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SNAP Training Workflow (FitSNAP)
https://github.com/FitSNAP/FitSNAP

Model Form

• Energy of atom i expressed as a basis expansion over K
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• 6 vector fully describes a SNAP potential

• Decouples MD speed from training set size

mina* DO — TH2 — 'Yn 11011n)

•♦♦
Weights Set of Descriptors ••

DFT Training

Algorithm)

Regularization
Penalty

Fitting

Hyper- arameters

DAKOTA

Objective Functions,

Material Properties

solos 111111TM
MUM
••iii •
sommas.

2



Comparing ML Potentials

https://arm.org/abs/1906.08888 

https://github.com/materialsvirtuallab/mlearn

"Performance and Cost Assessment of Machine Learning
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Interatomic Potentials,"J.Phys.Chem A (2020) Shyue Ping Ong

(UCSD), with: Csanyi (2010), Shapeev (2015), Behler(2007),

Thompson (2015), Wood (2018) cu 10 -3E 
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SNAP GPU Performance Improvements

• Joint effort by Aidan Thompson (EXAALT), Stan Moore
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(CoPA), Rahul Gayatri (NESAP), Sarah Anderson (Cray),
Evan Weinberg (NVIDIA) 1.)

• Created stripped-down proxy code (TestSNAP) ci ,
• Completely rewrote TestSNAP to reduce flops and (1) 10-3--,.memory ,--,

• Explored many different GPU strategies, using
OpenACC and CUDA 0 4

E7zt' io
• Greatly improved memory-access patterns c.)

1.)• Ported best implementation back to production code c.......,
with Kokkos ti) - 5

• More than 10x improvement relative on V100 GPUs 
U 
o 10

• ORNL Summit node (2000 atoms/node spread over 6
V100 GPUs)

• 2M atom-steps/s — 1000 ns/day
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SNAP with Neural Networks

• Initial Results
• Integration of LAMMPS with PyTorch using Cython

• Energy regression performance of the NN/SNAP model.

• Dataset of 20k disordered tungsten systems.

• Ongoing Work
• Optimize ANN architecture

• Train on large dataset (-20M points)

• Integrate DFT into workflow

• Active learning

SNAP
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6 I SNAP Active Learning

Description NE NF UE UF

W-Be:

Elastic Deformt 3946 68040 3 •105 2 • 103

Equation of Statet 1113 39627 2 • 105 4 • 104

DFT-MDt 3360 497124 7 • 104 6 • 102

Surface Adhesion 381 112527 2 • 104 9 •104

t Multiple crystal phases included in this group:

B2 c

User Generated Training

• Use cases for the potential are known, run
DFT on representative configurations

• Intrinsically biased to a small region of
configuration space
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Learn-on-the-Fly

• Framework of time acceleration tools can
generate new training by running MD with

lots of replicas

• Resource demand is VERY HIGH, but can
produce the ideal general use potential.



ChemSNAP: Explicit Multi-Element SNAP

Partial Neighbor Density

0,3(r) = waseif(5(0)

Partial Basis Function

fc(rj; Rca•/t)w06(ri)
ri < RcZ:t
j E

13 sel f r in n ,
U • = W Lijmmi kV) V, V) —I-371/M CY,t, E fc(ri,lic:ithit)tvoUjmm,(00,0,0)

aori < R cut
E

3-Element Partial Bispectrum Descriptor

1 )1
jr,11711

1,613'347i6 =  
>21 

E oi 0.Thrnimc
..11J2J 2j + 1 3MM

j2 m2 m2
Inl Mill =—j1 TrZ2,771=—:72

AT
• Number of Partial Descriptors 1-%'" 

3
elem

2• Force cost '""'N elem

z

QO

50

0

-50

Sensitivity to Chemical Change

Antisite versus Bulk Zincblende

Partial
■

(1n.b1.110

L (P,P,P)
Total

• Total , • •

-.1oleg0pe6881o000qcooleo:00-6

0

••

Nelem Nelem Netem

Bid27 = E E E
/3=1 ^y=1 6=1

g9.75
31323

• 
10 15 20

k
25 30



ChemSNAP: Indium Phosphide Relaxed
Defects 1.0

C 0 8
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• Compare SNAP relaxed defect formation
u- 0.6

energies to DFT It3

cn 0.4

•E
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• Branicio potential shows very large defect
formation energies for some structures

• Original SNAP formulation failed to reproduce
defect formation energies within 1 eV
difference from DFT

• ChemSNAP performs much better

• Defect formation energies show much
reduced error from DFT

• Largest difference is -0.2 eV

• ChemSNAP also represents standard
properties accurately: Lattice constants, elastic
constants, polymorphs
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Conclusions

• ML interatomic potentials are driving a broad transition in the role of large-scale atomistic
materials modeling from qualitative accuracy to quantitative accuracy

• Many challenges remain:

Robustness

On-the-fly accuracy estimate (hard, because no QM query on large-scale)

ML surrogate for QM (allows QM-like query on medium scale)

Active learning

Combining SNAP and ANNs

Descriptors (feature selection)

Many-element, chemically-active materials

• Long-term Goal: Integrated HPC workflow that iteratively generates a trusted ML potential for
each materials modeling application
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