS
features and daily deployment testing processes significantly
reduce the costs and overhead of putting out new releases of
VERA.

SUMMARY

The creation and adoption of the TriBITS framework by
the CASL VERA project allowed for the efficient development
and integration of many software development efforts from
many different groups and institutions at a fraction of the cost
of traditional approaches typically employed in the CSE com-
munity. By using a common systematic approach to building,
testing, and deploying software, the infrastructure and inte-
gration costs were kept to a minimum. Comparing the costs
of the integration efforts over the 10 year history of CASL
for those codes that natively used TriBITS as their build and
testing system to the codes that did not, provided a contrast
and motivation for using a homogeneous framework such as
TriBITS for driving such efforts. As post-CASL VERA main-
tenance will likely only include those codes that use TriBITS
as their native build and test system, the infrastructure and
integration costs for VERA are likely to remain comparatively
low for years to come.

ACKNOWLEDGMENTS

This material is based upon work supported by a Depart-
ment of Energy Consortium for the Simulation of Light-water
Reactors.

REFERENCES

1. J. A. TURNER, K. CLARNO, M. SIEGER,
R. BARTLETT, B. COLLINS, R. PAWLOWSKI,
R. SCHMIDT, and R. SUMMERS, “The Virtual Envi-
ronment for Reactor Applications (VERA): Design and
architecture,” Journal of Computational Physics, 326, 544
- 568 (2016).

2. R. MARTIN, Agile Software Development (Principles, Pat-
terns, and Practices), Prentice Hall (2003).

3. P.DUVALL and ET. AL., Continuous Integration, Addison
Wesley (2007).

4. C. SCOTT, Professional CMake: A Practical Guide, 5th
Edition), Crascit.com (2019).

5. K. BECK, Extreme Programming (Second Edition), Addi-
son Wesley (2005).

6. M. HEROUX and ET. AL., “An overview of the Trilinos
project,” ACM TOMS (2005).

