

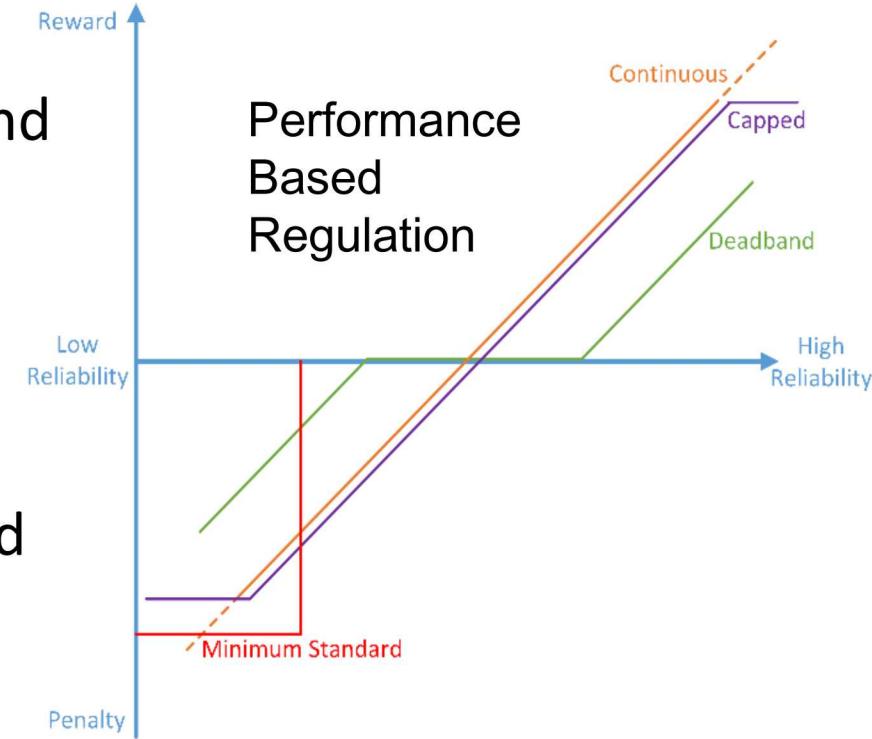
Co-optimization to Integrate Power System Reliability Decisions with Resiliency Decisions

Brian J. Pierre, Ph.D., Bryan Arguello, Kaitlyn Garifi

Sandia National Laboratories

ISGT 2020, Washington DC

Project Team

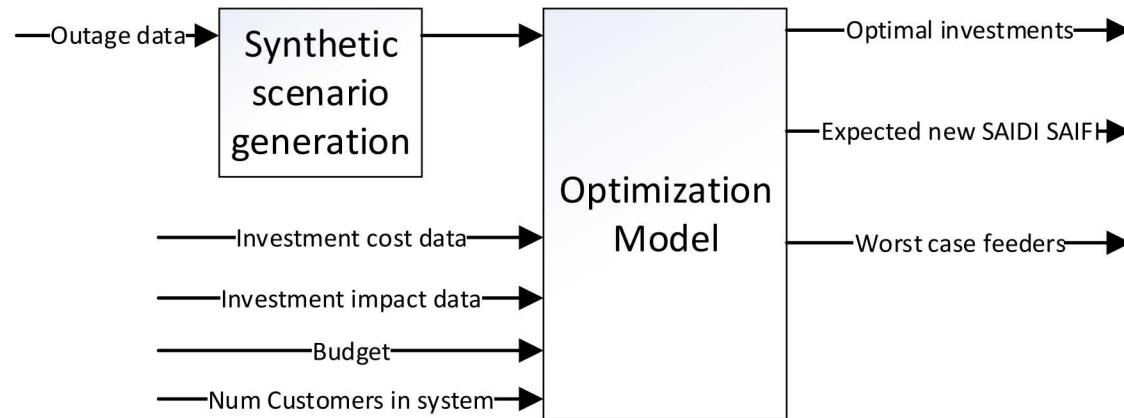

- Sandia National Laboratories
 - Brian Pierre (PI)
 - Bryan Arguello
 - Manuel Garcia
 - Advisors
 - JP Watson
 - Ross Guttromson
- University of Colorado
 - Kaitlyn Garifi
- Georgia Tech
 - Emma Johnson

Resilience vs. Reliability

- Reliability – Low consequence high probability
 - Squirrels, birds, etc.
 - Traffic accidents
 - Trees/wind
 - Lightning
- Resilience - High consequence low probability events
 - Severe winter storms
 - Hurricanes
 - Earthquakes
 - EMPs and GMDs
 - Large wildfires

Utilities are incentivized to be reliable not resilient

- Utilities are often incentivized to be more reliable (improve their SAIDI and SAIFI metrics)
- Some utilities have performance based regulation (PBR)
- Large scale events (severe winter storms, hurricanes, etc.) are removed from the SAIDI and SAIFI metrics
- Less incentive to invest in resiliency



Primary project goals

- Develop optimization models which find the optimal investments to improve reliability, resiliency, and a weighted combination of the two.
- Help utilities see the trade-offs between investing more heavily in reliability or resiliency.
- Help utilities develop rate recovery cases to justify large scale investments, by quantifying how that investment will improve their reliability and resiliency.
- Inform utilities and their stakeholders, DOE, DHS, and policy makers of cost-effective infrastructure investment decisions that simultaneously improve both reliability and resilience.

Investment optimization for Reliability

- Objective is to minimize SAIDI and SAIFI
- Input is historical outage data
- Investments are mostly smaller scale compared to the investments for resilience

Stochastic mixed integer program for optimal reliability investments

Objective function

$$\text{minimize} \frac{\text{SAIDI}_{up}}{\text{SAIDI}_{syn}} + \frac{\text{SAIFI}_{up}}{\text{SAIFI}_{syn}}$$

(5)

Sets

D	Device types
I	Feeder IDs
U	Upgrade options
U_d	Upgrade options for device type d in feeder i
O	Outages
U_o	Upgrade options that improve the number of customers outaged in outage o if applied
V_o	Upgrade options that improve the duration of outage in outage o if applied
S	Outage causes

subject to

$$\sum_{i,d,u \in U_{i,d}} c_{u,i,d,u} \leq B$$

(6)

$$\text{SAIDI}_{up} = \frac{1}{N} \sum_{o \in O} C_{o,u} T_{o,u}$$

(7)

$$\text{SAIFI}_{up} = \frac{1}{N} \sum_{o \in O} C_{o,u}$$

(8)

$$C_{o,u} = \min_{u \in U_o} \{C_{o,u} y_{i_o,d_o,u} + C_o (1 - y_{i_o,d_o,u})\} \quad \forall o \in O$$

$$T_{o,u} = \min_{u \in U_o} \{T_{o,u} y_{i_o,d_o,u} + T_o (1 - y_{i_o,d_o,u})\} \quad \forall o \in O$$

$$CO_o = \min_{u \in U_o} \{C_{o,u} y_{i_o,d_o,u} + C_o (1 - y_{i_o,d_o,u})\} \quad \forall o \in O$$

$$TO_o = \min_{u \in U_o} \{T_{o,u} y_{i_o,d_o,u} + T_o (1 - y_{i_o,d_o,u})\} \quad \forall o \in O$$

The above model is non-linear so linearize with:

$$CO_o \leq C_{o,u} y_{i_o,d_o,u} + C_o (1 - y_{i_o,d_o,u}) \quad \forall o \in O, u \in U_o$$

$$CO_o \geq C_{o,u} [y_{i_o,d_o,u} + C_o (1 - y_{i_o,d_o,u})] m_{o,u} \quad \forall o \in O, u \in U_o$$

$$\sum_{u \in U_o} m_{o,u} = 1 \quad \forall o \in O$$

$$TO_o \leq T_{o,u} y_{i_o,d_o,u} + T_o (1 - y_{i_o,d_o,u}) \quad \forall o \in O, u \in V_o$$

$$TO_o \geq T_{o,u} [y_{i_o,d_o,u} + T_o (1 - y_{i_o,d_o,u})] n_{o,u} \quad \forall o \in O, u \in V_o$$

$$\sum_{u \in V_o} n_{o,u} = 1 \quad \forall o \in O$$

$$my_{o,u} \leq m_{o,u} \quad \forall o \in O, u \in U_o$$

$$my_{o,u} \leq y_{i_o,d_o,u} \quad \forall o \in O, u \in U_o$$

$$my_{o,u} \geq m_{o,u} + y_{i_o,d_o,u} + 1 \quad \forall o \in O, u \in U_o$$

$$ny_{o,u} \leq n_{o,u} \quad \forall o \in O, u \in V_o$$

$$ny_{o,u} \leq y_{i_o,d_o,u} \quad \forall o \in O, u \in V_o$$

$$ny_{o,u} \geq n_{o,u} + y_{i_o,d_o,u} + 1 \quad \forall o \in O, u \in V_o$$

$$COT_{o,u} = \sum_{u \in U_o} \sum_{v \in V_o} C_{o,u} T_{o,u} m_{o,u} n_{o,u} \quad \forall o \in O$$

$$mn_{o,u,u'} \leq m_{o,u} \quad \forall o \in O, u \in U_o, u' \in V_o$$

$$mn_{o,u,u'} \leq n_{o,u'} \quad \forall o \in O, u \in U_o, u' \in V_o$$

$$mn_{o,u,u'} \geq m_{o,u} + n_{o,u'} + 1 \quad \forall o \in O, u \in U_o, u' \in V_o$$

(23)

(24)

(25)

(26)

$y_{i,d,u}$	Binary indicating whether or not to apply upgrade $u \in U_d$ to device type d in feeder i
SAIDI_{up}	SAIDI value after upgrades
SAIFI_{up}	SAIFI value after upgrades
$m_{o,u}$	Binary indicating that upgrade u gives minimal customer outage during outage o . Necessary for when multiple upgrades are selected that affect one outage.
$n_{o,u}$	Binary indicating that upgrade u gives minimal outage duration during outage o . Necessary for when multiple upgrades are selected that affect one outage.
$mn_{o,u,u'}$	The product $m_{o,u} n_{o,u'}$. Can also be interpreted as a binary indicating upgrade u gives minimal customer outage and upgrade u' gives minimal outage duration during outage o . The product $m_{o,u} y_{i_o,d_o,u}$. Can also be interpreted as a binary indicating that upgrade u is applied and results in minimal number of customers affected during outage o . The product $n_{o,u} y_{i_o,d_o,u}$. Can also be interpreted as a binary indicating that upgrade u is applied and results in minimal outage duration during outage o .
$my_{o,u}$	Binary indicating that upgrade u is applied and results in minimal number of customers affected during outage o .
$ny_{o,u}$	Binary indicating that upgrade u is applied and results in minimal outage duration during outage o .
CO_o	Number of customers which outage o affects after upgrade
TO_o	Duration of outage o after upgrade
$COT_{o,u}$	The product $CO_o TO_o$

Parameters

C_o	Number of customers outage o affects
T_o	Duration of outage o
d_o	Device type of outage o
i_o	Device ID of outage o (also gives feeder ID/location)
s_o	Cause of outage o
c_u	Cost to purchase upgrade u
$C_{o,u}$	Number of customers outage o affects after upgrade u
$T_{o,u}$	Duration of outage o after upgrade u
SAIDI_{syn}	Baseline SAIDI value
SAIFI_{syn}	Baseline SAIFI value
B	Budget
N	Number of customers in total system

Variables

$y_{i,d,u}$	Binary indicating whether or not to apply upgrade $u \in U_d$ to device type d in feeder i
SAIDI_{up}	SAIDI value after upgrades
SAIFI_{up}	SAIFI value after upgrades
$m_{o,u}$	Binary indicating that upgrade u gives minimal customer outage during outage o . Necessary for when multiple upgrades are selected that affect one outage.
$n_{o,u}$	Binary indicating that upgrade u gives minimal outage duration during outage o . Necessary for when multiple upgrades are selected that affect one outage.
$mn_{o,u,u'}$	The product $m_{o,u} n_{o,u'}$. Can also be interpreted as a binary indicating upgrade u gives minimal customer outage and upgrade u' gives minimal outage duration during outage o . The product $m_{o,u} y_{i_o,d_o,u}$. Can also be interpreted as a binary indicating that upgrade u is applied and results in minimal number of customers affected during outage o . The product $n_{o,u} y_{i_o,d_o,u}$. Can also be interpreted as a binary indicating that upgrade u is applied and results in minimal outage duration during outage o .
$my_{o,u}$	Binary indicating that upgrade u is applied and results in minimal number of customers affected during outage o .
$ny_{o,u}$	Binary indicating that upgrade u is applied and results in minimal outage duration during outage o .
CO_o	Number of customers which outage o affects after upgrade
TO_o	Duration of outage o after upgrade
$COT_{o,u}$	The product $CO_o TO_o$

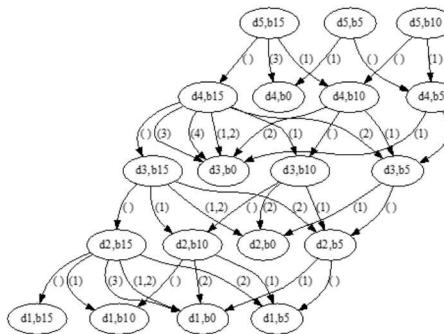
Model details

Goal: Determine the optimal investments to improve power distribution system reliability.

Inputs to model: Historical outage data, investment impact data, investment cost data

Model type: Nonlinear mixed integer program
Linearized through new and old techniques

Model efficiency (scalability): Great efficiency, especially for larger systems, but worse for large budgets and large outage sets


Generalized dynamic programming method for optimal reliability investments

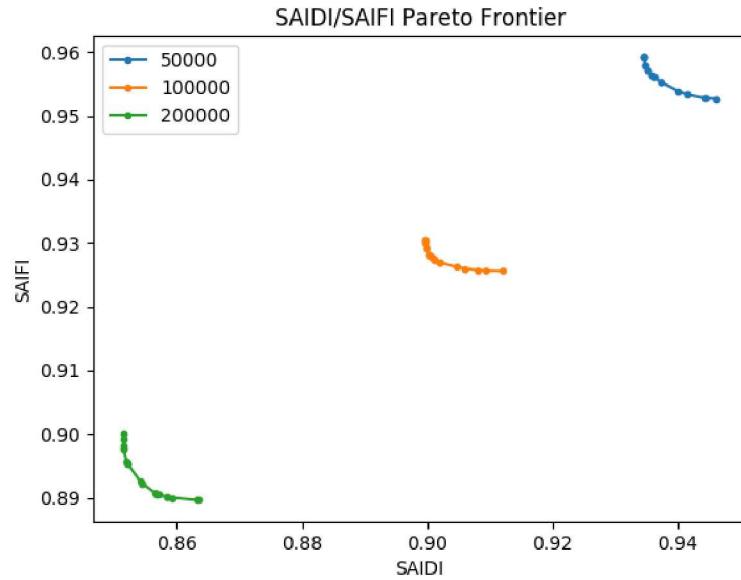
GRDP Algorithm

```

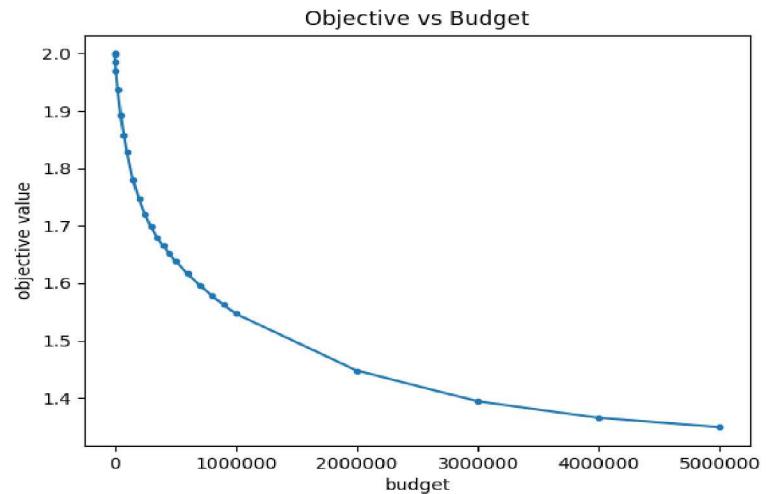
1: # Precondition: Package_bundles is a list of upgrade
2: #       bundles which can be used to upgrade
3: #       the bundles' respective outages.
4: # Postcondition: Returns the package bundle whose
5: #       contribution to the objective function
6: #       is optimal.
7: function max_obj(package_bundles)
8:   max = -1
9:   for each bundle in package_bundles do
10:    objective_contribution = 0
11:    for each package in bundle do
12:      increment objective_contribution by the package's
13:      contribution to the objective function
14:    if objective_contribution > max:
15:      max = objective_contribution
16:      optimal_bundle = bundle
17:
18:   return optimal_bundle
19:
20: global cache = []
21:
22: function GRDP(feeder_device_pairs, budget)
23:   if (feeder_device_pairs, budget) is in cache do
24:     return cache[feeder_device_pairs, budget]
25:
26:   if budget < 0 do
27:     return empty list
28:
30:   for each package in applicable upgrade packages for
31:     feeder and device given in first pair from
32:       feeder_device_pairs do
33:         if the cost of package > budget do
34:           return empty list
35:         upgrade_package_bundles = a list with package
36:           followed
37:           by GRDP(feeder_device_pairs with first
38:           element
39:           removed, budget - cost of package)
40:         cache[feeder_device_pairs, budget] =
41:           max_obj(upgrade_package_bundles)
42:   return cache[feeder_device_pairs, budget]

```


Model details


Goal: Determine the optimal investments to improve power distribution system reliability.

Inputs to model: Historical outage data, investment impact data, investment cost data


Model type: Generalized dynamic programming – decision tree – based on classic Knapsack algorithm

Model efficiency (scalability): Good efficiency, especially for large budgets and large outage sets, worse on large systems than previous model

Results from reliability investment models on utility data


Pareto frontiers of weighting SAIDI or SAIFI more. Whether you weight SAIDI (duration) more or SAIFI (frequency of events) more, the results are similar.

The improvement in reliability at budget increases. The optimal investments are chosen for each budget

Resiliency investment optimization

- The goals are to push the mean consequence and the tail of the consequence to the left.
- Reducing the tail, reduces the consequence from the large worst-case scenarios
- Resilience metrics used in this project are Loss of Load and Duration.

Minimize

$$\text{Resiliency metric} = \frac{1}{B_{LSWD}} LSWD + \frac{1}{B_{LS}} LS \quad (1)$$

subject to

$$LSWD = \sum_{t \in T} \sum_{b \in B} A_b \sum_{w \in \Omega} P_w p_b^w \quad (2)$$

$$LS = \sum_{b \in B} A_b \sum_{w \in \Omega} P_w p_{b,0}^w \quad (3)$$

$$\sum_{b \in B} C_b i_b + \sum_{l \in L} C_l i_l + \sum_{g \in G} C_g i_g \leq K \quad (2)$$

$$\sum_{g \in G_b} p_{g,t}^w + \sum_{l \in L_b^{\text{from}}} p_{l,t}^w - \sum_{l \in L_b^{\text{to}}} p_{l,t}^w = D_b - p_{b,t}^w \quad (5)$$

$$\forall b \in B, \forall t \in T, \forall w \in \Omega$$

$$p_{l,t}^w = y_{l,t}^w S_l (\theta_{B_l^{\text{to}},t}^w - \theta_{B_l^{\text{from}},t}^w) \quad (6)$$

$$\forall l \in L, \forall t \in T, \forall w \in \Omega$$

$$p_{g,t}^w \leq p_{g,t-1}^w + RU_g y_{g,t}^w + SU_g (y_{g,t}^w - y_{g,t}^w) \quad (7)$$

$$+ \bar{P}_g (1 - y_{g,t}^w) \quad (7)$$

$$\forall g \in G, \forall t \in T, \forall w \in \Omega$$

$$p_{g,t-1}^w \leq \bar{P}_g y_{g,t}^w + SD_g (y_{g,t-1}^w - y_{g,t}^w) \quad (8)$$

$$\forall g \in G, \forall t \in T, \forall w \in \Omega \quad (8)$$

$$p_{g,t-1}^w - p_{g,t}^w \leq RD_g y_{g,t}^w + SD_g (y_{g,t-1}^w - y_{g,t}^w) \quad (9)$$

$$+ \bar{P}_g (1 - y_{g,t}^w) \quad (9)$$

$$\forall g \in G, \forall t \in T, \forall w \in \Omega \quad (9)$$

$$-\frac{\pi}{3} \leq \theta_{B_l^{\text{to}},t}^w - \theta_{B_l^{\text{from}},t}^w \leq \frac{\pi}{3} \quad (10)$$

$$\forall l \in L, \forall t \in T, \forall w \in \Omega \quad (10)$$

$$-\bar{P}_l y_l^w \leq p_{l,t}^w \leq \bar{P}_l y_l^w \quad (11)$$

$$\forall l \in L, \forall t \in T, \forall w \in \Omega \quad (11)$$

$$\bar{P}_g y_g^w \leq p_{g,t}^w \leq \bar{P}_g y_g^w \quad (12)$$

$$\forall g \in G, \forall t \in T, \forall w \in \Omega \quad (12)$$

$$0 \leq p_{b,t}^w \leq D_b \quad (13)$$

$$\forall b \in B, \forall t \in T, \forall w \in \Omega \quad (13)$$

$$y_{l,t}^w \leq i_l + \frac{t}{X_l^w} \quad (14)$$

$$\forall l \in L, \forall t \in T, \forall w \in \Omega \quad (14)$$

$$y_{l,t}^w \leq i_{B_l^{\text{from}}} + \frac{t}{X_l^w} \quad (15)$$

$$\forall l \in L, \forall t \in T, \forall w \in \Omega \quad (15)$$

$$y_{g,t}^w \leq i_g + \frac{t}{X_g^w} \quad (17)$$

$$\forall g \in G, \forall t \in T, \forall w \in \Omega \quad (17)$$

$$y_{g,t}^w \leq i_g + \frac{t}{X_g^w} \quad (18)$$

$$\forall g \in G, \forall t \in T, \forall w \in \Omega \quad (18)$$

$$y_{b,t}^w \leq i_b + \frac{t}{X_b^w} \quad (19)$$

$$\forall b \in B, \forall t \in T, \forall w \in \Omega \quad (19)$$

$$y_{l,t}^w \leq y_{B_l^{\text{from}},t}^w \quad (20)$$

$$\forall l \in L, \forall t \in T, \forall w \in \Omega \quad (20)$$

$$y_{l,t}^w \leq y_{B_l^{\text{to}},t}^w \quad (21)$$

$$\forall l \in L, \forall t \in T, \forall w \in \Omega \quad (21)$$

$$y_{g,t}^w \leq y_{B_g^{\text{to}},t}^w \quad (22)$$

$$\forall g \in G, \forall t \in T, \forall w \in \Omega \quad (22)$$

Resilience Sets

 L : Transmission lines G : Generators B : Buses Ω : Outage scenarios Ω_l : Set of scenarios under which transmission line l goes offline Ω_g : Set of scenarios under which generator g goes offline Ω_b : Set of scenarios under which bus b goes offline T : Discrete set of times: duration each component is out of service G_b : Set of generators connected to bus b $L_{b,\text{from}}$: Set of transmission lines leaving bus b $L_{b,\text{to}}$: Set of transmission lines entering bus b I : Set of investments for buses, generators, and transmission lines

Resilience Parameters

 B_l^{from} : Bus from which transmission line l leaves B_l^{to} : Bus transmission line l enters S_l : Susceptance of transmission line l \bar{P}_l : Thermal limit of transmission line l B_g : Bus containing generator g RU_g : Ramp-up limit of generator g dispatch level RD_g : Ramp-down limit of generator g dispatch level SU_g : Start-up limit of generator g dispatch level SD_g : Shut-down limit of generator g dispatch level \bar{P}_g : Upper limit of generator g dispatch level \bar{P}_g : Lower limit of generator g dispatch level D_b : Demand at bus b A_b : Load weighting factor at bus b C_l : Cost of hardening transmission line l C_g : Cost of hardening generator g C_b : Cost of hardening bus b P_w : Probability of scenario w occurring X_l^w : Number of time periods line l is affected by event in scenario w with no hardening X_g^w : Number of time periods generator g is affected by event in scenario w with no hardening X_b^w : Number of time periods bus b is affected by event in scenario w with no hardening P_w : Probability of scenario w occurring B_{LSWD} : First term in objective during baseline model run with 0 budget B_{LS} : Second term in objective during baseline model run with 0 budget

Resilience Variables

 $LSWD$: Load Shed With Duration in MW – similar to the SAIDI reliability metric LS : Load Shed – similar to the SAIFI reliability metric $P_l w$: Power flow through transmission line l at time t in scenario w $p_{B_l^{\text{from}},t}^w$: Generator dispatch level for generator g at time t in scenario w $p_{B_l^{\text{to}},t}^w$: Load shed at bus b at time t in scenario w $\theta_{B_l^{\text{from}},t}^w$: Phase angle for bus b at time t in scenario w $y_{l,t}^w$: On/off status of line l at time t during scenario w $y_{B_l^{\text{from}},t}^w$: On/off status of generator g at time t during scenario w $y_{B_l^{\text{to}},t}^w$: On/off status of bus b at time t during scenario w $y_{B_g^{\text{to}},t}^w$: Binary indicating whether or not transmission line l is hardened $y_{B_g^{\text{from}},t}^w$: Binary indicating whether or not generator g is hardened $y_{B_b^{\text{to}},t}^w$: Binary indicating whether or not bus b is hardened

Stochastic mixed integer program for optimal resilience investments

Model details

Goal: Determine the optimal investments to improve power system resilience (loss of weighted load and duration).

Inputs to model: Scenario data from threats listing component outages and recovery time. Investment cost data.

Model type: Linear mixed integer program (MIP).

Model efficiency (scalability): Poor efficiency, especially for larger systems, and a large number of scenarios. Can solve the IEEE RTS96 system with 50 scenarios.

$$\begin{aligned}
\min_{\substack{u, v, k}} \quad & \sum_{\omega \in \Omega} \bar{u}_{\omega} \left(\frac{1}{B_1} \sum_{l \in \mathcal{L}} \sum_{b \in \mathcal{B}} A_{lb} \bar{v}_{b,l} + \frac{1}{B_2} \sum_{b \in \mathcal{B}} A_{lb} \bar{v}_{b,1}^{\text{off}} \right) \quad (22) \\
\text{s.t.} \quad & \sum_{b \in \mathcal{B}} k_b + \sum_{l \in \mathcal{L}} k_l + \sum_{\omega \in \Omega} k_{\omega} \leq K \quad (23) \\
& \sum_{\omega \in \Omega} p_{g,t}^{\text{on}} + \sum_{l \in \mathcal{L}} p_{g,t}^{\text{on}} - \sum_{l \in \mathcal{L}} p_{g,t}^{\text{off}} = D_b - \bar{v}_{b,t}^{\text{off}} \quad (24) \\
& \forall b \in \mathcal{B}, \forall t \in T, \forall \omega \in \Omega
\end{aligned}$$

$$\begin{aligned}
& \left[\begin{array}{l} \bar{p}_{g,t}^{\text{on}} \leq p_{g,t}^{\text{on}} \\ \bar{p}_{g,t}^{\text{off}} \leq p_{g,t-1}^{\text{off}} \\ -RD_g \leq p_{g,t}^{\text{on}} - p_{g,t-1}^{\text{off}} \\ p_{g,t}^{\text{on}} - p_{g,t-1}^{\text{off}} \leq RL_g \end{array} \right] \vee \left[\begin{array}{l} \bar{p}_{g,t}^{\text{on}} = 0 \\ \bar{p}_{g,t-1}^{\text{off}} = SD_g \end{array} \right] \vee \\
& \left[\begin{array}{l} \bar{p}_g \leq p_{g,t}^{\text{on}} - p_{g,t-1}^{\text{off}} \\ \bar{p}_g \leq SU_g \end{array} \right] \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \\
& \bar{p}_{g,t-1}^{\text{off}} = 0 \\
& y_{g,t}^{\text{on}} \vee y_{g,t}^{\text{off}} \vee y_{g,t}^{\text{start}} = \text{True} \\
& \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \quad (25)
\end{aligned}$$

$$\begin{aligned}
& \left[\begin{array}{l} p_{g,t}^{\text{on}} = S_t(\theta_{lb}^{\text{on}}, \theta_{lb}^{\text{off}}) \\ p_{g,t}^{\text{off}} = 0 \end{array} \right] \vee \left[\begin{array}{l} \neg p_{g,t}^{\text{on}} \\ p_{g,t}^{\text{off}} = 0 \end{array} \right] \quad (26) \\
& \forall t \in T, \forall \omega \in \Omega
\end{aligned}$$

$$\begin{aligned}
& \left[\begin{array}{l} z_t \\ k_l = C_l \end{array} \right] \vee \left[\begin{array}{l} \neg z_t \\ \bar{p}_{g,t}^{\text{on}} = 0 \vee l \leq X_l \end{array} \right] \quad \forall l \in \mathcal{L} \quad (28) \\
& \left[\begin{array}{l} z_g \\ k_g = C_g \end{array} \right] \vee \left[\begin{array}{l} \neg z_g \\ \bar{p}_{g,t}^{\text{on}} = 0 \vee t \leq X_g \end{array} \right] \quad \forall g \in \mathcal{G} \quad (29) \\
& \left[\begin{array}{l} z_b \\ k_b = C_b \end{array} \right] \vee \left[\begin{array}{l} \neg z_b \\ \bar{p}_{g,t}^{\text{on}} = 0 \vee t \leq X_b, \forall l \in \mathcal{L}_b \\ \bar{p}_{g,t}^{\text{off}} = 0 \vee t \leq X_b, \forall g \in \mathcal{G}_b \end{array} \right] \quad \forall b \in \mathcal{B} \quad (30)
\end{aligned}$$

$$\begin{aligned}
& 0 \leq \bar{p}_{g,t}^{\text{on}} \leq D_g \quad \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \quad (31) \\
& 0 \leq \bar{p}_{g,t}^{\text{off}} \leq \bar{p}_g \quad \forall g \in \mathcal{G}, \forall t \in T, \forall \omega \in \Omega \quad (32) \\
& -\bar{P}_l \leq \bar{p}_{g,t}^{\text{on}} \leq \bar{P}_l \quad \forall l \in \mathcal{L}, \forall t \in T, \forall \omega \in \Omega \quad (33) \\
& -\frac{\pi}{3} \leq \theta_{lb}^{\text{on}} - \theta_{lb}^{\text{off}, \text{on}} \leq \frac{\pi}{3} \\
& \forall l \in \mathcal{L}, \forall t \in T, \forall \omega \in \Omega \quad (34)
\end{aligned}$$

Algorithm 1: Modified Benders Decomposition

Input: Master problem M , subproblems $\mathcal{P}_{\omega}(z)$ for all $\omega \in \Omega \setminus \{\omega_1\}$, absolute tolerance, ϵ
Output: Lower and upper bounds for partially relaxed problem, LB and UB, and optimal solution z^* within tolerance ϵ .

```

1 LB ← -∞
2 UB ← +∞
3 while UB - LB < ε do
4   solve  $M$ 
5   let the  $(\bar{z}, \bar{u}_{\omega_1}, \theta)$  be the optimal solution and  $v$  be the
      optimal value
6   let  $v_{\omega_1} = v - \sum_{\omega \in \Omega \setminus \{\omega_1\}} \theta_{\omega}$ 
7   LB ← v
8   foreach  $\omega \in \Omega \setminus \{\omega_1\}$  do
9     solve  $r \mathcal{P}_{\omega}(z)$ 
10    let  $v_{\omega}$  be the optimal value, and  $z_{\omega}$  and  $\lambda_{\omega}$  be the
        optimal primal and dual solutions respectively
11  end
12   $u \leftarrow \sum_{\omega \in \Omega} v_{\omega}$ 
13  if UB > u then
14    UB ← u
15  end
16   $z^* \leftarrow \bar{z}$ 
17  foreach  $\omega \in \Omega \setminus \{\omega_1\}$  do
18    add  $\theta_{\omega} \geq v_{\omega} - \lambda_{\omega}^T(z^* - z)$  to  $M$ 
19  end

```

$$\begin{aligned}
& \mathcal{L} \quad \text{Transmission lines} \\
& \mathcal{G} \quad \text{Generators} \\
& \mathcal{B} \quad \text{Buses} \\
& T \quad \text{Discrete set of times after a scenario occurs, starting with time 1} \\
& \mathcal{G}_b \quad \text{Set of generators contained in bus } b \\
& \mathcal{L}_{b \text{ out}}^{\text{from}} \quad \text{Set of transmission lines leaving bus } b \\
& \mathcal{L}_b^{\text{in}} \quad \text{Set of transmission lines entering bus } b \\
& \mathcal{L}_b \quad \text{Set of transmission lines either leaving or entering bus } b \\
\text{Parameters} \\
& B_{l,b}^{\text{from}} \quad \text{Bus from which transmission line } l \text{ leaves} \\
& B_{l,b}^{\text{to}} \quad \text{Bus transmission line } l \text{ enters} \\
& S_l \quad \text{Susceptance of transmission line } l \\
& \bar{P}_l \quad \text{Thermal limit for transmission line } l \\
& B_g \quad \text{Bus containing generator } g \\
& RU_g \quad \text{Ramp-up limit of generator } g \text{ dispatch level} \\
& RD_g \quad \text{Ramp-down limit of generator } g \text{ dispatch level} \\
& SU_g \quad \text{Start-up limit of generator } g \text{ dispatch level} \\
& SD_g \quad \text{Shut-down limit of generator } g \text{ dispatch level} \\
& \bar{p}_{g,t}^{\text{on}} \quad \text{Lower limit of generator } g \text{ dispatch level} \\
& \bar{p}_{g,t}^{\text{off}} \quad \text{Upper limit of generator } g \text{ dispatch level} \\
& D_b \quad \text{Demand at bus } b \\
& A_b \quad \text{Load conversion factor at bus } b \\
& C_l \quad \text{Cost of hardening transmission line } l \\
& C_g \quad \text{Cost of hardening generator } g \\
& C_b \quad \text{Cost of hardening bus } b \\
& K \quad \text{Budget} \\
& X_l \quad \text{Number of time periods line } l \text{ is affected by event with no hardening} \\
& X_g \quad \text{Number of time periods generator } g \text{ is affected by event with no hardening} \\
& X_b \quad \text{Number of time periods bus } b \text{ is affected by event with no hardening} \\
& B_1 \quad \text{Baseline load shed, calculated by taking first term in objective during model run with 0 budget} \\
& B_2 \quad \text{Baseline load shed at time 1, calculated by taking second term in objective during model run with 0 budget} \\
& A_b \quad \text{Priority level of bus } b \text{ for restoration} \\
\text{Variables} \\
& \text{Common to both models} \\
& p_{l,t} \quad \text{Power flow through transmission line } l \text{ at time } t \\
& p_{g,t} \quad \text{Generator dispatch level for generator } g \text{ at time } t \\
& p_{b,t} \quad \text{Load shed at bus } b \text{ during time } t \\
& \theta_{b,t} \quad \text{Phase angle for bus } b \text{ at time } t \\
& y_{l,t} \quad \text{On/off status of line } l \text{ at time } t \\
& z_l \quad \text{Binary indicating whether or not transmission line } l \text{ is hardened} \\
& z_g \quad \text{Binary indicating whether or not generator } g \text{ is hardened} \\
& z_b \quad \text{Binary indicating whether or not bus } b \text{ is hardened} \\
& k_l \quad \text{Cost incurred by line } l \\
& k_g \quad \text{Cost incurred by generator } g \\
& k_b \quad \text{Cost incurred by bus } b \\
& y_{g,t}^{\text{on}} \quad \text{Indicator if generator } g \text{ is on but not in startup at time } t \\
& y_{g,t}^{\text{off}} \quad \text{Indicator if generator } g \text{ is off or in shutdown at time } t \\
& y_{g,t}^{\text{startup}} \quad \text{Indicator if generator } g \text{ is starting up at time } t
\end{aligned}$$

A two-stage stochastic generalized disjunctive programming formulation for optimal resilience investments

Model details

Goal: Determine the optimal investments to improve power system resilience (loss of weighted load and duration).

Inputs to model: Scenario data from threats listing component outages and recovery time. Investment cost data.

Model type: A two-stage stochastic generalized disjunctive program.

Model efficiency (scalability): Faster deterministic model solve time than MIP version resulting in speedups for stochastic model.

minimize[Resiliency metric + Reliability metric]

subject to:

$$\sum_{b \in B} C_b i_b + \sum_{l \in L} C_l i_l + \sum_{g \in G} C_g i_g + \sum_{i,d,u \in U_{ld}} C_u y_{i,d,u} \leq K$$

$$\text{Resiliency metric} = \frac{1}{B_{LSWD}} LSWD + \frac{1}{B_{LS}} LS \quad (1)$$

$$LSWD = \sum_t \sum_{b \in B} A_b \sum_{w \in W} R_w p_{b,t}^w \quad (2)$$

$$LS = \sum_{b \in B} A_b \sum_{w \in W} R_w p_{b,t}^w \quad (3)$$

$$\sum_{g \in G_0} p_{g,t}^w + \sum_{l \in L_0} p_{l,t}^w - \sum_{l \in L_0} p_{l,t}^w = D_b - p_{b,t}^w \quad (5)$$

$$\forall b \in B, \forall t \in T, \forall w \in \Omega$$

$$p_{l,t}^w = y_{l,t}^w S_l \left(\theta_{B_l^{from},t}^w - \theta_{B_l^{to},t}^w \right) \quad \forall l \in L, \forall t \in T, \forall w \in \Omega \quad (6)$$

$$p_{w,t}^w \leq p_{w,t-1}^w + RU_g p_{g,t}^w + SU_g (y_{g,t}^w - y_{g,t}^w) + \bar{P}_g (1 - y_{g,t}^w) \quad (7)$$

$$y_{g,t}^w \leq \bar{P}_g y_{g,t}^w + SD_g (y_{g,t-1}^w - y_{g,t}^w) \quad \forall g \in G, \forall t \in T, \forall w \in \Omega \quad (8)$$

$$p_{g,t-1}^w - p_{g,t}^w \leq RD_g p_{g,t}^w + SD_g (y_{g,t-1}^w - y_{g,t}^w) + \bar{P}_g (1 - y_{g,t}^w) \quad (9)$$

$$\forall g \in G, \forall t \in T, \forall w \in \Omega \quad (10)$$

$$-\bar{P}_l y_{l,t}^w \leq p_{l,t}^w \leq \bar{P}_l y_{l,t}^w \quad \forall l \in L, \forall t \in T, \forall w \in \Omega \quad (11)$$

$$B_g y_{g,t}^w \leq p_{g,t}^w \leq \bar{P}_g y_{g,t}^w \quad \forall g \in G, \forall t \in T, \forall w \in \Omega \quad (12)$$

$$0 \leq p_{b,t}^w \leq D_b \quad \forall b \in B, \forall t \in T, \forall w \in \Omega \quad (13)$$

$$y_{l,t}^w \leq i_l + \frac{t}{X_l^w} \quad \forall l \in L, \forall t \in T, \forall w \in \Omega \quad (14)$$

$$y_{l,t}^w \leq i_{B_l^{from}} + \frac{t}{X_{B_l^{from}}^w} \quad \forall l \in L, \forall t \in T, \forall w \in \Omega \quad (15)$$

$$y_{l,t}^w \leq i_{B_l^{to}} + \frac{t}{X_{B_l^{to}}^w} \quad \forall l \in L, \forall t \in T, \forall w \in \Omega \quad (16)$$

$$y_{g,t}^w \leq i_g + \frac{t}{X_g^w} \quad \forall g \in G, \forall t \in T, \forall w \in \Omega \quad (17)$$

$$y_{g,t}^w \leq i_g + \frac{t}{X_g^w} \quad \forall g \in G, \forall t \in T, \forall w \in \Omega \quad (18)$$

$$y_{b,t}^w \leq i_b + \frac{t}{X_b^w} \quad \forall b \in B, \forall t \in T, \forall w \in \Omega \quad (19)$$

$$y_{l,t}^w \leq y_{B_l^{from},t}^w \quad \forall l \in L, \forall t \in T, \forall w \in \Omega \quad (20)$$

$$y_{l,t}^w \leq y_{B_l^{to},t}^w \quad \forall l \in L, \forall t \in T, \forall w \in \Omega \quad (21)$$

$$y_{g,t}^w \leq y_{B_g^{from},t}^w \quad \forall g \in G, \forall t \in T, \forall w \in \Omega \quad (22)$$

$$y_{g,t}^w \leq y_{B_g^{to},t}^w \quad \forall g \in G, \forall t \in T, \forall w \in \Omega \quad (23)$$

$$\text{Reliability metric} = \frac{1}{B_{SAIDI}} SAIDI_{up} + \frac{1}{B_{SAIFI}} SAIFI_{up} \quad (23)$$

$$SAIDI_{up} = \frac{1}{N} \sum_{o \in O} C_O T_O \quad (24)$$

$$SAIFI_{up} = \frac{1}{N} \sum_{o \in O} C_O \quad (25)$$

$$C_O = \min_{u \in U_O} \{C_{o,u} y_{i_o,d_o,u} + C_o (1 - y_{i_o,d_o,u})\} \quad \forall o \in O \quad (27)$$

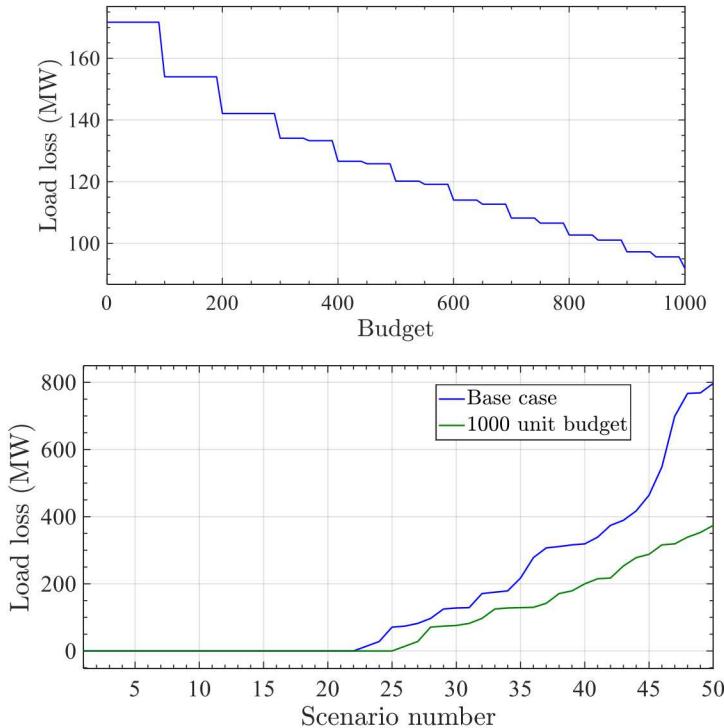
$$T_O = \min_{u \in U_O} \{T_{o,u} y_{i_o,d_o,u} + T_o (1 - y_{i_o,d_o,u})\} \quad \forall o \in O \quad (28)$$

A co-optimization stochastic mixed integer model to improve reliability and resiliency

Model details

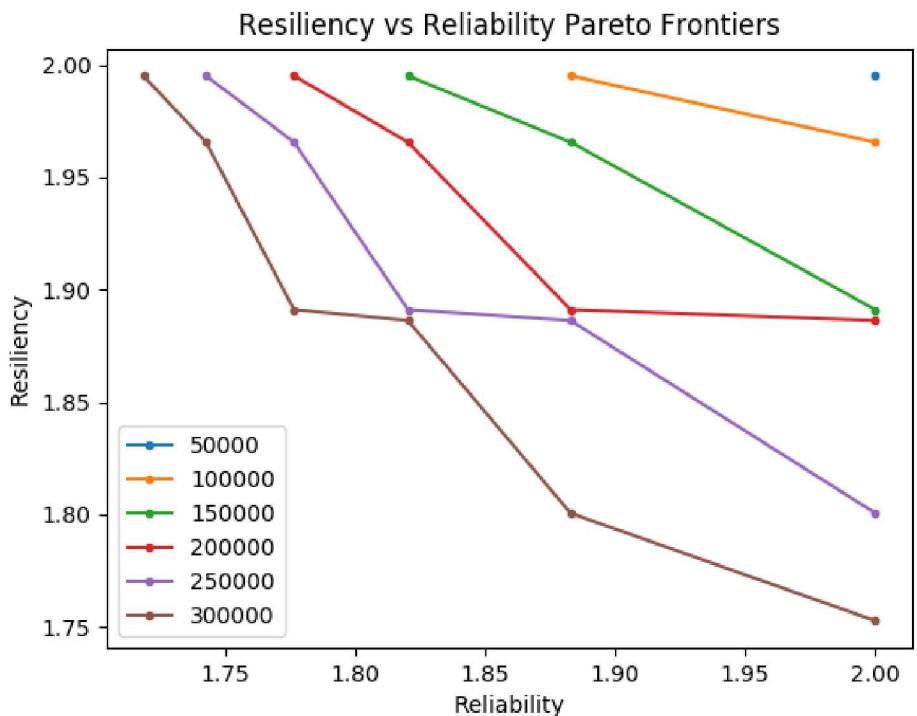
Goal: Determine the optimal investments to improve power system reliability and resilience. See the trade offs between the two.

Inputs to model: Scenario data based on historical large scale events that include outaged components and time off and time recovered. In addition, utility historical outage data, investment impact data, and investment cost data.


Model type: Nonlinear mixed integer program, linearized through new and old techniques

Model efficiency (scalability): Poor efficiency, especially for larger systems, and a large number of scenarios

<i>Set</i>	Transmission lines
<i>G</i>	Generators
<i>B</i>	Buses
<i>Ω</i>	Outage scenarios
<i>Ω_l</i>	Set of scenarios under which transmission line <i>l</i> goes offline
<i>g_l</i>	Set of scenarios under which generator <i>g</i> goes offline
<i>g_l</i>	Set of scenarios under which bus <i>b</i> goes offline
<i>T</i>	Duration of set of times, duration each component is out of service
<i>G_b</i>	Set of generators connected to bus <i>b</i>
<i>L_{b,from}</i>	Set of transmission lines leaving bus <i>b</i>
<i>L_{b,to}</i>	Set of transmission lines entering bus <i>b</i>
<i>J</i>	Set of investments for buses, generators, and transmission lines
<i>D</i>	Device types
<i>J</i>	Feeder IDs
<i>U</i>	Upgrade options
<i>U_d</i>	Upgrade options for device type <i>d</i> in feeder <i>i</i>
<i>O</i>	Outage scenarios
<i>U_o</i>	Upgrade options that improve the number of customers outaged in outage <i>o</i> if applied
<i>V_o</i>	Upgrade options that improve the duration of outage in outage <i>o</i> if applied
<i>S</i>	Outage causes
<i>Parameters</i>	
<i>K</i>	Budget
<i>l_{leaves}</i>	Number of lines which transmission line <i>l</i> leaves
<i>B_l</i>	Bus transmission lines / entries
<i>S_l</i>	Spanistance of transmission line <i>l</i>
<i>F_l</i>	Thermal limit of transmission line <i>l</i>
<i>B_g</i>	Bus containing generator <i>g</i>
<i>R_{g,l}</i>	Ramp-up limit of generator <i>g</i> dispatch level
<i>R_{g,l}</i>	Ramp-down limit of generator <i>g</i> dispatch level
<i>R_{g,l}</i>	Shut-down limit of generator <i>g</i> dispatch level
<i>R_{g,l}</i>	Upper limit of generator <i>g</i> dispatch level
<i>P_{g,l}</i>	Lower limit of generator <i>g</i> dispatch level
<i>D_b</i>	Demand at bus <i>b</i>
<i>A_b</i>	Load weighting factor at bus <i>b</i>
<i>C_l</i>	Cost of maintaining transmission line <i>l</i>
<i>C_g</i>	Cost of hardening generator <i>g</i>
<i>C_b</i>	Cost of hardening bus <i>b</i>
<i>P_w</i>	Probability of scenario <i>w</i> occurring
<i>X_t</i>	Number of time periods line <i>l</i> is affected by event in scenario <i>w</i> no hardening
<i>X_{t,g}</i>	Number of time periods line <i>l</i> is affected by event in scenario <i>w</i> with no hardening
<i>X_{t,b}</i>	Number of time periods bus <i>b</i> is affected by event in scenario <i>w</i> no hardening
<i>P_w</i>	Probability of scenario <i>w</i> occurring
<i>B_{LSWD}</i>	First term in objective during baseline model run with 0 budget
<i>B_{LS}</i>	Second term in objective during baseline model run with 0 budget
<i>C_o</i>	Number of customers outage <i>o</i> affects
<i>T_o</i>	Duration of outage <i>o</i>
<i>d_o</i>	Duration of off of outage
<i>i_o</i>	Device ID of outage <i>o</i> (also gives feeder ID location)
<i>z_o</i>	Cause of outage <i>o</i>
<i>c_u</i>	Cost to purchase upgrade <i>u</i>
<i>C_u</i>	Number of customers outage <i>o</i> affects after upgrade <i>u</i>
<i>T_{u,o}</i>	Duration of outage <i>o</i> after upgrade <i>u</i>
<i>B_{SAIDI}</i>	Baseline SAIDI value
<i>N</i>	Number of customers in total system
<i>Variables</i>	
<i>LSWD</i>	Load Shed With Duration in MW - similar to the SAIDI reliability metric
<i>LS</i>	Load Shed - similar to the SAIFI reliability metric
<i>P_{l,t}</i>	Power flow through transmission line <i>l</i> at time <i>t</i> in scenario <i>w</i>
<i>P_{g,t}</i>	General dispatch level for generator <i>g</i> at time <i>t</i> in scenario <i>w</i>
<i>p_{l,t,w}</i>	Load shed at bus <i>l</i> at time <i>t</i> in scenario <i>w</i>
<i>y_{l,t,w}</i>	Phase angle for bus <i>l</i> at time <i>t</i> in scenario <i>w</i>
<i>y_{l,t,w}</i>	On/off status of line <i>l</i> at time <i>t</i> during scenario <i>w</i>
<i>y_{g,t,w}</i>	On/off status of generator <i>g</i> at time <i>t</i> during scenario <i>w</i>
<i>y_{b,t,w}</i>	On/off status of bus <i>b</i> at time <i>t</i> during scenario <i>w</i>
<i>h_{l,t,w}</i>	Binary indicating whether or not transmission line <i>l</i> is hardened
<i>i_{l,t,w}</i>	Binary indicating whether or not generator <i>g</i> is hardened
<i>j_{b,t,w}</i>	Binary indicating whether or not bus <i>b</i> is hardened
<i>y_{u,t,w}</i>	Binary indicating whether or not to apply upgrade <i>u</i> to device type <i>d</i> in feeder <i>i</i>
<i>S_{AIIDI,up}</i>	SAIDI value after upgrades
<i>S_{SAIFI,up}</i>	SAIFI value after upgrades
<i>C_{O,u}</i>	Number of customers which outage <i>o</i> affects after upgrade
<i>T_{O,u}</i>	Duration of outage <i>o</i> after upgrade



Resilience results on IEEE RTS-96 system

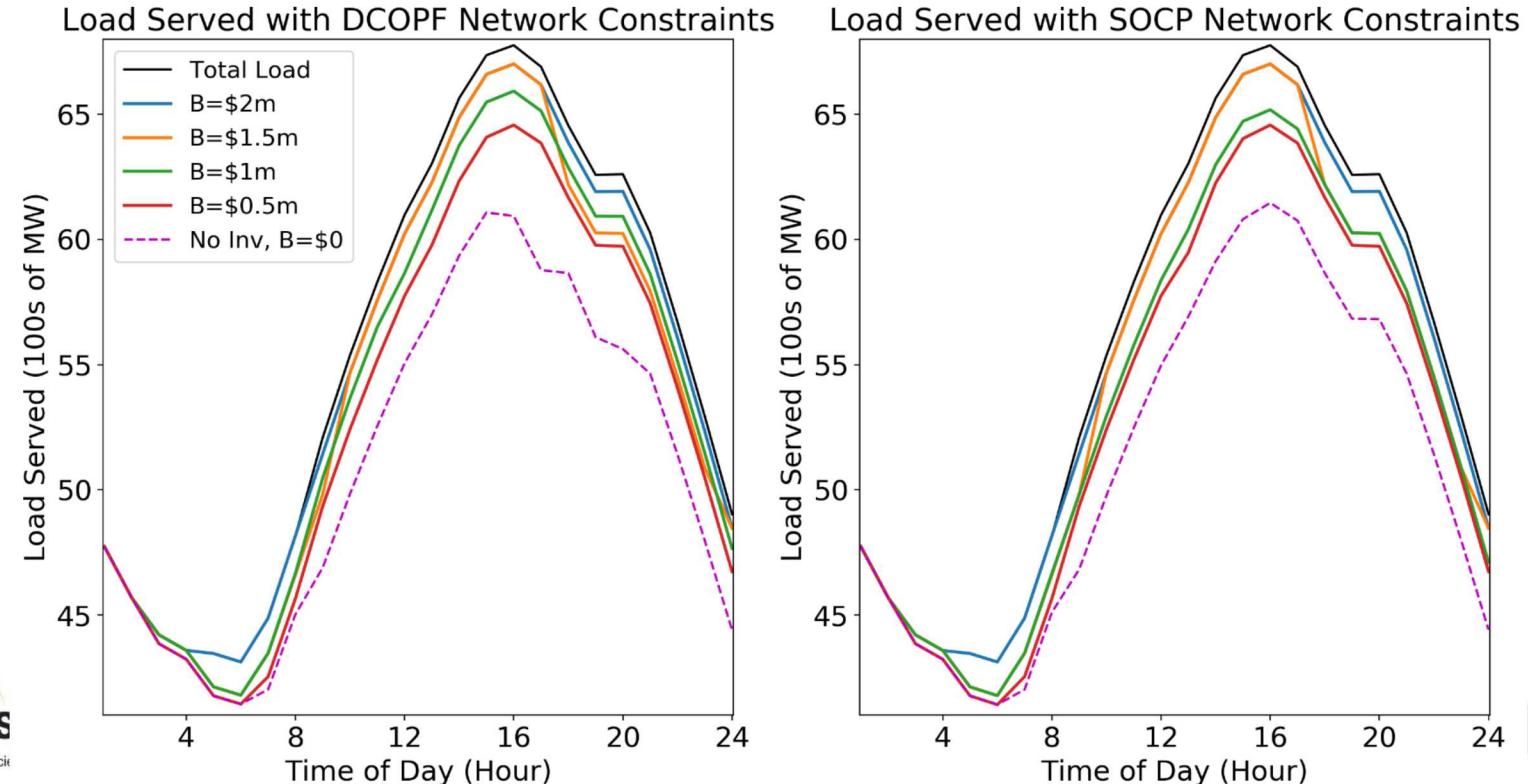
The expected loss of load from 50 winter storm scenarios vs. the investment budget

Co-op results on IEEE RTS-96 system

Sets	
\mathcal{L}	Set of transmission lines l
\mathcal{L}_b^o	Set of lines to bus b
\mathcal{L}_b^i	Set of lines from bus b
$\mathcal{L}^{t,s}$	Set of lines out in the scenario at time t
\mathcal{B}	Set of buses b
$\mathcal{B}^{t,s}$	Set of buses b out in the scenario at time t
\mathcal{G}	Set of generators g
\mathcal{G}_b	Set of generators g at bus b
$\mathcal{G}^{t,s}$	Set of generators out in the scenario at time t
\mathcal{R}	Set of renewable energy sources (RES) r
\mathcal{R}_b	Set of RES r at bus b
$\mathcal{R}^{t,s}$	Set of RES out in the scenario at time t
Parameters	
$p_{D,b}^t$	real power load at bus b at time t
$q_{D,b}^t$	reactive power load at bus b at time t
$fr(l)$	origin bus of line l
$to(l)$	destination bus of line l
B_l	Susceptance of line l
G_l	Conductance of line l
S_l	Short term thermal limit of line l
RU_g	Ramp up limit of generator g
RD_g	Ramp down limit of generator g
P_g	Minimum real power output of generator g
\overline{P}_g	Maximum real power output of generator g
Q_g	Minimum reactive power output of generator g
\overline{Q}_g	Maximum reactive power output of generator g
V_b	Minimum voltage magnitude at bus b (p.u.)
C_l	Cost of hardening line l
C_b	Cost of hardening bus b
C_g	Cost of hardening generator g
K	Resiliency budget
β_b	Weight for importance of load at bus b
Variables	
Common to both models	
$p_{S,b}^t$	real power load shed at bus b at time t
p_g^t	real power output generator g at time t
x_l^t	binary indicating status of line l at time t
z_l	binary indicating hardening decision for line l
z_b	binary indicating hardening decision for bus b
z_g	binary indicating hardening decision for generator g
u_g^t	binary indicating status of generator g at time t
v_g^t	binary indicating startup status of generator g at time t
w_g^t	binary indicating shutdown status of generator g at time t
SOC Relaxation	
$q_{S,b}^t$	reactive power load shed at bus b at time t
$p_{D,b}^t$	real power flow though line l at time t from bus $fr(l)$
$q_{l,fr}^t$	reactive power flow though line l at time t from bus $fr(l)$
$p_{l,to}^t$	real power flow though line l at time t to bus $to(l)$
$q_{l,to}^t$	reactive power flow though line l at time t to bus $to(l)$
q_g^t	reactive power output at generator g at time t
θ_b^t	voltage angle at bus b at time t
p_l^t	power flow through line l at time t

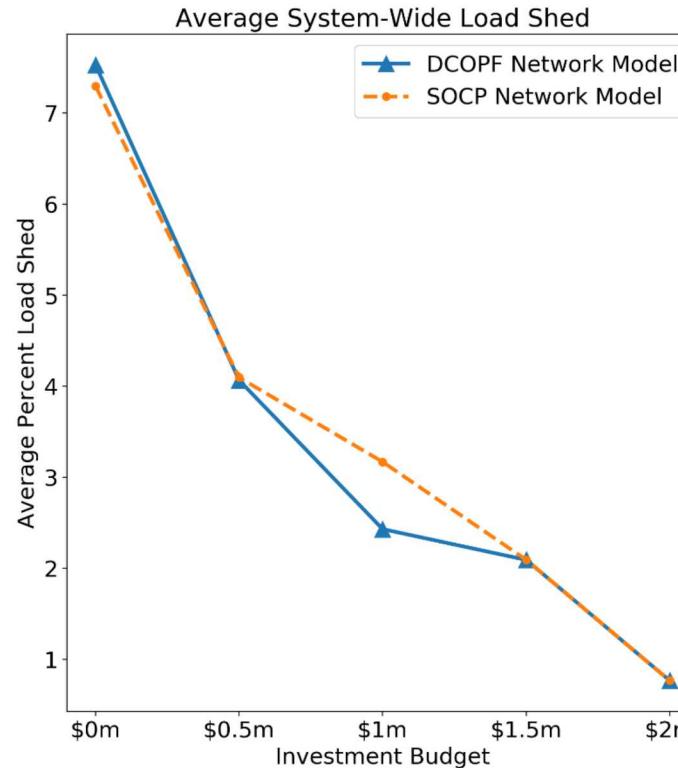
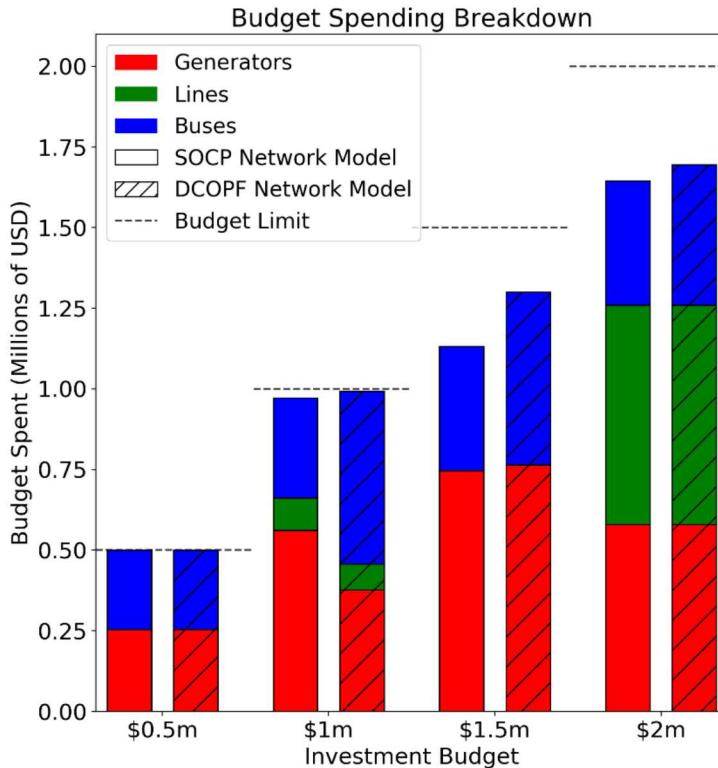
$$\begin{aligned}
 (\mathcal{P}_{ac}) \quad & \min \sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}} \beta_b p_{S,b}^t \\
 \text{subject to:} \\
 & \sum_{b \in \mathcal{B}} C_b z_b + \sum_{g \in \mathcal{G}} C_g z_g + \sum_{l \in \mathcal{L}} C_l z_l \leq K \quad (1) \\
 & p_g^t - p_g^{t-1} \leq (P_g + RU_g) u_g^t - P_g u_g^{t-1} \quad \forall g \in \mathcal{G}, \forall t \in \mathcal{T} \quad (3) \\
 & p_g^t - p_g^{t-1} \leq (P_g + RD_g) u_g^{t-1} - P_g u_g^t \quad \forall g \in \mathcal{G}, \forall t \in \mathcal{T} \quad (4) \\
 & P_g u_g^t \leq \overline{P}_g u_g^t \quad \forall g \in \mathcal{G}, \forall t \in \mathcal{T} \quad (5) \\
 & Q_g u_g^t \leq \overline{Q}_g u_g^t \quad \forall g \in \mathcal{G}, \forall t \in \mathcal{T} \quad (6) \\
 & \frac{V^2}{L} \leq c_b^t \leq \overline{V}^2 \quad \forall b \in \mathcal{B}, \forall t \in \mathcal{T} \quad (7) \\
 & p_{l,fr}^t = x_l^t \left[\frac{c_{fr(l)}^t}{\tau^2} + \left(\frac{-G_l}{\tau} c_{fr(l)}^t - \frac{B_l}{\tau} s_{fr(l)}^t \right) \right] \quad \forall l \in \mathcal{L}, \forall t \in \mathcal{T} \quad (8) \\
 & q_{l,fr}^t = x_l^t \left[-\frac{1}{\tau^2} c_{fr(l)}^t \left(B_l + \frac{B_l^{sh}}{2} \right) + \left(\frac{B_l}{\tau} c_{fr(l)}^t - \frac{G_l}{\tau} s_{fr(l)}^t \right) \right] \quad \forall l \in \mathcal{L}, \forall t \in \mathcal{T} \quad (9) \\
 & p_{l,to}^t = x_l^t \left[c_{to(l)}^t G_l + \left(\frac{-G_l}{\tau} c_{to(l)}^t - \frac{B_l}{\tau} s_{to(l)}^t \right) \right] \quad \forall l \in \mathcal{L}, \forall t \in \mathcal{T} \quad (10) \\
 & q_{l,to}^t = x_l^t \left[-c_{to(l)}^t \left(B_l + \frac{B_l^{sh}}{2} \right) + \left(\frac{B_l}{\tau} c_{to(l)}^t - \frac{G_l}{\tau} s_{to(l)}^t \right) \right] \quad \forall l \in \mathcal{L}, \forall t \in \mathcal{T} \quad (11) \\
 & (p_{l,to}^t)^2 + (q_{l,to}^t)^2 \leq \overline{S}_l^2 \quad \forall l \in \mathcal{L}, \forall t \in \mathcal{T} \quad (12) \\
 & (p_{l,fr}^t)^2 + (q_{l,fr}^t)^2 \leq \overline{S}_l^2 \quad \forall l \in \mathcal{L}, \forall t \in \mathcal{T} \quad (13) \\
 & (c_{fr(l)}^t)^2 + (s_{fr(l)}^t)^2 \leq x_l^t [c_{fr(l)}^t c_{to(l)}^t] \quad \forall l \in \mathcal{L}, \forall t \in \mathcal{T} \quad (14) \\
 & R_r \leq p_{c,r}^t \leq \overline{R}_r \quad \forall r \in \mathcal{R}, \forall t \in \mathcal{T} \quad (15) \\
 & \sum_{g \in \mathcal{G}_b} p_g^t - G_b^t s_b^t - \sum_{l \in \mathcal{L}_b^o} p_{l,to}^t - \sum_{l \in \mathcal{L}_b^i} p_{l,fr}^t \\
 & + \sum_{r \in \mathcal{R}_b} (p_r^t - p_{c,r}^t) = p_{D,b}^t - p_{S,b}^t, \quad \forall b \in \mathcal{B}, \forall t \in \mathcal{T} \quad (16) \\
 & \sum_{g \in \mathcal{G}_b} q_g^t + B_b^t s_b^t - \sum_{l \in \mathcal{L}_b^o} q_{l,to}^t - \sum_{l \in \mathcal{L}_b^i} q_{l,fr}^t = q_{D,b}^t - q_{S,b}^t, \\
 & \forall b \in \mathcal{B}, \forall t \in \mathcal{T} \quad (17) \\
 & 0 \leq p_{S,b}^t \leq p_{D,b}^t, \quad \forall b \in \mathcal{B}, \forall t \in \mathcal{T} \quad (18) \\
 & 0 \leq q_{S,b}^t \leq q_{D,b}^t, \quad \forall b \in \mathcal{B}, \forall t \in \mathcal{T} \quad (19) \\
 & q_{S,b}^t = \frac{q_{D,b}^t}{p_{D,b}^t} p_{S,b}^t, \quad \forall b \in \mathcal{B}, \forall t \in \mathcal{T} \quad (20) \\
 & x_l^t \leq z_l, \quad \forall l \in \mathcal{L}^{t,s}, \forall t \in \mathcal{T} \quad (21) \\
 & u_g^t \leq z_g, \quad \forall g \in \mathcal{G}^{t,s}, \forall t \in \mathcal{T} \quad (22) \\
 & u_g^t \leq z_b, \quad \forall b \in \mathcal{B}^{t,s}, \forall g \in \mathcal{G}_b, \forall t \in \mathcal{T} \quad (23) \\
 & x_l^t \leq z_b, \quad \forall b \in \mathcal{B}^{t,s}, \forall l \in \mathcal{L}_b, \forall t \in \mathcal{T} \quad (24)
 \end{aligned}$$

Formulation with SOCP Network Constraints


Model Details:

Goal: Determine the optimal investments (generators, lines, or buses) to improve power system resilience (minimize weighted load shed) for various budget amounts

Inputs to model: Hurricane scenario, investment costs, network information



Model type: MISOCP

Results: Load Served Comparison with DC OPF Network Constraints

Results: Comparison of Network Models

Spending Breakdown & Percent of Total System Load Shed

Questions?

Brian J. Pierre, Ph.D.
Sandia National Laboratories
bjpierr@sandia.gov