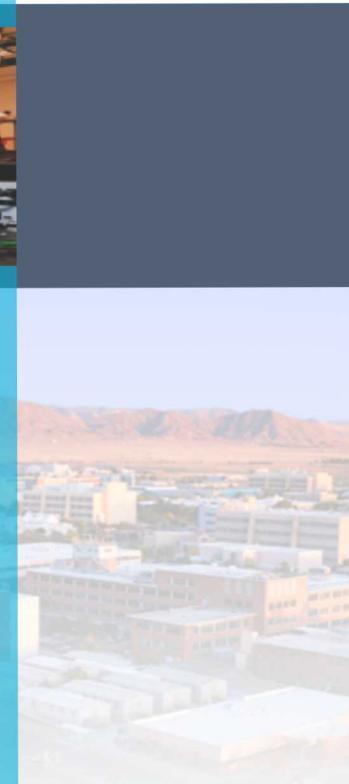


Predictive Atomistic Simulations of Materials using SNAP Data-Driven Potentials

Aidan Thompson
Center for Computing Research,
Sandia National Laboratories,
Albuquerque, New Mexico

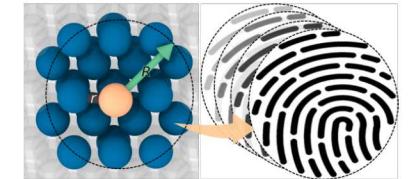
APS March Meeting, Denver, CO
(3/3/2020)



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SNAP Training Workflow (FitSNAP)

<https://github.com/FitSNAP/FitSNAP>



Model Form

- Energy of atom i expressed as a basis expansion over K components of the bispectrum (B_k^i)

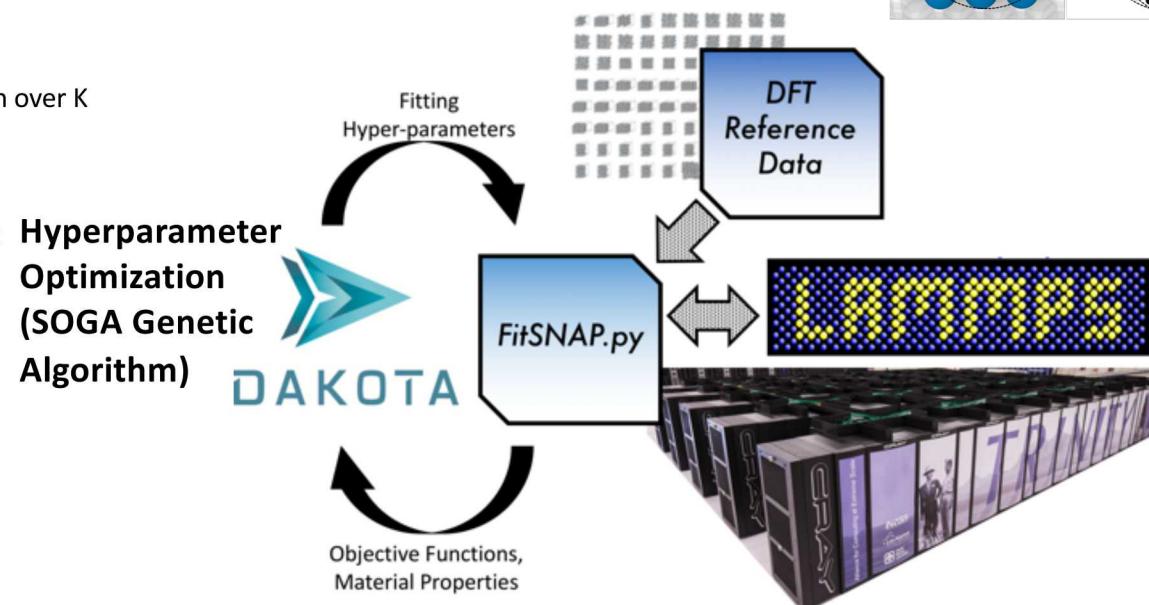
$$E_{SNAP}^i = \beta \cdot \mathbf{B}^i + \frac{1}{2}(\mathbf{B}^i)^T \cdot \alpha \cdot \mathbf{B}^i$$

Regression Method

- β vector fully describes a SNAP potential
- Decouples MD speed from training set size

$$\min(||\mathbf{w} \cdot D\beta - T||^2 - \gamma_n ||\beta||^n)$$

Weights Set of Descriptors DFT Training Regularization Penalty

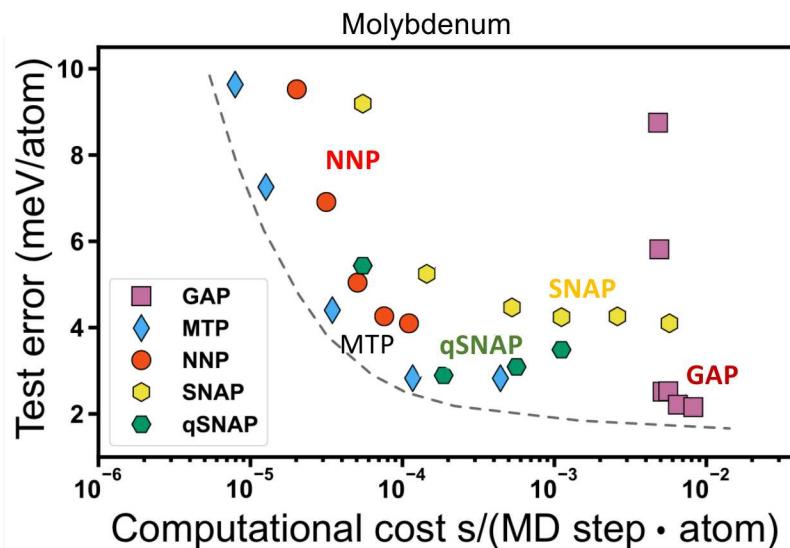
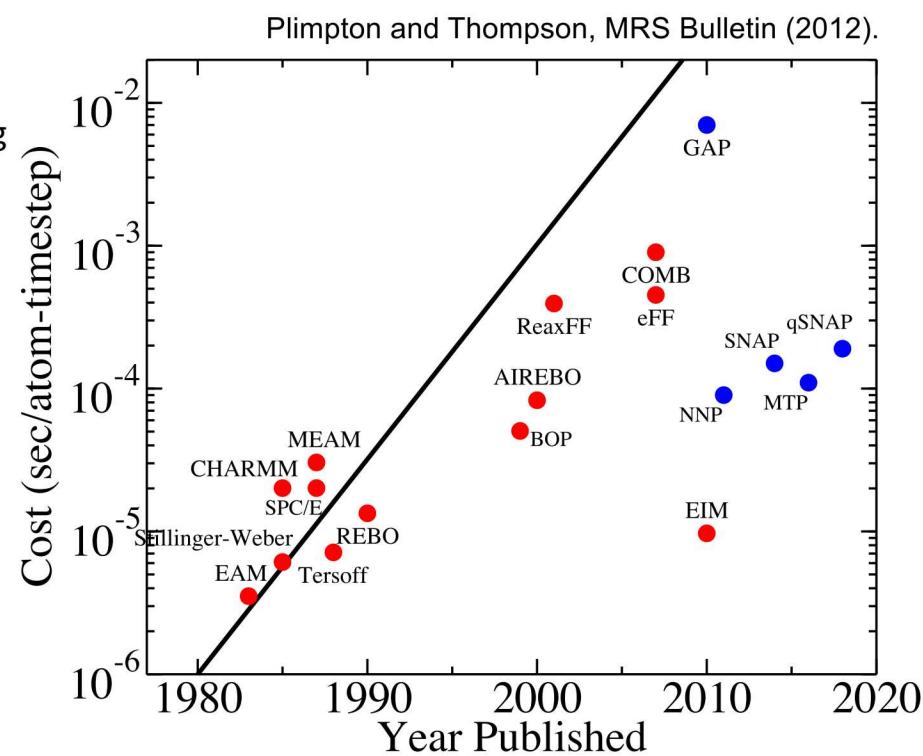


Comparing ML Potentials

<https://arxiv.org/abs/1906.08888>

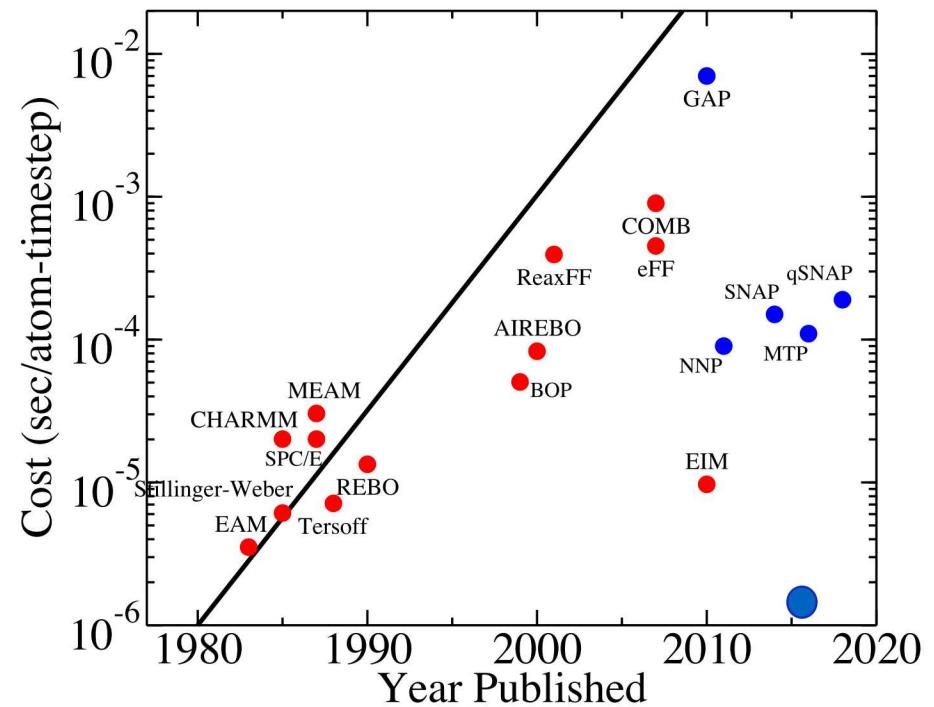
<https://github.com/materialsvirtuallab/mlearn>

"Performance and Cost Assessment of Machine Learning Interatomic Potentials," *J.Phys.Chem A* (2020), Shyue Ping Ong (UCSD), with: Csanyi (2010), Shapeev (2015), Behler(2007), Thompson (2015), Wood (2018)



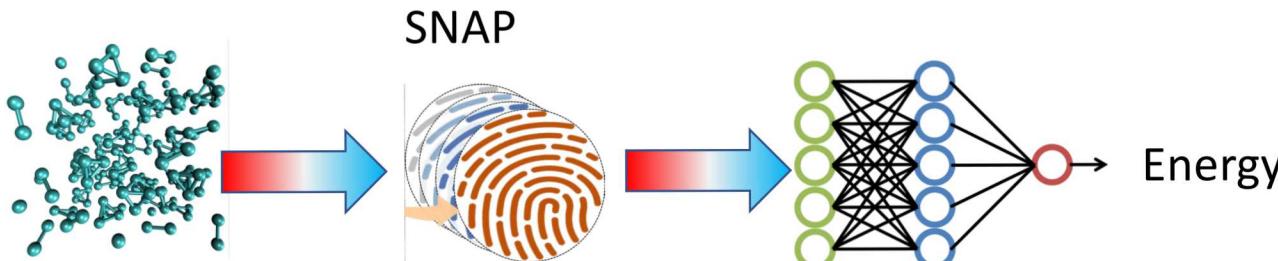
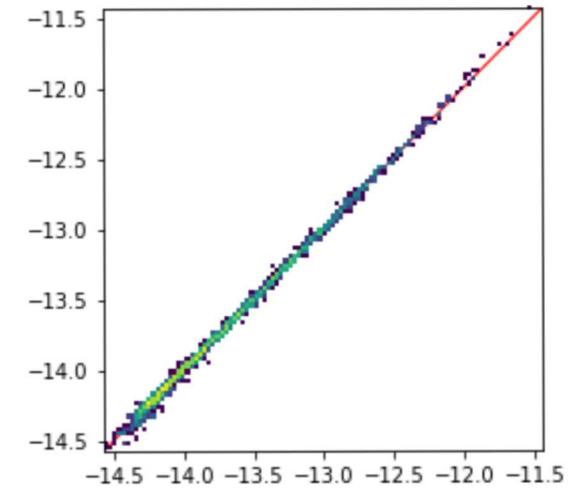
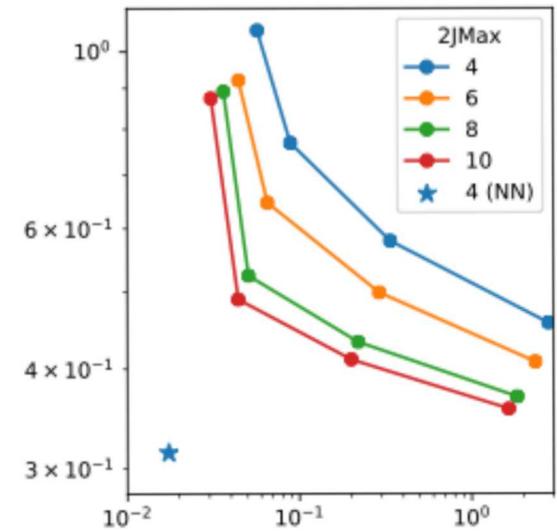
SNAP GPU Performance Improvements

- Joint effort by Aidan Thompson (EXAALT), Stan Moore (CoPA), Rahul Gayatri (NESAP), Sarah Anderson (Cray), Evan Weinberg (NVIDIA)
- Created stripped-down proxy code (TestSNAP)
- Completely rewrote TestSNAP to reduce flops and memory
- Explored many different GPU strategies, using OpenACC and CUDA
- Greatly improved memory-access patterns
- Ported best implementation back to production code with Kokkos
- More than 10x improvement relative on V100 GPUs
- ORNL Summit node (2000 atoms/node spread over 6 V100 GPUs)
- 2M atom-steps/s \sim 1000 ns/day



SNAP with Neural Networks

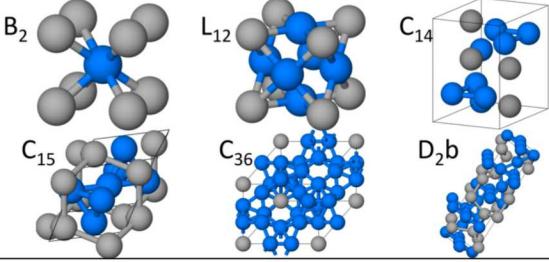
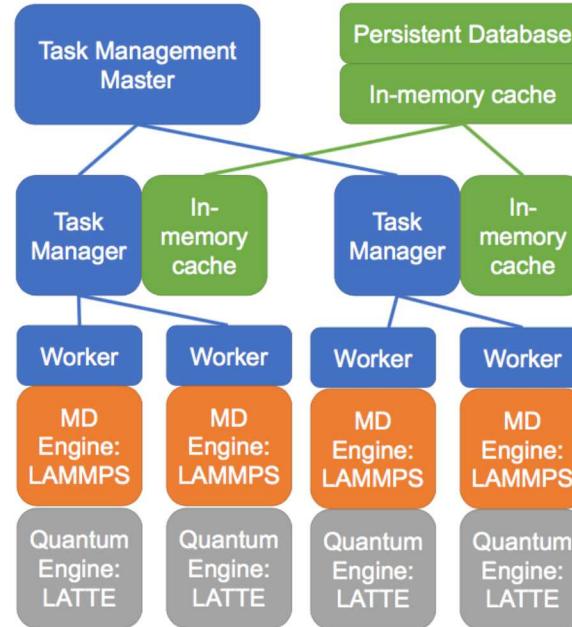
- Initial Results
 - **Integration of LAMMPS with PyTorch using Cython**
 - Energy regression performance of the NN/SNAP model.
 - Dataset of 20k disordered tungsten systems.
- Ongoing Work
 - Optimize ANN architecture
 - Train on large dataset (~20M points)
 - Integrate DFT into workflow
 - Active learning



SNAP Active Learning

Description	N_E	N_F	σ_E	σ_F
W-Be:				
Elastic Deform [†]	3946	68040	$3 \cdot 10^5$	$2 \cdot 10^3$
Equation of State [†]	1113	39627	$2 \cdot 10^5$	$4 \cdot 10^4$
DFT-MD [†]	3360	497124	$7 \cdot 10^4$	$6 \cdot 10^2$
Surface Adhesion	381	112527	$2 \cdot 10^4$	$9 \cdot 10^4$

† Multiple crystal phases included in this group:

User Generated Training

- Use cases for the potential are known, run DFT on representative configurations
- Intrinsically biased to a small region of configuration space

Learn-on-the-Fly

- Framework of time acceleration tools can generate new training by running MD with lots of replicas
- Resource demand is VERY HIGH, but can produce the ideal general use potential.

ChemSNAP: Explicit Multi-Element SNAP

Partial Neighbor Density

$$\rho^\beta(\mathbf{r}) = w_{\alpha\beta}^{self} \delta(\mathbf{0}) + \sum_{\substack{r_j < R_{cut}^{\alpha\beta} \\ j \in \beta}} f_c(r_j; R_{cut}^{\alpha\beta}) w_\beta \delta(\mathbf{r}_j)$$

Partial Basis Function

$$u_{jmm'}^\beta = w_{\alpha\beta}^{self} U_{jmm'}(0,0,0) + \sum_{\substack{r_j < R_{cut}^{\alpha\beta} \\ j \in \beta}} f_c(r_j; R_{cut}^{\alpha\beta}) w_\beta U_{jmm'}(\theta_0, \theta, \phi)$$

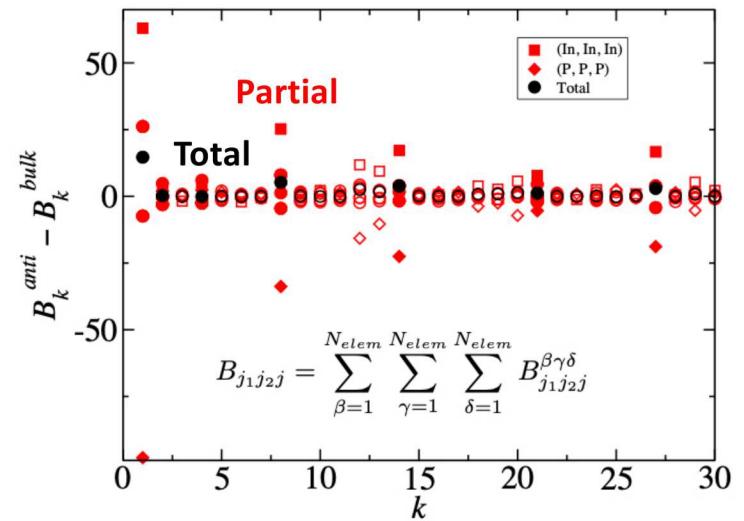
3-Element Partial Bispectrum Descriptor

$$B_{j_1 j_2 j}^{\beta \gamma \delta} = \frac{1}{2j+1} \sum_{m,m'=-j}^j \sum_{m_1,m'_1=-j_1}^{j_1} \sum_{m_2,m'_2=-j_2}^{j_2} (u_{jmm'}^\beta)^* H_{j_2 m_2 m'_2}^{jmm'} u_{j_1 m_1 m'_1}^\gamma u_{j_2 m_2 m'_2}^\delta$$

- Number of Partial Descriptors $\sim N_{elem}^3$
- Force cost $\sim N_{elem}^2$

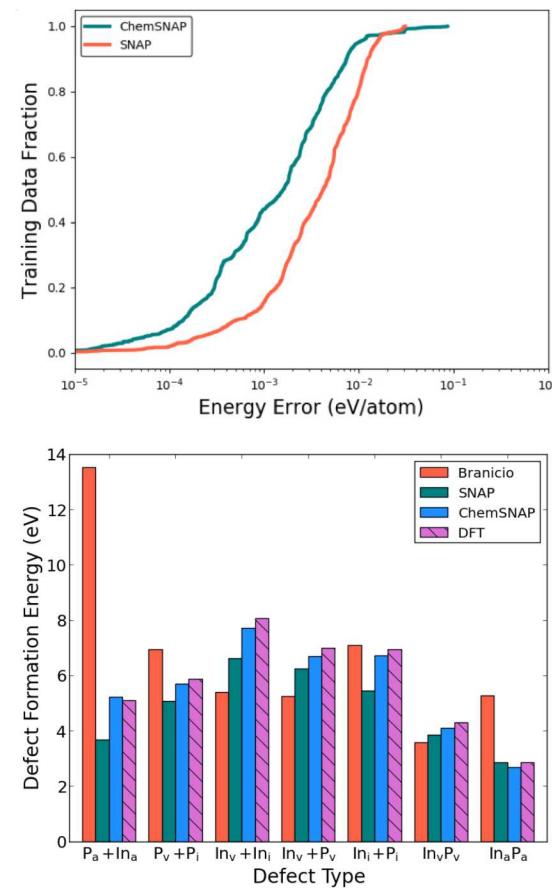
Sensitivity to Chemical Change

Antisite versus Bulk Zincblende



ChemSNAP: Indium Phosphide Relaxed Defects

- Compare SNAP relaxed defect formation energies to DFT
- Branicio potential shows very large defect formation energies for some structures
- Original SNAP formulation failed to reproduce defect formation energies within 1 eV difference from DFT
- ChemSNAP performs much better
 - Defect formation energies show much reduced error from DFT
 - Largest difference is ~ 0.2 eV
- ChemSNAP also represents standard properties accurately: Lattice constants, elastic constants, polymorphs



Conclusions

- ML interatomic potentials are driving a broad transition in the role of large-scale atomistic materials modeling from qualitative accuracy to quantitative accuracy
- Many challenges remain:
 - Robustness
 - On-the-fly accuracy estimate (hard, because no QM query on large-scale)
 - ML surrogate for QM (allows QM-like query on medium scale)
 - Active learning
 - Combining SNAP and ANNs
 - Descriptors (feature selection)
 - Many-element, chemically-active materials
- Long-term Goal: Integrated HPC workflow that iteratively generates a trusted ML potential for each materials modeling application

Acknowledgements

LAMMPS

- Steve Plimpton, Stan Moore
- Axel Kohlmeyer (Temple U.)

SNAP

- Mitch Wood, Julien Tranchida, Mary Alice Cusentino
- Danny Perez, Nick Lubbers (LANL)
- Rahul Gayatri (NERSC)

