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Resilience vs. Reliability
• Reliability — Low

consequence high
probability

— Squirrels, birds, etc.

— Traffic accidents

— Trees/wind

— Lightning
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• Resilience - High
consequence low
probability events

— Severe winter storms

— Hurricanes

— Earthquakes

— EMPs and GMDs

— Large wildfires
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Utilities are incentivized to be reliable not resilient

• Utilities are often incentivized to be
more reliable (improve their SAIDI and

SAIFI metrics)

• Some utilities have performance

based regulation (PBR)

• Large scale events (severe winter

storms, hurricanes, etc.) are removed
from the SAIDI and SAIFI metrics

• Less incentive to invest in resiliency ,,,alty
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Primary project goals
• Develop optimization models which find the optimal investments to

improve reliability, resiliency, and a weighted combination of the two.

• Help utilities see the trade-offs between investing more heavily in
reliability or resiliency.

• Help utilities develop rate recovery cases to justify large scale investments,
by quantifying how that investment will improve their reliability and
resiliency.

• Inform utilities and their stakeholders, DOE, DHS, and policy makers of
cost-effective infrastructure investment decisions that simultaneously
improve both reliability and resilience.

Etr.Eks
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Investment optimization for Reliability
• Objective is to minimize SAIDI and SAIFI

• Input is historical outage data

• Investments are mostly smaller scale compared to the investments for resilience
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Stochastic mixed integer program for optimal reliability investments
Objective function
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Device types
Feeder IDs
Upgrade options
Upgrade optlons for device type d In feeder
Outages
Upgrade options that improve the number of customers
outaged in outage o if applied
Upgrade options that Improve the duration of outage In
outage o If applied
Outage causes

Parameters

(8) 7.0
of,

0.

To.
SAHA),

B
N

Number of customers outage oaffects
Duratlon of outage o
Device type of outage o
Device ID of outage o (also gives feeder ID/location
Cause of outage o
Cost to purchase upgrade u
Number of customen outage o affects after upgrade
Duration of outage o after upgrade u
Baseline SAIDI value
Baseline SAIFI value
Budget
Number of customers in total system

Variables

An. Binary indicating whether or not to apply upgrade ue U, to
device type din feeder I

SAID!, SAIDI value after upgrades
SAIFho SAIFI value after upgrades
in., Binary indicating that upgrade u gives minimal customer

outage during outage a Necessary for when multiple
upgrades are wlected that affect one outage.
Binary indicating that upgrade u gives minimal outage
duratlon during outage a Necessary for when multiple
upgrades are selected that affect one outage.
The product rn.,. Can also be Interpreted as a binary
indicating upgrade u gives minimal customer outage and
upgrade w gives minimal outage duration during outage o

my., The product rn... y,s.„. Can also be Interpreted as a binary

Indicating that upgrade u is applied and results In minimal
number of customers affected during outage o

ny.. The product n,,, Can also be interpreted as a binary
indicating that upgrade u is applied and results in minimal
outage duration during outage o

CO. Number of customers which outage o affects after upgrade
TO. Duration of outage o after upgrade
COTO, The product COo TOo

Model details
Goal: Determine the optimal investments to
improve power distribution system reliability.

inputs to model: Historical outage data,
investment impact data, investment cost data

Model type: Nonlinear mixed integer program
Linearized through new and old techniques

Model efficiency (scalability): Great
efficiency, especially for larger systems, but
worse for large budgets and large outage sets
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Generalized dynamic programming method for optimal reliability investments

Model detailsGRDP Algorithm
1: # Precondition: Package_bundles is a list of upgrade
2: # bundles which can be used to upgrade
3: # the bundles' respective outages.
4: # Postcondition: Returns the package bundle whose
5: # contribution to the objective function
6: # is optimal.
7: function max_obj(package_bundles)
8: max = -1
9: for each bundle in package_bundles do
10: objective_contribution = 0
11: for each package in bundle do
12: increment objective_contribution by the packages
13: contribution to the objective function
14: if objective_contribution > max:
15: max = objective_contribution
16: optimal_bundle = bundle
17:
18: return optimal_bundle
19:
20: global cache = []
21:
22: function GRDP(feeder_device_pairs, budget)
23: if (feeder_device_pairs, budget) is in cache do
24: return cache[feeder_device_pairs, budget]
25:
26: if budget < 0 do
27: return empty list
28:
30: for each package in applicable upgrade packages for
31: feeder and device given in first pair from
32: feeder_device_pairs do
33: if the cost of package > budget do
34: return empty list
35: upgrade_package_bundles = a list with package
followed
36: by GRDP(feeder_device_pairs with first
element
37: removed, budget — cost of package)
38: cache[feeder_device_pairs, budget] =
39: max obj(upgrade_package_bundles)
40: return cache[feeder_device_pairs, budget]

Goal: Determine the optimal investments to
improve power distribution system reliability.

inputs to model: Historical outage data,
investment impact data, investment cost data

Model type: Generalized dynamic
programming — decision tree — based on
classic Knapsack algorithm

Model efficiency (scalability): Good
efficiency, especially for large budgets and
large outage sets, worse on large systems
than previous model gisk <>IEEE



Results from reliability investment models on utility data
SAIDI/SAIFI Pareto Frontier
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Resiliency investment optimization
• The goals are to push the mean consequence and the tail of the

consequence to the left.

• Reducing the tail, reduces the
consequence from the large
worst-case scenarios

• Resilience metrics used in this
project are Loss of Load and
Duration.
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Minimize

Resiliency metric =
DLN-WD

1 1
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Resilience Sets
L Transmission lines
G Generators
B Buscs
Q Outage scenarios
Di Set of scenarios under which transmission line 1 goes

offline
pr Set of scenarios under which generator g goes offline
Ds Set of seearios under which bus b goes offlme
T Discrete set of times 11111,01011 each component is out Ol

SerVICe

Gb Set of generators connected to bus h
10... Set of transmission lines leaving bus b
Ls. Set of trannissnon lines entermg bus h

Set of investments for buses. generators, and
transmission lines

Resilience Parameters
Bta Bus fimn which transm.sion Ime f leases
Be Bus lninsinissimi line !enters
Si Susceptance of trannussion hnr t

Pr Thermal limit ot transmission line !

8, Bus COMAIIIing generator g
RV, Ranmup limn of generaior g dispatch level
RD, RAIIINIOU11111110 ol generator g dispatch les el
SU, Startup limit of generator g distpatch level

Shur-doun lima of generator g distpatch les el

Fr Upper limit of generator g dispatch level

• Lower i111111 of generator g dispatch level
Dernand at hus b

de Load weighting factor at bus b
O Cost ol lwrdcnmg 0.11,1111,1013 1111C 1
fr Cost of hardening generator g
C. COSI of hardening bus h
P. Probability of scenano occunng

Number oil tI11K pertods lme!. affected by esent m
scenario nr with no hardening

.r,- Number of lime periods generator g n affected by
omit tn scenano u nth no harilenum

Xs` Number of tune periods bus b IS affected by es ent m
SCC/1.1n0 Is u Oh no hardening

P. Probabrlity of scenano occunng
BLSISI3 rust tem m ObjCsglse timing luseluse model nun .101

0 budget
81.s Second term in obiecuse during baseline 1110del rtin

with 0 budget

Resilience Vartables
LSND Load Shed With Duranon tn SIII111.111

SAID! reliabiltty nietne
Load Sh.l similar to the SAIFI reliability twin:
Pont! 00se through um.nussion line / at time r m
seaman° u

po` Genetator dtspatch level for generator g at time r Lin
scenario sr

Psi Load shed at bus b at time r
Obi Pilaw angle for bus b at tune r in writatennit
Ise On MT sums of line 1 an unit r during seenano
e On on status of generalist g at time r dunng scalar

On MT status of bus h at tinw r dunng scenario .
• llinar indicating uhether or noi transinission line

hardened
Binary inthcaimg wbcthcr or not generator g is
hardened

n Binary Indicating whether or not bus b IS hardened

Ls
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Stochastic mixed integer program
for optimal resilience investments

Model details
Goal: Determine the optimal investments to improve
power system resilience (loss of weighted load and
duration).

inputs to model: Scenario data from threats listing
component outages and recovery time. Investment
cost data.

Model type: Linear mixed integer program (MIP).

Model efficiency (scalability): Poor efficiency,
especially for larger systems, and a large number of
scenarios. Can solve the IEEE RTS96 system with 50
scenarios. 
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A two-stage stochastic generalized disjunctive programming
formulation for optimal resilience investments

Model details
Goal: Determine the optimal investments to improve
power system resilience (loss of weighted load and
duration).

inputs to model: Scenario data from threats listing
component outages and recovery time. Investment cost
data.

Model type: A two-stage stochastic generalized
disjunctive program.

Model efficiency (scalability): Faster deterministic
model solve time than MIP version resulting in
speedups for stochastic model.
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A co-optimization stochastic mixed integer
model to improve reliability and resiliency

Model details
Goal: Determine the optimal investments to improve power
system reliability and resilience. See the trade offs between
the two.

inputs to model: Scenario data based on historical large
scale events that include outaged components and time off
and time recovered. In addition, utility historical outage data,
investment impact data, and investment cost data.

Model type: Nonlinear mixed integer program, linearized
through new and old techniques

Model efficiency (scalability): Poor efficiency, especially for
larger systems, and a large number of scenarios
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Resilience results on IEEE RTS-96 system
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Co-op results on IEEE RTS-96 system
Resihency vs RellabiJity Pareto Frontiers
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Set of transmission lines I
Set of lines to bus
Set of lines from bus b
Set of lines out io the scenario at time t
Set of buses b
Set of buses b out in the scenario at time t
Set of generators g
Set of generators g at bus b
Set of generators out in the scenario at time t
Set of renewable energy sources (RES) r
Set of RES at bus b
Set of RES out in the scenario at time t

Parameters
phi, real power load at bus b at time t
• reactive power load at bus b at time t

orgin bus of line l
to(l) destination bus of line l
Bl Susceptance of line /
Gt Conductance of line l
Si Short term thermal limit of line I
RU, Ramp up limit of generator g
RD, Ramp down limit of generator g

Minhnum real power output of generator g
Yy Maximmn real power output of generator g
Q Minimum reactive power output of generator g
=-9
Q, Nla.ximum reactive power output of generator g

Et. -Minimum voltage magnitude at bus b (p.u.)
• Maximuni voltage magnitude at bus b (p.u.)
c, Cost of hardening line
CI Cost of hardening bus b
C, Cost of hardening generator g
K Resiliency budget
fle Weigbt for importmice of load at bus b

Variables
Common to both models
is, real power load shed at bus b at time t
pg real power output generator g at time t
xf binary indicating status of line l at time t
.21 binary indicating hardening decision for line
4 binary indicating hardening decision for bus b
4 binary indicating hardening decision for generator g
ug binary indicating status of generator g at time t
el, binary indicating startup statm of generator g at time t
• bhiary indicating shutdown status of generator g at time t

SOCP Relaxation
q's,, reactive power load shed at bus b at time t
4, real power flow though line I at time t from bus fr(/)

reactive power flow though line l at time t from bus G(t)
pf,„ real power flow though line 1 at time t to bus to(l)
0,0 reactive power flow though line l at time t to bus to(l)
g: reactive power output at generator g at time t
DC OPF
in voltage angle at bus b at time t
pf power flow through line 1 at time t
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Minimize
weighted load

Formulation with SOCP Network
Constraints

Investment Budget

Generator real and
reactive power

ramping and operation
limits

Line power flows with
optimal transmission

switching

SOC Constraint

Renewable
Curtailment

Power Balance

Real and reactive load
shed

Investment Model

Model Details:
Goal: Determine the optimal
investments (generators,
lines, or buses) to improve
power system resilience
(minimize weighted load
shed) for various budget
amounts

inputs to model: Hurricane
scenario, investment costs,
network information

Model type: MISOCP
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Results: Load Served Comparison with DC OPF

Network Constraints
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Results: Comparison of Network Models
Spending Breakdown & Percent of Total System Load Shed

Budget Spending Breakdown Average System-Wide Load Shed
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Questions?

Brian J. Pierre, Ph.D.
Sandia National Laboratories

bjpierr@sandia.gov 
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