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Abstract. Deep learning has been applied with great success to the
segmentation of 3D Computed Tomography (CT) scans. Establishing
the credibility of these segmentations requires uncertainty quantification
(UQ) to identify untrustworthy predictions. Recent UQ architectures
include Monte Carlo dropout networks (MCDNs), which approximate
Bayesian inference in deep Gaussian processes, and Bayesian neural net-
works (BNNs), which use variational inference to learn the posterior
distribution of the neural network weights. BNNs hold several advan-
tages over MCDNs for UQ, but, to the best of our knowledge, there
has not been a successful application of BNNs to 3D domains. We pro-
pose a novel 3D Bayesian convolutional neural network (BCNN), the
first variational inference-based architecture designed for segmentation
and credible UQ in a 3D domain. We present experimental results on
CT scans of graphite electrodes and laser-welded metals and show that
our BCNN outperforms an MCDN in recent uncertainty metrics. The
geometric uncertainty maps generated by our BCNN capture continuity
and visual gradients, making them interpretable as confidence intervals
in physics simulations.

Keywords: Uncertainty quantification, volumetric segmentation, vari-
ational inference

1 Introduction

Non-destructive 3D imaging techniques allow scientists to study the interior of
objects which cannot otherwise be observed. For example, radiologists use X-ray
Computed Tomography (CT) to measure organ perfusion and Magnetic Reso-
nance Imaging (MRI) to diagnose prostate carcinoma, among other applications
[3,22]. In addition to medical applications, CT scans are used in manufacturing
to identify defects before a part is deployed in a production environment and to
certify physical properties of materials. A critical step in the analysis of CT scans
is segmentation, wherein an analyst labels each voxel in a scan (e.g., as a tumor
in the medical case or as a defect in the manufacturing case). However, due to the
noise and artifacts found in CT scans along with human error, these segmen-
tations are often expensive, irreproducible, and unreliable [17]. Deep learning
models such as convolutional neural networks (CNNs) have revolutionized the
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Fig. 1: Zoomed Uncertainty Maps on Graphite Test Set Sample III, Slice 64.
Note that the BCNN uncertainty map captures continuity and visual gradients
while the MCDN uncertainty map is pixelated and uninterpretable.

automated segmentation of 3D imaging by providing a fast, accurate solution to
many challenges in segmentation.

For use with high-consequence part certification, segmentation must include
uncertainty quantification (UQ). When deploying critical parts, such as those in
cars and airplanes, analysts must provide accurate safety confidence intervals.
Recent research casts deep neural networks as probabilistic models in order to
obtain uncertainty measurements. Two common UQ architectures are Monte
Carlo dropout networks (MCDNs) [7] and variational inference-based Bayesian
neural networks (BNNs) [1]. MCDNs are easy to implement and enable UQ
in the output space with little computational cost, but provide poor geometric
uncertainty maps. In contrast, BNNs measure uncertainty in the weight space,
resulting in statistically-justified UQ at the cost of at least double the number
of trainable parameters and increased convergence time [7].

To the best of our knowledge, there is no existing BNN that successfully
generates statistically interpretable uncertainty measurements in 3D domains;
recent work has theorized that this is computationally infeasible [7,13]. We re-
fute this and propose a novel 3D Bayesian CNN (BCNN) architecture, the first
variational inference-based architecture designed for segmentation and UQ in a
3D domain. Our BCNN effectively predicts binary segmentations of billion-voxel
CT scans in addition to generating statistically credible geometric uncertainty
maps which the MCDN cannot capture. We show via experimental results on
CT scan datasets of graphite electrodes and laser-welded metals that our BCNN
outperforms the regularly-adapted MCDN on UQ on recent uncertainty metrics
[21]. As shown in Figure 1, the BCNN generates an interpretable uncertainty
map that enables uncertainty quantification in material simulations that require
precise geometric confidence intervals.
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090 2 Related Work 090

091 091

092 In this section, we describe recent publications in volumetric segmentation and 092

093 UQ which enabled the success of our BCNN. 093

094 094

095 095
2.1 Volumetric Segmentation

096 096

097 The problem of volumetric segmentation has seen much high-impact work in the 097

098 past few years. The 2D Fully Convolutional Network [1 5] and U-Net [27] led 098

099 Milletari et al. [18] to propose the first 3D CNN for binary segmentation of MRI 099

100 images, called V-Net. At around the same time, Cicek et al. [4] proposed 3D U- 100

101 Net, a direct extension of the U-Net to a 3D domain. While V-Net was designed 101

102 for binary segmentation of the human prostate and 3D U-Net was designed for 102

103 binary segmentation of the kidney of the Xenopus, they both employ an encoder- 103

104 decoder architecture inspired by U-Net [18,4]. In this technique, a 3D volume is 104

105 mapped to a latent space via successive convolutional and pooling layers; this 105

106 latent representation is then upsampled and convolved until it reaches the size 106

107 of the original volume and outputs the resulting per-voxel segmentation [27]. 107

108 While most volumetric segmentation work pertains to the medical field, 3D 108

109 materials segmentation is also an active area of research due to the importance 109

no of quality segmentations in physics simulations. In 2018, Konopczynski et al. 110

111 [1 2] employed fully convolutional networks to segment CT scan volumes of short 111

112 glass fibers, outperforming traditional non-deep learning techniques and achiev- 112

113 ing the first accurate results in low-resolution fiber segmentation. More recently, 113

114 MacNeil et al. [16] proposed a semi-supervised algorithm for segmentation of 114

115 woven carbon fiber volumes from sparse input. 115

116 116

117 2.2 Uncertainty Quantification 117

118 118

119 While deep learning models often outperform traditional statistical approaches 119

120 in terms of accuracy and generalizability, they do not have built-in uncertainty 120

121 measurements like their statistical counterparts. Gal and Ghahramani [7] showed 121

122 that predictive probabilities (i.e., the softmax outputs of a model) are often 122

123 erroneously interpreted as an uncertainty metric. Instead, recent work has cast 123

124 neural networks as Bayesian models via approximating probabilistic models [7] 124

125 or utilized variational inference to learn the posterior distribution of the network 125

126 weights [1]. 126

127 127

128 Monte Carlo Dropout Networks (MCDNs) Gal and Ghahramani [7] showed 128

129 
that a neural network with dropout applied before every weight layer (i.e., an 129

130 MCDN) is mathematically equivalent to an approximation to a deep Gaussian 130

131 process [5]. Specifically, one can approximate a deep Gaussian process with co- 131

132 variance function K(x, y) by placing a variational distribution over each compo- 132

133 nent of a spectral decomposition of K. This maps each layer of the deep Gaussian 133

134 process to a layer of hidden units in a neural network. By averaging stochastic 134
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forward passes through the dropout network at inference time, one obtains a
Monte Carlo approximation of the intractable approximate predictive distribu-
tion of the deep Gaussian process [7]; thus the voxel-wise standard deviations of
the predictions are usable as an uncertainty metric.

One of the top benefits of the MCDN is its ease of implementation; as an
architecture-agnostic technique which is dependent only on the dropout layers,
Monte Carlo dropout can easily be added to very large networks without an
increase in parameters. As a result, MCDNs have been implemented with good
results in several different applications. In particular, Liu et al. [14] successfully
implemented a 3D MCDN for UQ in binary segmentations of MRI scans of the
amygdala, and Martinez et al. [17] used V-Net with Monte Carlo dropout for
UQ in binary segmentations of CT scans of woven composite materials.

While the MCDN is one of the most common UQ architectures used in deep
learning, its statistical soundness has been called into question. Osband [24]
argues that Monte Carlo dropout provides an approximation to the risk of a
model rather than its uncertainty (in other words, that it approximates the
inherent stochasticity of the model rather than the variability of the model's
posterior belief). Osband [24] also shows that the posterior distribution given
by dropout does not necessarily converge as more data is gathered; instead, the
posterior depends only on the interaction between the dropout rate and the
model size.

Bayesian Neural Networks (BNNs) Another approach to UQ in deep neu-
ral networks is Bayesian learning via variational inference (i.e., a BNN). Instead
of point estimates, the network learns the posterior distribution over the weights
given the dataset, denoted P(wID), given the prior distribution P(w). However,
calculating the exact posterior distribution is intractable due to the extreme
overparametrization found in neural networks [1]. Previous work by Hinton and
Van Camp [9] and Graves [8] proposed variational learning as a method to ap-
proximate the posterior distribution. Variational learning finds the parameters B
of the distribution q(w10) via the minimization of the variational free energy cost
function, often called the expected lower bound (ELBO). It consists of the sum
of the Kullback-Leibler (KL) divergence and the negative log-likelihood (NLL),
which Blundell et al. [1] explains as embodying a tradeoff between satisfying the
simplicity prior (represented by the KL term) and satisfying the complexity of
the dataset (represented by the NLL term):

T(D, 0) = KL[q(w19) II P(w)] Eq(209) [log P(D1w)]• (1)

Blundell et al. [1] proposed the Bayes by Backprop algorithm, which combines
variational inference with traditional backpropagation to find the best approxi-
mation to the posterior in a computationally feasible manner. Bayes by Backprop
works by using the gradients calculated in backpropagation to "scale and shift"
the variational parameters of the posterior, thus updating the posterior with
minimal additional computation [1].
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One challenge associated with probabilistic weights is that all examples in
a mini-batch typically have similarly sampled weights, limiting the variance re-
duction effect of large mini-batches [31] . Kingma et al. [11] introduced local
reparametrization, which greatly reduces the variance of stochastically sampled
weights by transforming global weight uncertainty into independent local noise
across examples in the mini-batch. In a similar vein, Wen et al. [31] proposed the
Flipout estimator, which empirically achieves ideal variance reduction by sam-
pling weights pseudo-independently for each example. While local reparametriza-
tion only works for fully-connected networks, Flipout can be used effectively in
fully-connected, convolutional, and recurrent networks [31].

2.3 Novelty and Advantages of our BCNN

While we have leveraged many ideas from previous work, to the best of our
knowledge there is no existing Bayesian CNN that successfully generates statis-
tically interpretable geometric uncertainty maps, in either 2D or 3D. In the
2D domain, Shridhar et al. [28] proposed a 2D BCNN that extended local
reparametrization to convolutional networks but did not generate geometric un-
certainty maps. Furthermore, Ovadia et al. [25] showed that 2D BCNNs with
Flipout [31] are effective for non-geometric UQ on the MNIST and CIFAR-10
datasets, but they found it was difficult to get BCNNs to work with complex
datasets. As such, our work was not a straightforward extension from 2D to 3D,
but instead a discovery of a unique synthesis of techniques that enabled suc-
cessful training and segmentation of large 3D volumes with credible uncertainty
quantification.

The major advantage of BCNNs is that they measure uncertainty in the
weight space, while the MCDNs measure uncertainty in the output space. We
acknowledge that MCDNs can provide uncertainty maps. However, due to being
measured in the output space, these uncertainty maps are in the form of statistics
drawn from many runs and are not statistically justified [24]. Given that we are
working with 3D volumes of up to a billion voxels, the cost of running inference
enough times to characterize the true distribution of the softmax output for each
voxel is prohibitive. To obtain credible UQ, we must study the true distribution of
sigmoid values — that is, the distribution in the weight space. Because the BCNN
measures this distribution, it provides meaningful uncertainty maps that can be
directly interpreted: we can easily provide statistically justified 90% confidence
intervals on the BCNN prediction by taking the difference of the 0.05 and 0.95
percentiles of the learned distributions.

Finally, as seen in Figure 1 of our paper, the BCNN uncertainty maps cap-
ture continuity and visual gradients, which is a major advantage not only for
material simulations as discussed in Section 5.4, but for any application where
geometric uncertainty must be quantified and understood. The major disad-
vantages of BCNNs compared to MCDNs are implementation-based, including
doubling of trainable parameters [7], lengthy training times, and sensitivity to
hyperparameter optimization [25] .
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3 Met hodology

In this section, we present our BCNN architecture and describe our reasoning
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252 3.1 Architecture
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In Figure 2, we present a schematic representation of our BCNN architecture.
Similarly to V-Net [18], we employ an encoder-decoder architecture. The encoder
half (left) of the network compresses the input into a latent space while the
decoder half (right) decompresses the latent representation of the input into a
segmentation map. We do not include stochastic layers in the encoder half of the
network to maximize the amount of information transfer between the original
volume and the latent space.

The encoder half of the network is comprised of four stages, each with two
convolutional layers and normalization layers followed by a max pooling layer to
reduce the size of the input. Thus, after each layer, the volume's depth, height,
and width are halved while its channels are doubled, reducing the size of the
volume by a factor of four.

The decoder half of the network consists of three stages, corresponding to
the first three layers of the encoder half. First, we upsample the output of the
previous layer and apply convolutional and normalization layers to double the
volume's depth, height, and width while halving its channels. We then concate-
nate this volume with the pre-pooling output of the corresponding encoder layer;
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270 this skip connection assists in feature-forwarding through the network. Then, we 270

271 apply two more convolutional and normalization layers. At the end of the third 271

272 stage, we apply a final convolutional layer as well as a sigmoid activation. This 272

273 results in a volume of the same size as the input representing a binary segmen- 273

274 tation probability map. 274

275 In the decoder half of the network, we implement volumetric convolutional 275

276 layers with distributions over the weights. Each Bayesian convolutional layer 276

277 is initialized with a standard normal prior P(w) = .Ai(0, 1) and employs the 277

278 aforementioned Flipout estimator [31] to approximate the distribution during 278

279 forward passes. Our implementation draws from the Bayesian Layers library 279

280 [30] included in TensorFlow Probability [6], which monitors the KL divergence 280

281 of the layer's posterior distribution with respect to its prior. Our BCNN has 281

282 1,924,964 trainable parameters, while its MCDN counterpart has 1,403,059. 282

283 283

284 284

285 3.2 Design Decisions 285

286 286

287 Since training volumes can be quite large, our batch size is constrained by the 287

288 amount of available GPU memory, resulting in a batch size too small for batch 288

289 normalization to accurately compute batch statistics. Thus, we implement a re- 289

290 cent technique proposed by Wu and He [32] called group normalization, which 290

291 normalizes groups of channels and is shown to have accurate performance inde- 291

292 pendent of batch size. Proper normalization was observed to be a critical factor 292

293 in the convergence of our model; by tuning the number of groups used in the 293

294 group normalization layers, we found that our model converged most reliably 294

295 when using 4 groups. 295

296 At each downward layer i, we apply 23+i filters. This was found to be more 296

297 effective than a more simple model with 22+1 filters and a more complex model 297

298 with 24+1 filters. We hypothesize that some minimum amount of learned param- 298

299 eters was necessary to produce accurate segmentations, but with 24+1 filters, the 299

300 model's overparameterization made training significantly more difficult. 300

301 We tested many prior distributions, including scale mixture [1], spike-and- 301

302 slab [19], and a normal distribution with increased variance, but found that a 302

303 standard normal prior provided the best balance between weight initialization 303

304 and weight exploration. Skip connections were found to slightly increase the 304

305 accuracy of our predictions by forwarding fine-grained features that otherwise 305

306 would have been lost in the encoder half of the network. We experimented with 306

both max pooling and downward convolutional layers and observed negligible307 307
difference.308 308

309 309

310 310

311 4 Experiments 311

312 312

313 In this section, we describe our datasets and detail our training and testing 313

314 procedures. 314
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315 4.1 Dat aset s 315

316 316Two 3D imaging datasets are used to test our BCNN. The first is a series of CT
317 317scans of graphite electrodes for lithium-ion batteries, which we refer to as the
318 318Graphite dataset [20,26]. This material consists of non-spherical particles (dark
319 319objects in the images) that are coated onto a substrate and calendared to densify.
320 320The academically manufactured ("numbered') electrodes [20] were imaged with
321 321325 nm resolution and a domain size of 700 x 700 x (48— 75) p.m. The commercial
322 322("named') electrodes [26] were imaged at 162.5 nm resolution and a domain size
323 of 416 x 195 x 195 pm. Eight samples were studied, each with 500 million to 323

324 1 billion voxels. Each volume was hand-segmented using commercial tools [23]; 324

325 these manual segmentations were used for training and testing. We trained our 325

326 BCNN on the GCA400 volume and tested on the remaining seven electrodes. 326

327 Laser-welded metal joints comprise a second dataset, which we refer to as the 327

328 Laser Weld dataset. To generate these volumes, two metal pieces are put into 328

329 contact and joined with an incident laser beam. The light regions of the result- 329

330 ing scans represent voids or defects in the weld. The Laser Weld dataset consists 330

331 of CT scans of ten laser-welded metal joint examples, each with tens of mil- 331

332 lions of voxels. Similarly to the Graphite dataset, these volumes were manually 332

333 segmented and used for training and testing. We trained a separate BCNN on 333

334 samples S2, S24, and S25, then tested on the remaining seven held-out volumes. 334

335 For both datasets, we normalized each CT scan to have voxel values with 335

336 zero mean and unit variance. Additionally, each CT scan was large enough to 336

337 require that we process subvolumes of the 3D image rather than ingesting the 337

338 entire scan as a whole into the neural network on the GPU. Our algorithm for 338

339 preprocessing these volumes is set forth in the Appendix. 339

340 340

341 4.2 Training 341

342 342
We use the Adam optimizer [10] with learning rate a = 0.0001 for the Graphite

343 343
dataset and a = 0.001 for the Laser Weld dataset; this difference is necessary

344 344
because the volumes in the Graphite dataset are significantly larger than those

345 345
of the Laser Weld dataset.

346 346
We utilize Graves' [8] amendment of variational free energy (originally Equa-

347 347
tion 1) to mini-batch optimization for mini-batch i E {1, 2, ... , M} by dividing

348 348
the KL term by M. This factor distributes the KL divergence penalty evenly

349 349
over each minibatch; without this scaling, the KL divergence term dominates the

350 350
equation, causing the model to converge to a posterior with suboptimal accuracy.

351 351
We also use monotonic KL annealing [2] as detailed in Equation 2; this an- 

351

352 352
nealing was necessary for the reliable convergence of our model as it allowed the

353 353
model to learn the 3D segmentation before applying the KL divergence penalty.

354 354
We denote the current epoch as E and accept as hyperparameters a KL starting

355 355epoch s, initial KL weight /co, and step value k1 to obtain the KL weight for the
356 356current epoch kE as follows:
357 357

358 { ko if E < s 358
kE (2)

359 min(1, ko + ki (E — s)) if E > s 359
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360 For the Graphite dataset we use s = 1, /co = 1/2, k1 = 1/2 and for the Laser 360

361 Weld dataset we use s = 1, ko = 0, k1 = 1/4. We use the aforementioned Bayes 361

362 by Backprop [1] algorithm to train our BCNN under the resultant loss function: 362

363 363

364 .F,;° (Di, 0) = —mE KL[q(1.010) P(w)] — Eqople) [log P(Dilw)]. (3) 
364

365 365

366 We parallelized our model and trained on two NVIDIA Tesla V100 GPUs with 366

367 32GB of memory each. For our BCNN, one epoch of 1331 chunks of size 88 x 176 x 367

368 176 took approximately 17 minutes and 30 seconds with a maximum batch size 368

369 of 3. We trained each model for 2 epochs on the 4913-sample Graphite dataset; 369

370 for the 549-sample Laser Weld dataset, we trained each model for 7 epochs. 370

371 371

372 372
4.3 Testing

373 373

374 We computed 48 Monte Carlo samples on each test chunk to obtain a distri- 374

375 bution of sigmoid values for each voxel. The Monte Carlo dropout technique is 375

376 justified in representing uncertainty as the standard deviation of the sigmoid 376

377 values because it approximates a deep Gaussian process [7]; however, the BCNN 377

378 does not guarantee adherence to a normal distribution in practice. Thus, in order 378

379 to effectively compare the outputs of both networks while mimicking the stan- 379

380 dard deviation measurement of the MCDN, we represent confidence intervals 380

381 on the segmentation as the 33rd and the 67th percentiles of the sigmoid values, 381

382 and uncertainty as the difference. We compare our results against an MCDN 382

383 of identical architecture to our BCNN except with regular convolutional layers 383

384 instead of Bayesian convolutional layers and spatial dropout [29] applied at the 384

385 end of each stage prior to upsampling. 385

386 386

387 3875 Results
388 388

389 389
In this section, we present inference results of our BCNN and compare its per-

390 390
formance with the MCDN.

391 391

392 392

393 5.1 Graphite Dataset 393

394 394
Figure 3 shows a successful segmentation and uncertainty measurements on the

395 395
GCA2000 sample from the Graphite dataset. Our BCNN provides an equivalent

396 396
or better segmentation than the MCDN and produces an interpretable geometric

397 397
uncertainty map. Figure 1 shows a zoomed-in portion of the III sample uncer-

398 
tainty map which highlights the continuity and visual gradients captured in our 

398

399 BCNN uncertainty map, while the MCDN produces uninterpretable voxel-by- 399

400 voxel uncertainty measurements. We hypothesize that this is an advantage of 400

401 our BCNN measuring the uncertainty in the weight space, rather than in the 401

402 output space like the MCDN. 402

403 Table 1 lists a selection of descriptive statistics regarding model performance 403

404 on the Graphite dataset. Our BCNN achieves a higher segmentation accuracy 404
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(a) Original slice. (b) Target slice. (c) BCNN segmentation.

03

(d) MCDN segmentation. (e) BCNN uncertainty (ours). (f) MCDN uncertainty.

Fig. 3: Results on Graphite Test Set Sample GCA2000, Slice 212. Note that our
BCNN uncertainty is focused around the light gray edges of the material in the
original slice, while the MCDN uncertainty is pixelated and uninterpretable.

Sample Method Accuracy UQ Mean (X 10-2)

MCDN 0.8295 0.7566
BCNN (ours) 0.8452 7.991

III MCDN 0.7410
BCNN (ours) 0.7560

IV MCDN 0.6925 0.7696
BCNN (ours) 0.7226 7.871

GCA2000 MCDN
BCNN (ours)

25R6 MCDN
BCNN (ours)

E35 MCDN
BCNN (ours)

Litarion MCDN
BCNN (ours)

Table 1: Graphite Test Set Statistics. Note that our BCNN has roughly the same
accuracy performance as the MCDN. Additionally, our BCNN has an order of
magnitude more uncertainty due to its increased stochasticity.
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than the MCDN on the numbered datasets but slightly lower accuracy on the
named datasets. The manual labels resulted from thresholding techniques and
are known to contain inaccuracies, especially at particle boundaries. As such,
we conclude that the accuracy performance of our BCNN is similar to that of
the MCDN with respect to these labels, but further assessments against refined
labels are left for future work.

5.2 Laser Weld Dataset

Figure 4 shows a successful segmentation and uncertainty measurements on the
S33 sample from the Laser Weld dataset. Note that the BCNN uncertainty
map captures the uncertainty gradient (corresponding to the gray portion of
the CT scan slice) at the top left and bottom left of the segmentation, while
the MCDN uncertainty map displays a straight line. Figure 5 shows another
successful segmentation and uncertainty measurements on the S4 sample from
the Laser Weld dataset.

Table 2 lists a selection of descriptive statistics regarding model performance
on the Laser Weld dataset. Note that it is slightly more difficult for our BCNN
to produce accurate segmentations on the Laser Weld dataset than the Graphite
dataset.

(a) Original slice. (b) Target slice. (C) BCNN segmentation (ours).

0.3

0.1

(d) MCDN segmentation. (e) BCNN uncertainty (ours). (f) MCDN uncertainty.

Fig. 4: Results on Laser Weld Test Set Sample S33, Slice 604. Notice that our
BCNN achieves a more accurate segmentation in addition to producing an uncer-
tainty map with consistent uncertainty measurements across the borders of the
weld. Additionally, our BCNN learned that there is a distribution of uncertainty
around the central void, whereas the MCDN represents it with a voxel-wide line.

5.3 Validation

Validation of UQ results is a difficult subject with no standard practice for
determining whether a model's UQ is justified given the dataset. In validating our

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494



12 ECCV-20 submission ID 4399

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Sample Method Accuracy 1JQ Mean (x10-3)

S1 MCDN 0.9949 0.8704
BCNN (ours) 0.9943 6.560

S4 MCDN 0.9948
BCNN (ours) 0.9926

S15 MCDN 0.9984 1.115
BCNN (ours) 0.9921 12.74

S26 MCDN 0.9861 0.8969
BCNN (ours) 0.9931 9.035

S31 MCDN 0.9972
BCNN (ours) 0.9889

S32 MCDN 0.9914
BCNN (ours) 0.9885

S33 MCDN 0.9941 1.619
BCNN (ours) 0.9882 7.283

Table 2: Laser Weld Test Set Statistics. Similarly to the Graphite dataset, our
BCNN has roughly the same accuracy performance as the MCDN with an order
of magnitude more uncertainty due to its increased stochasticity.

(a) Original slice.

•

•

(b) Target slice.
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(C) BCNN segmentation (ours).
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(d) MCDN segmentation. (e) BCNN uncertainty (ours). (f) MCDN uncertainty.

Fig. 5: Results on Laser Weld Test Set Sample S4, Slice 372. While the BCNN
segmentation underestimates the size of the void, it expresses a thick uncertainty
band reflecting its correct size. Note also that the BCNN uncertainty better
captures the continuity of the edges of the weld.
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540 BCNN, the most relevant work in this area is due to Mukhoti and Gal [21]. They 540

541 define two desiderata for quality uncertainty maps: a high probability of being 541

542 accurate when the model is certain, denoted P(A1C), and a high probability of 542

543 being uncertain when the model is inaccurate, denoted P(UlI). 543

544 They estimate these quantities by evaluating accuracy and uncertainty by 544

545 sliding a square patch across the image; if the patch accuracy is equal to or 545

546 above a certain threshold, the entire patch is labeled accurate, and if the patch 546

547 uncertainty is equal to or above a certain threshold, the entire patch is labeled 547

548 uncertain. They define a metric called Patch Accuracy vs. Patch Uncertainty 548

549 (PAvPU), which encodes the above two desiderata in addition to penalizing 549

550 patches which are simultaneously accurate and uncertain [21]. If n represents the 550

551 total number of patches, nac represents the number of patches which are accurate 551

552 and certain, and niu represents the number of patches which are inaccurate and 552

553 uncertain, PAvPU is defined as follows: 553

554 554

555 PAvPU = ?lac ± niu (4) 555
n

556 556

557 We implement PAvPU to validate our uncertainty results using a 3 x 3 patch 557

558 with accuracy threshold 8/9 and uncertainty threshold equal to the mean of 558

559 the uncertainty map. We detail our results in Table 3. In particular, note that 559

560 our BCNN consistently outperforms the MCDN in both conditional probabil- 560

561 ities, even doubling the P(ULT) score. Thus, we conclude that our BCNN has 561

562 more justified UQ than the MCDN, and it is more effective than the MCDN in 562

563 encoding the relationship between uncertainty and accuracy. 563

564 As PAvPU was designed for use with 2D semantic segmentations and not 564

565 for 3D binary segmentations, it may not be sufficient to characterize the im- 565

566 provement in UQ achieved by the BCNN. Furthermore, the PAvPU calculation 566

567 involves a penalty for patches which are accurate and uncertain, which may not 567

568 necessarily be a detrimental characteristic of the segmentation [21]. This is the 568

569 term that most significantly affects the PAvPU values where MCDN achieves 569

570 a better result than our BCNN: our BCNN simply measures more uncertainty 570

571 than the MCDN. Additionally, introducing this penalty term encodes the goal 571

572 of training a network which is not simultaneously uncertain and accurate; how- 572

573 ever, in the Bayesian view, uncertainty and accuracy are not mutually exclusive 573

574 because uncertainty quantifies the proximity of a sample to the training distribu- 574

575 tion rather than confidence in a correct segmentation. We leave the development 575

576 of a more relevant uncertainty metric as future work. 576

577 577

578 578
5.4 Advantages for Material Simulations

579 579

580 The objective of performing UQ on materials datasets is to obtain uncertainties 580

581 which can inform and propagate throughout simulations involving said materials. 581

582 For example, when simulating the performance of a sample from the Graphite 582

583 dataset to bound its various physical properties, it is crucial to know the contact 583

584 points of the material. The uncertainty maps generated by our BCNN represent 584
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585 Sample Method P (A IC ) P (U 11) PAvPU 585

586 Litarion, Slice 324 MCDN 586

587 (Graphite) BCNN 587

588 GCA2000, Slice 212 MCDN 588

589 (Graphite) BCNN 589

590 III, Slice 64 MCDN 590

591 (Graphite) BCNN 591

592 S 1, Slice 176 MCDN 592

593 (Laser Weld) BCNN 593

594 S26, Slice 596 MCDN 594

595 (Laser Weld) BCNN 595

596 596Table 3: PAvPU Validation Results. Note that our BCNN consistently and vastly
597 597outperforms the MCDN in the P(A1C) and P(UP") scores, implying that our
598 598BCNN better encodes the relationship between uncertainty and accuracy. How-
599 599ever, our BCNN underperforms in the PAvPU metric because it is penalized for
600 600being simultaneously accurate and uncertain.
601 601

602 602

603 603

604 604

605 confidence intervals on the segmentation, so we can infer the probability of a 605

606 certain contact point occurring in the CT scanned material. 606

607 The voxel-by-voxel nature of the uncertainty maps given by the MCDN pro- 607

608 duce very jagged, unrealistic confidence intervals with little physical meaning. 608

609 In contrast, the continuity and visual gradients of the uncertainty map gener- 609

610 ated by our BCNN enable better approximations to the actual geometric uncer- 610

611 tainty in both the Graphite and Laser Weld materials. Our BCNN allows us to 611

612 smoothly probe the uncertainty when performing simulations and justify each 612

613 error bound we obtain with interpretable uncertainty maps, a major advantage 613

614 when performing simulations for high-consequence scenarios. 614

615 615

616 6166 Conclusion
617 617

618 618We propose a novel BCNN for UQ of binary segmentations in 3D domains, the
619 619first variational-inference based architecture to do so. By measuring uncertainty
620 620in the weight space, our BCNN provides interpretable uncertainty maps and out-
621 621performs the state-of-the-art Monte Carlo dropout technique. We present UQ
622 622results on CT scans of graphite electrodes and laser-welded metals used in physics
623 623simulations where accurate geometric UQ is critical. Our BCNN produces uncer-
624 624tainty maps which capture continuity and visual gradients, outperforms Monte
625 Carlo dropout networks (MCDNs) on recent uncertainty metrics, and achieves 625

626 equal or better segmentation accuracy than MCDNs in most cases. Future inves- 626

627 tigation will likely include extending our BCNN to semantic segmentation and 627

628 medical applications and comparing our results with other UQ techniques such 628

629 as the deep ensembles of Lakshminarayanan et al. [13]. 629
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