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011 Abstract. Deep learning has been applied with great success to the 011
- segmentation of 3D Computed Tomography (CT) scans. Establishing -
. the credibility of these segmentations requires uncertainty quantification 613
(UQ) to identify untrustworthy predictions. Recent UQ architectures
k1A include Monte Carlo dropout networks (MCDNs), which approximate 014
015 Bayesian inference in deep Gaussian processes, and Bayesian neural net- 015
016 works (BNNs), which use variational inference to learn the posterior 016
017 distribution of the neural network weights. BNNs hold several advan- 017
018 tages over MCDNs for UQ, but, to the best of our knowledge, there 018
019 has not been a successful application of BNNs to 3D domains. We pro- 019
020 pose a novel 3D Bayesian convolutional neural network (BCNN), the 020
51 first variational inference-based architecture designed for segmentation 091

and credible UQ in a 3D domain. We present experimental results on
CT scans of graphite electrodes and laser-welded metals and show that

h2 our BCNN outperforms an MCDN in recent uncertainty metrics. The 023
024 geometric uncertainty maps generated by our BCNN capture continuity 024
025 and visual gradients, making them interpretable as confidence intervals 025
026 in physics simulations. 026
027 027
028 Keywords: Uncertainty quantification, volumetric segmentation, vari- 028
029 ational inference 029
030 030
' 1 Introduction o
032 032
033 Non-destructive 3D imaging techniques allow scientists to study the interior of 033
Lk objects which cannot otherwise be observed. For example, radiologists use X-ray ~ °**
- Computed Tomography (CT) to measure organ perfusion and Magnetic Reso- ~ **°
. nance Imaging (MRI) to diagnose prostate carcinoma, among other applications ~ %*°
Os¥ [3,22]. In addition to medical applications, CT scans are used in manufacturing %’
Uss to identify defects before a part is deployed in a production environment and to %
039 certify physical properties of materials. A critical step in the analysis of CT scans %39
040 is segmentation, wherein an analyst labels each voxel in a scan (e.g., as a tumor 940
041 in the medical case or as a defect in the manufacturing case). However, due to the 94!
042 noise and artifacts found in CT scans along with human error, these segmen- 042
043 tations are often expensive, irreproducible, and unreliable [17]. Deep learning 943
044 models such as convolutional neural networks (CNNs) have revolutionized the 044
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(c) BCNN uncertainty (ours). (d) MCDN uncertainty.

Fig.1: Zoomed Uncertainty Maps on Graphite Test Set Sample III, Slice 64.
Note that the BCNN uncertainty map captures continuity and visual gradients
while the MCDN uncertainty map is pixelated and uninterpretable.

automated segmentation of 3D imaging by providing a fast, accurate solution to
many challenges in segmentation.

For use with high-consequence part certification, segmentation must include
uncertainty quantification (UQ). When deploying critical parts, such as those in
cars and airplanes, analysts must provide accurate safety confidence intervals.
Recent research casts deep neural networks as probabilistic models in order to
obtain uncertainty measurements. Two common UQ architectures are Monte
Carlo dropout networks (MCDNs) [7] and variational inference-based Bayesian
neural networks (BNNs) [I]. MCDNs are easy to implement and enable UQ
in the output space with little computational cost, but provide poor geometric
uncertainty maps. In contrast, BNNs measure uncertainty in the weight space,
resulting in statistically-justified UQ at the cost of at least double the number
of trainable parameters and increased convergence time [7].

To the best of our knowledge, there is no existing BNN that successfully
generates statistically interpretable uncertainty measurements in 3D domains;
recent work has theorized that this is computationally infeasible [7,13]. We re-
fute this and propose a novel 3D Bayesian CNN (BCNN) architecture, the first
variational inference-based architecture designed for segmentation and UQ in a
3D domain. Our BCNN effectively predicts binary segmentations of billion-voxel
CT scans in addition to generating statistically credible geometric uncertainty
maps which the MCDN cannot capture. We show via experimental results on
CT scan datasets of graphite electrodes and laser-welded metals that our BCNN
outperforms the regularly-adapted MCDN on UQ on recent uncertainty metrics
[21]. As shown in Figure 1, the BCNN generates an interpretable uncertainty
map that enables uncertainty quantification in material simulations that require
precise geometric confidence intervals.
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2 Related Work

In this section, we describe recent publications in volumetric segmentation and
UQ which enabled the success of our BCNN.

2.1 Volumetric Segmentation

The problem of volumetric segmentation has seen much high-impact work in the
past few years. The 2D Fully Convolutional Network [15] and U-Net [27] led
Milletari et al. [18] to propose the first 3D CNN for binary segmentation of MRI
images, called V-Net. At around the same time, Cicek et al. [1] proposed 3D U-
Net, a direct extension of the U-Net to a 3D domain. While V-Net was designed
for binary segmentation of the human prostate and 3D U-Net was designed for
binary segmentation of the kidney of the Xenopus, they both employ an encoder-
decoder architecture inspired by U-Net [18,4]. In this technique, a 3D volume is
mapped to a latent space via successive convolutional and pooling layers; this
latent representation is then upsampled and convolved until it reaches the size
of the original volume and outputs the resulting per-voxel segmentation [27].

While most volumetric segmentation work pertains to the medical field, 3D
materials segmentation is also an active area of research due to the importance
of quality segmentations in physics simulations. In 2018, Konopczynski et al.
[12] employed fully convolutional networks to segment CT scan volumes of short
glass fibers, outperforming traditional non-deep learning techniques and achiev-
ing the first accurate results in low-resolution fiber segmentation. More recently,
MacNeil et al. [16] proposed a semi-supervised algorithm for segmentation of
woven carbon fiber volumes from sparse input.

2.2 Uncertainty Quantification

While deep learning models often outperform traditional statistical approaches
in terms of accuracy and generalizability, they do not have built-in uncertainty
measurements like their statistical counterparts. Gal and Ghahramani [7] showed
that predictive probabilities (i.e., the softmax outputs of a model) are often
erroneously interpreted as an uncertainty metric. Instead, recent work has cast
neural networks as Bayesian models via approximating probabilistic models [7]
or utilized variational inference to learn the posterior distribution of the network
weights [1].

Monte Carlo Dropout Networks (MCDNs) Gal and Ghahramani [7] showed
that a neural network with dropout applied before every weight layer (i.e., an
MCDN) is mathematically equivalent to an approximation to a deep Gaussian
process [5]. Specifically, one can approximate a deep Gaussian process with co-
variance function K(z,y) by placing a variational distribution over each compo-
nent of a spectral decomposition of K. This maps each layer of the deep Gaussian
process to a layer of hidden units in a neural network. By averaging stochastic
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forward passes through the dropout network at inference time, one obtains a
Monte Carlo approximation of the intractable approximate predictive distribu-
tion of the deep Gaussian process [7]; thus the voxel-wise standard deviations of
the predictions are usable as an uncertainty metric.

One of the top benefits of the MCDN is its ease of implementation; as an
architecture-agnostic technique which is dependent only on the dropout layers,
Monte Carlo dropout can easily be added to very large networks without an
increase in parameters. As a result, MCDNs have been implemented with good
results in several different applications. In particular, Liu et al. [14] successfully
implemented a 3D MCDN for UQ in binary segmentations of MRI scans of the
amygdala, and Martinez et al. [17] used V-Net with Monte Carlo dropout for
UQ in binary segmentations of CT scans of woven composite materials.

While the MCDN is one of the most common UQ architectures used in deep
learning, its statistical soundness has been called into question. Osband [21]
argues that Monte Carlo dropout provides an approximation to the risk of a
model rather than its uncertainty (in other words, that it approximates the
inherent stochasticity of the model rather than the variability of the model’s
posterior belief). Osband [24] also shows that the posterior distribution given
by dropout does not necessarily converge as more data is gathered; instead, the
posterior depends only on the interaction between the dropout rate and the
model size.

Bayesian Neural Networks (BNNs) Another approach to UQ in deep neu-
ral networks is Bayesian learning via variational inference (i.e., a BNN). Instead
of point estimates, the network learns the posterior distribution over the weights
given the dataset, denoted P(w|D), given the prior distribution P(w). However,
calculating the exact posterior distribution is intractable due to the extreme
overparametrization found in neural networks [1]. Previous work by Hinton and
Van Camp [9] and Graves [8] proposed variational learning as a method to ap-
proximate the posterior distribution. Variational learning finds the parameters 0
of the distribution ¢(w|@) via the minimization of the variational free energy cost
function, often called the expected lower bound (ELBO). It consists of the sum
of the Kullback-Leibler (KL) divergence and the negative log-likelihood (NLL),
which Blundell et al. [1] explains as embodying a tradeoff between satisfying the
simplicity prior (represented by the KL term) and satisfying the complexity of
the dataset (represented by the NLL term):

F(D,0) = KL[g(wl0) || P(w)] — Eq(u}e) [log P(D|w)]. (1)

Blundell et al. [1] proposed the Bayes by Backprop algorithm, which combines
variational inference with traditional backpropagation to find the best approxi-
mation to the posterior in a computationally feasible manner. Bayes by Backprop
works by using the gradients calculated in backpropagation to “scale and shift”
the variational parameters of the posterior, thus updating the posterior with
minimal additional computation [1].
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One challenge associated with probabilistic weights is that all examples in
a mini-batch typically have similarly sampled weights, limiting the variance re-
duction effect of large mini-batches [31]. Kingma et al. [11] introduced local
reparametrization, which greatly reduces the variance of stochastically sampled
weights by transforming global weight uncertainty into independent local noise
across examples in the mini-batch. In a similar vein, Wen et al. [31] proposed the
Flipout estimator, which empirically achieves ideal variance reduction by sam-
pling weights pseudo-independently for each example. While local reparametriza-
tion only works for fully-connected networks, Flipout can be used effectively in
fully-connected, convolutional, and recurrent networks [31].

2.3 Novelty and Advantages of our BCNN

While we have leveraged many ideas from previous work, to the best of our
knowledge there is no existing Bayesian CNN that successfully generates statis-
tically interpretable geometric uncertainty maps, in either 2D or 3D. In the
2D domain, Shridhar et al. [28] proposed a 2D BCNN that extended local
reparametrization to convolutional networks but did not generate geometric un-
certainty maps. Furthermore, Ovadia et al. [25] showed that 2D BCNNs with
Flipout [31] are effective for non-geometric UQ on the MNIST and CIFAR-10
datasets, but they found it was difficult to get BCNNs to work with complex
datasets. As such, our work was not a straightforward extension from 2D to 3D,
but instead a discovery of a unique synthesis of techniques that enabled suc-
cessful training and segmentation of large 3D volumes with credible uncertainty
quantification.

The major advantage of BCNNs is that they measure uncertainty in the
weight space, while the MCDNs measure uncertainty in the output space. We
acknowledge that MCDNSs can provide uncertainty maps. However, due to being
measured in the output space, these uncertainty maps are in the form of statistics
drawn from many runs and are not statistically justified [24]. Given that we are
working with 3D volumes of up to a billion voxels, the cost of running inference
enough times to characterize the true distribution of the softmax output for each
voxel is prohibitive. To obtain credible UQ, we must study the true distribution of
sigmoid values — that is, the distribution in the weight space. Because the BCNN
measures this distribution, it provides meaningful uncertainty maps that can be
directly interpreted: we can easily provide statistically justified 90% confidence
intervals on the BCNN prediction by taking the difference of the 0.05 and 0.95
percentiles of the learned distributions.

Finally, as seen in Figure 1 of our paper, the BCNN uncertainty maps cap-
ture continuity and visual gradients, which is a major advantage not only for
material simulations as discussed in Section 5.4, but for any application where
geometric uncertainty must be quantified and understood. The major disad-
vantages of BCNNs compared to MCDNs are implementation-based, including
doubling of trainable parameters [7], lengthy training times, and sensitivity to
hyperparameter optimization [25].
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©) 30 convolution with 3x3x3 fiters, 1x1x1 stride, and ReLU activation

G) Group no

zation with 4 groups
P) Max pooling of size 2x2x2

followed by 3D Bayesian convolution with 2x2x2 filters

with 3x3x3 filters, 1x1x1 stride, and ReLU activation

® followed by pixel with sigmoid activation

Fig.2: Schematic of our BCNN architecture with sample volume dimensions
from the Graphite dataset. Best viewed in electronic format. Measurements are
(depth, height, width, channels).

3 Methodology

In this section, we present our BCNN architecture and describe our reasoning
behind several design decisions.

3.1 Architecture

In Figure 2, we present a schematic representation of our BCNN architecture.
Similarly to V-Net [18], we employ an encoder-decoder architecture. The encoder
half (left) of the network compresses the input into a latent space while the
decoder half (right) decompresses the latent representation of the input into a
segmentation map. We do not include stochastic layers in the encoder half of the
network to maximize the amount of information transfer between the original
volume and the latent space.

The encoder half of the network is comprised of four stages, each with two
convolutional layers and normalization layers followed by a max pooling layer to
reduce the size of the input. Thus, after each layer, the volume’s depth, height,
and width are halved while its channels are doubled, reducing the size of the
volume by a factor of four.

The decoder half of the network consists of three stages, corresponding to
the first three layers of the encoder half. First, we upsample the output of the
previous layer and apply convolutional and normalization layers to double the
volume’s depth, height, and width while halving its channels. We then concate-
nate this volume with the pre-pooling output of the corresponding encoder layer;
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this skip connection assists in feature-forwarding through the network. Then, we
apply two more convolutional and normalization layers. At the end of the third
stage, we apply a final convolutional layer as well as a sigmoid activation. This
results in a volume of the same size as the input representing a binary segmen-
tation probability map.

In the decoder half of the network, we implement volumetric convolutional
layers with distributions over the weights. Each Bayesian convolutional layer
is initialized with a standard normal prior P(w) = AN(0,1) and employs the
aforementioned Flipout estimator [31] to approximate the distribution during
forward passes. Our implementation draws from the Bayesian Layers library
[30] included in TensorFlow Probability [6], which monitors the KL divergence
of the layer’s posterior distribution with respect to its prior. Our BCNN has
1,924,964 trainable parameters, while its MCDN counterpart has 1,403,059.

3.2 Design Decisions

Since training volumes can be quite large, our batch size is constrained by the
amount of available GPU memory, resulting in a batch size too small for batch
normalization to accurately compute batch statistics. Thus, we implement a re-
cent technique proposed by Wu and He [32] called group normalization, which
normalizes groups of channels and is shown to have accurate performance inde-
pendent of batch size. Proper normalization was observed to be a critical factor
in the convergence of our model; by tuning the number of groups used in the
group normalization layers, we found that our model converged most reliably
when using 4 groups.

At each downward layer i, we apply 231 filters. This was found to be more
effective than a more simple model with 22+ filters and a more complex model
with 2417 filters. We hypothesize that some minimum amount of learned param-
eters was necessary to produce accurate segmentations, but with 2**¢ filters, the
model’s overparameterization made training significantly more difficult.

We tested many prior distributions, including scale mixture [1], spike-and-
slab [19], and a normal distribution with increased variance, but found that a
standard normal prior provided the best balance between weight initialization
and weight exploration. Skip connections were found to slightly increase the
accuracy of our predictions by forwarding fine-grained features that otherwise
would have been lost in the encoder half of the network. We experimented with
both max pooling and downward convolutional layers and observed negligible
difference.

4 Experiments

In this section, we describe our datasets and detail our training and testing
procedures.
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4.1 Datasets

Two 3D imaging datasets are used to test our BCNN. The first is a series of CT
scans of graphite electrodes for lithium-ion batteries, which we refer to as the
Graphite dataset [20,26]. This material consists of non-spherical particles (dark
objects in the images) that are coated onto a substrate and calendared to densify.
The academically manufactured (“numbered”) electrodes [20] were imaged with
325 nm resolution and a domain size of 700 x 700 x (48 —75) um. The commercial
(“named”) electrodes [26] were imaged at 162.5 nm resolution and a domain size
of 416 x 195 x 195 ym. Eight samples were studied, each with 500 million to
1 billion voxels. Each volume was hand-segmented using commercial tools [23];
these manual segmentations were used for training and testing. We trained our
BCNN on the GCA400 volume and tested on the remaining seven electrodes.

Laser-welded metal joints comprise a second dataset, which we refer to as the
Laser Weld dataset. To generate these volumes, two metal pieces are put into
contact and joined with an incident laser beam. The light regions of the result-
ing scans represent voids or defects in the weld. The Laser Weld dataset consists
of CT scans of ten laser-welded metal joint examples, each with tens of mil-
lions of voxels. Similarly to the Graphite dataset, these volumes were manually
segmented and used for training and testing. We trained a separate BCNN on
samples S2, S24, and S25, then tested on the remaining seven held-out volumes.

For both datasets, we normalized each CT scan to have voxel values with
zero mean and unit variance. Additionally, each CT scan was large enough to
require that we process subvolumes of the 3D image rather than ingesting the
entire scan as a whole into the neural network on the GPU. Our algorithm for
preprocessing these volumes is set forth in the Appendix.

4.2 Training

We use the Adam optimizer [10] with learning rate o = 0.0001 for the Graphite
dataset and o = 0.001 for the Laser Weld dataset; this difference is necessary
because the volumes in the Graphite dataset are significantly larger than those
of the Laser Weld dataset.

We utilize Graves’ [3] amendment of variational free energy (originally Equa-
tion 1) to mini-batch optimization for mini-batch i € {1,2,..., M} by dividing
the KL term by M. This factor distributes the KL divergence penalty evenly
over each minibatch; without this scaling, the KL divergence term dominates the
equation, causing the model to converge to a posterior with suboptimal accuracy.

We also use monotonic KL annealing [2] as detailed in Equation 2; this an-
nealing was necessary for the reliable convergence of our model as it allowed the
model to learn the 3D segmentation before applying the KL divergence penalty.
We denote the current epoch as E and accept as hyperparameters a KL starting
epoch s, initial KL weight kg, and step value k; to obtain the KL weight for the
current epoch kg as follows:

ko leSS

ke = {min(l,ko +k(E—s) ifE>s @)

334

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

358
359



ECCV-20 submission ID 4399 9

For the Graphite dataset we use s = 1,kg = 1/2,k; = 1/2 and for the Laser
Weld dataset we use s = 1,kg = 0,k; = 1/4. We use the aforementioned Bayes
by Backprop [1] algorithm to train our BCNN under the resultant loss function:

FP(Di,0) = %EKL[Q(’wI(’) I P(w)] = Eq(awjg) [log P(Ds|w)]. (3)

We parallelized our model and trained on two NVIDIA Tesla V100 GPUs with
32GB of memory each. For our BCNN, one epoch of 1331 chunks of size 88 x 176 x
176 took approximately 17 minutes and 30 seconds with a maximum batch size
of 3. We trained each model for 2 epochs on the 4913-sample Graphite dataset;
for the 549-sample Laser Weld dataset, we trained each model for 7 epochs.

4.3 Testing

We computed 48 Monte Carlo samples on each test chunk to obtain a distri-
bution of sigmoid values for each voxel. The Monte Carlo dropout technique is
justified in representing uncertainty as the standard deviation of the sigmoid
values because it approximates a deep Gaussian process [7]; however, the BCNN
does not guarantee adherence to a normal distribution in practice. Thus, in order
to effectively compare the outputs of both networks while mimicking the stan-
dard deviation measurement of the MCDN, we represent confidence intervals
on the segmentation as the 33' and the 67" percentiles of the sigmoid values,
and uncertainty as the difference. We compare our results against an MCDN
of identical architecture to our BCNN except with regular convolutional layers
instead of Bayesian convolutional layers and spatial dropout [29] applied at the
end of each stage prior to upsampling.

5 Results

In this section, we present inference results of our BCNN and compare its per-
formance with the MCDN.

5.1 Graphite Dataset

Figure 3 shows a successful segmentation and uncertainty measurements on the
GCA2000 sample from the Graphite dataset. Our BCNN provides an equivalent
or better segmentation than the MCDN and produces an interpretable geometric
uncertainty map. Figure 1 shows a zoomed-in portion of the III sample uncer-
tainty map which highlights the continuity and visual gradients captured in our
BCNN uncertainty map, while the MCDN produces uninterpretable voxel-by-
voxel uncertainty measurements. We hypothesize that this is an advantage of
our BCNN measuring the uncertainty in the weight space, rather than in the
output space like the MCDN.

Table 1 lists a selection of descriptive statistics regarding model performance
on the Graphite dataset. Our BCNN achieves a higher segmentation accuracy
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(b) Target slice. (c) BCNN segmentation.

06

05

02 o2

01 01

0.0 0.0

(d) MCDN segmentation. (€) BONN uncertainty (ours).  (f) MCDN uncertainty.

Fig. 3: Results on Graphite Test Set Sample GCA2000, Slice 212. Note that our
BCNN uncertainty is focused around the light gray edges of the material in the
original slice, while the MCDN uncertainty is pixelated and uninterpretable.

Sample  Method Accuracy UQ Mean (x1072)
I MCDN 0.8295  0.7566
BCNN (ours) 0.8452  7.991
IIT MCDN 0.7410
BCNN (ours) 0.7560
v MCDN 0.6925  0.7696

BCNN (ours) 0.7226  7.871

GCA2000 MCDN
BCNN (ours)

25R6 MCDN
BCNN (ours)

E35 MCDN
BCNN (ours)

Litarion MCDN
BCNN (ours)

Table 1: Graphite Test Set Statistics. Note that our BCNN has roughly the same
accuracy performance as the MCDN. Additionally, our BCNN has an order of
magnitude more uncertainty due to its increased stochasticity.
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than the MCDN on the numbered datasets but slightly lower accuracy on the
named datasets. The manual labels resulted from thresholding techniques and
are known to contain inaccuracies, especially at particle boundaries. As such,
we conclude that the accuracy performance of our BCNN is similar to that of
the MCDN with respect to these labels, but further assessments against refined
labels are left for future work.

5.2 Laser Weld Dataset

Figure 4 shows a successful segmentation and uncertainty measurements on the
S33 sample from the Laser Weld dataset. Note that the BCNN uncertainty
map captures the uncertainty gradient (corresponding to the gray portion of
the CT scan slice) at the top left and bottom left of the segmentation, while
the MCDN uncertainty map displays a straight line. Figure 5 shows another
successful segmentation and uncertainty measurements on the S4 sample from
the Laser Weld dataset.

Table 2 lists a selection of descriptive statistics regarding model performance
on the Laser Weld dataset. Note that it is slightly more difficult for our BCNN
to produce accurate segmentations on the Laser Weld dataset than the Graphite
dataset.

a) Original slice. b) Target slice. ) BCNN segmentation (ours).

os

030 - 04

(d) MCDN segmentation. (e) BCNN uncertainty (ours). (f) MCDN uncertainty.

Fig.4: Results on Laser Weld Test Set Sample S33, Slice 604. Notice that our
BCNN achieves a more accurate segmentation in addition to producing an uncer-
tainty map with consistent uncertainty measurements across the borders of the
weld. Additionally, our BCNN learned that there is a distribution of uncertainty
around the central void, whereas the MCDN represents it with a voxel-wide line.

5.3 Validation

Validation of UQ results is a difficult subject with no standard practice for
determining whether a model’s UQ is justified given the dataset. In validating our
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Sample Method

Accuracy UQ Mean (x107°)

S1 MCDN 0.9949  0.8704
BCNN (ours) 0.9943  6.560
S4 MCDN 0.9948
BCNN (ours) 0.9926
S15 MCDN 0.9984 1.115
BCNN (ours) 0.9921  12.74
S26 MCDN 0.9861  0.8969
BCNN (ours) 0.9931  9.035
S31 MCDN 0.9972
BCNN (ours) 0.9889
S32 MCDN 0.9914
BCNN (ours) 0.9885
S33 MCDN 0.9941 1.619
BCNN (ours) 0.9882  7.283

(d) MCDN segmentation.

Target slice. BCNN segmentation (ours).

Table 2: Laser Weld Test Set Statistics. Similarly to the Graphite dataset, our
BCNN has roughly the same accuracy performance as the MCDN with an order
of magnitude more uncertainty due to its increased stochasticity.

a) Original slice.

0.00 0.00

(e) BCNN uncertainty (ours).  (f) MCDN uncertainty.

Fig.5: Results on Laser Weld Test Set Sample S4, Slice 372. While the BCNN
segmentation underestimates the size of the void, it expresses a thick uncertainty
band reflecting its correct size. Note also that the BCNN uncertainty better
captures the continuity of the edges of the weld.
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BCNN, the most relevant work in this area is due to Mukhoti and Gal [21]. They
define two desiderata for quality uncertainty maps: a high probability of being
accurate when the model is certain, denoted P(A|C), and a high probability of
being uncertain when the model is inaccurate, denoted P(U|I).

They estimate these quantities by evaluating accuracy and uncertainty by
sliding a square patch across the image; if the patch accuracy is equal to or
above a certain threshold, the entire patch is labeled accurate, and if the patch
uncertainty is equal to or above a certain threshold, the entire patch is labeled
uncertain. They define a metric called Patch Accuracy vs. Patch Uncertainty
(PAVPU), which encodes the above two desiderata in addition to penalizing
patches which are simultaneously accurate and uncertain [21]. If n represents the
total number of patches, n,. represents the number of patches which are accurate
and certain, and n;, represents the number of patches which are inaccurate and
uncertain, PAvPU is defined as follows:

PAVPU = Nac + Niu

(4)

We implement PAvPU to validate our uncertainty results using a 3 x 3 patch
with accuracy threshold 8/9 and uncertainty threshold equal to the mean of
the uncertainty map. We detail our results in Table 3. In particular, note that
our BCNN consistently outperforms the MCDN in both conditional probabil-
ities, even doubling the P(U|I) score. Thus, we conclude that our BCNN has
more justified UQ than the MCDN, and it is more effective than the MCDN in
encoding the relationship between uncertainty and accuracy.

As PAvPU was designed for use with 2D semantic segmentations and not
for 3D binary segmentations, it may not be sufficient to characterize the im-
provement in UQ achieved by the BCNN. Furthermore, the PAvPU calculation
involves a penalty for patches which are accurate and uncertain, which may not
necessarily be a detrimental characteristic of the segmentation [21]. This is the
term that most significantly affects the PAvPU values where MCDN achieves
a better result than our BCNN: our BCNN simply measures more uncertainty
than the MCDN. Additionally, introducing this penalty term encodes the goal
of training a network which is not simultaneously uncertain and accurate; how-
ever, in the Bayesian view, uncertainty and accuracy are not mutually exclusive
because uncertainty quantifies the proximity of a sample to the training distribu-
tion rather than confidence in a correct segmentation. We leave the development
of a more relevant uncertainty metric as future work.

5.4 Advantages for Material Simulations

The objective of performing UQ on materials datasets is to obtain uncertainties
which can inform and propagate throughout simulations involving said materials.
For example, when simulating the performance of a sample from the Graphite
dataset to bound its various physical properties, it is crucial to know the contact
points of the material. The uncertainty maps generated by our BCNN represent
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Sample Method P(A|C) P(U|I) PAVPU
Litarion, Slice 324 MCDN
(Graphite) BCNN
GCA2000, Slice 212 MCDN
(Graphite) BCNN
111, Slice 64 MCDN
(Graphite) BCNN
S1, Slice 176 MCDN
(Laser Weld) BCNN
526, Slice 596 MCDN
(Laser Weld) BCNN

Table 3: PAvPU Validation Results. Note that our BCNN consistently and vastly
outperforms the MCDN in the P(A|C) and P(U|I) scores, implying that our
BCNN better encodes the relationship between uncertainty and accuracy. How-
ever, our BCNN underperforms in the PAvPU metric because it is penalized for
being simultaneously accurate and uncertain.

confidence intervals on the segmentation, so we can infer the probability of a
certain contact point occurring in the CT scanned material.

The voxel-by-voxel nature of the uncertainty maps given by the MCDN pro-
duce very jagged, unrealistic confidence intervals with little physical meaning.
In contrast, the continuity and visual gradients of the uncertainty map gener-
ated by our BCNN enable better approximations to the actual geometric uncer-
tainty in both the Graphite and Laser Weld materials. Our BCNN allows us to
smoothly probe the uncertainty when performing simulations and justify each
error bound we obtain with interpretable uncertainty maps, a major advantage
when performing simulations for high-consequence scenarios.

6 Conclusion

We propose a novel BCNN for UQ of binary segmentations in 3D domains, the
first variational-inference based architecture to do so. By measuring uncertainty
in the weight space, our BCNN provides interpretable uncertainty maps and out-
performs the state-of-the-art Monte Carlo dropout technique. We present UQ
results on CT scans of graphite electrodes and laser-welded metals used in physics
simulations where accurate geometric UQ is critical. Our BCNN produces uncer-
tainty maps which capture continuity and visual gradients, outperforms Monte
Carlo dropout networks (MCDNs) on recent uncertainty metrics, and achieves
equal or better segmentation accuracy than MCDNs in most cases. Future inves-
tigation will likely include extending our BCNN to semantic segmentation and
medical applications and comparing our results with other UQ techniques such
as the deep ensembles of Lakshminarayanan et al. [13].
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