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SNAP Training Workflow (FitSNAP)

https://github.com/FitSNAP/FitSNAP

Model Form

* Energy of atom i expressed as a basis expansion over K Fitting

components of the bispectrum (BL) M
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Comparing ML Potentials

https://arxiv.org/abs/1906.08888

https://github.com/materialsvirtuallab/mlearn

"Performance and Cost Assessment of Machine Learning
Interatomic Potentials," J.Phys.Chem A (2020), Shyue Ping Ong __

(UCSD), with: Csanyi (2010), Shapeev (2015), Behler(2007),

Thompson (2015), Wood (2018)
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SNAP GPU Performance Improvements

* Joint effort by Aidan Thompson (EXAALT), Stan Moore 21
(CoPA), Rahul Gayatri (NESAP), Sarah Anderson (Cray), :
Evan Weinberg (NVIDIA)

* Created stripped-down proxy code (TestSNAP)

* Completely rewrote TestSNAP to reduce flops and
memory

* Explored many different GPU strategies, using
OpenACC and CUDA

* Greatly improved memory-access patterns

* Ported best implementation back to production code
with Kokkos

* More than 10x improvement relative on V100 GPUs

* ORNL Summit node (2000 atoms/node spread over 6
V100 GPUs)
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SNAP with Neural Networks
-12.0 4
* Initial Results e
* Integration of LAMMPS with PyTorch using Cython —13.07
 Energy regression performance of the NN/SNAP model. 135 -
» Dataset of 20k disordered tungsten systems. 0] g
* Ongoing Work s |
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* Optimize ANN architecture

* Train on large dataset (~20M points)
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Persistent Database

SNAP Active Learning

Description Ng Nr oE oF Master
W-Be:

Elastic Deform’ 3946 68040 3-10° 2103
Equation of State” 1113 39627 2-10° 4-10*
DFT-MDf 3360 497124 7-10* 6102
Surface Adhesion 381 112527 2-10* 9.10*
T Multiple crystal phases included in this group:
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User Generated Training Learn-on-the-Fly
* Use cases for the potential are known, run ¢ Framework of time acceleration tools can
DFT on representative configurations generate new training by running MD with

lots of replicas

* Intrinsically biased to a small region of
configuration space * Resource demand is VERY HIGH, but can

produce the ideal general use potential.



ChemSNAP: Explicit Multi-Element SNAP

Partial Neighbor Density
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ChemSNAP: Indium Phosphide Relaxed
Defects

=== ChemSNAP
= SNAP
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* Compare SNAP relaxed defect formation
energies to DFT

o
o
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* Branicio potential shows very large defect
formation energies for some structures

Training Data Fraction
o
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* Original SNAP formulation failed to reproduce
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defect formation energies within 1 eV Energy Error (eV/atom)
difference from DFT 1 —
¢ ChemSNAP performs much better " o

* Defect formation energies show much
reduced error from DFT

* Largest difference is ~0.2 eV

* ChemSNAP also represents standard
properties accurately: Lattice constants, elastic

constants, polymorphs Pa-tna Py+Py In,-+ny In,+P,  In
Defect Type

Defect Formation Energy (eV)




Conclusions
» ML interatomic potentials are driving a broad transition in the role of large-scale atomistic
materials modeling from qualitative accuracy to quantitative accuracy

* Many challenges remain:
Robustness
On-the-fly accuracy estimate (hard, because no QM query on large-scale)
ML surrogate for QM (allows QM-like query on medium scale)
Active learning
Combining SNAP and ANNs
Descriptors (feature selection)
Many-element, chemically-active materials

» Long-term Goal: Integrated HPC workflow that iteratively generates a trusted ML potential for
each materials modeling application
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