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Project Objectives

• Energy transfer to crystal lattice generates primary knock-on atoms
which create electron-hole pairs — record current to determine particle
energy
— Standard method of detection for solid-state particle detectors

• Utilize transient signatures in a solid-state detector to generate a new
mechanism of particle detection

• Novel approach: record fluctuations in Schottky barrier height of a
gallium nitride (GaN) Schottky diode to identify particle events
— Circuit design: bandgap reference circuit that outputs Schottky barrier

height

• Hypothesize that the signature of the fluctuations will be different for
different types of particles
— Focus on neutron detection, with comparison to alpha particles
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Bandgap Reference (BGR) Circuit
Georgia

Tech

• Goal of bandgap reference circuit: analog circuit whose voltage output equals
that of the bandgap of the semiconductor being used

• Output of typical semiconductor devices is heavily temperature-dependent
• BGR circuit produces a constant output voltage independent of temperature

variations, supply variations, and loading
• Bandgap reference adds components to cancel the effects of temperature,

both PTAT and CTAT
— PTAT— proportional to absolute temperature
— CTAT — complimentary to absolute temperature

• Our bandgap reference circuit design provides an output voltage equal to the
Schottky barrier height of a GaN Schottky diode, which is a stable baseline for
observing output fluctuations due to particle events
— Temperature independence important to lend confidence that fluctuations observed

are not due to temperature variations
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Bandgap Reference Circuit
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Circuit Modified from Fig 7-22, CMOS
bandgap reference with substrate diodes

Camenzind, Hans. Designing Analog
Chips. BookSurge, 2005.

Transistor/Schottky diode
  exposed to radiation

 ► Reference transistors/Schottky
diodes
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Temperature Response
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Typical temperature dependence of a transistor -2 mV/°C

Our simulation: slope of Vgs is -2.07 mV/°C

Typical slope of reference voltage is variation of 1.8% across 0°C to 100°C

► Our simulation: slope of reference voltage is 50.76 p.VPC (0.365% change)
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Bandgap Reference PCB

Transistor/Schottky diode

exposed to radiation

(corresponds to Q3 on

schematic)

Reference

transistors/Schottky

diodes (corresponds to

01 and Q2 on schematic)
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PCB manufactured at Georgia Tech Interdisciplinary

Design Commons
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Circuit Irradiation Testing

• Equipment
— LeCroy Wave Runner 620Zi

oscilloscope
• 2 GHz max bandwidth, 20

Gs/s sample rate
• Voltage resolution: 100

mV/div
• Time resolution: 100 ns/div

— Protek 3003B DC power
supply set to +5V

— PCB circuit board and
transistor adapter

• Experimental details
— Data collection was not

continuous
— Reference transistors were
on the same board as the
testing transistor — possible
confounds in transient
measurement, reference
transistors may have been
irradiated/source of signal
Operational amplifier not
functioning correctly so was
disconnected/not used
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Neutron Source

Sandia
National
Laboratories

(////////ififififfig / CREATING THE NEXT

N
o
 s
ou

rc
e 
- 
re
fe
re
nc
e 

Wi
th
 s
ou

rc
e 
—
 o
bs
er
ve
d 

V, 100 mV/div

V across irradiated transistor

Vref

V, loo mV/div

r

Ap,,f•J„

V across irradiated transistor

Vref

'

t, 100 ns/div

t, 100 ns/div

t, ioo ns/div

t, 100 ns/div

• Source: AmLi

• Approximately 1 decay per 17.3 ns
interacting with the irradiated
transistor at 1cm

• Time between potential events
means transients could contain up
to 12 neutron-device interactions

• Amplitude of transients
— Average: 250 mV

— Minimum observed: 100 mV

— Maximum observed: 400 mV

• Decay time
— Shortest decay observed: 350 ns

— Longest decay observed: 500+ ns
(limitation of scope)
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Alpha Source

• Source: Am-241
• Approximately decay per 31.3 ms

interacting with the irradiated
transistor at lcm

• Time between potential events
leads to confidence of single-
particle detection

• Amplitude of transients
— Average: 150 mV

— Minimum observed: 100 mV

— Maximum observed: 400 mV

• Decay time
— Shortest decay observed: 200 ns

— Longest decay observed: 500+ ns
(limitation of scope)
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Conclusions Elaine Rhoades erhoades3@gatech.edu Georgia
Tech

• Designed a bandgap reference circuit that uses GaN semiconductor
devices as a detector for neutrons

• Performed circuit simulations showing output stability across range of
temperatures

• Produced and fabricated a prototype circuit board of the BGR circuit
• Irradiation testing of the fabricated PCB indicates

— Output is low-noise under non-irradiative conditions
— Transient signatures are observable
— Difference in transients observed for neutron and alpha irradiation

• Upcoming work
— Expand circuit modeling to include transient modeling
— Additional irradiation experiments
— Fabricating GaN device in Geant4 software to model the physics

interactions occurring
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Significance

• Current detectors are hampered by size and need for multiple stages
• Development of solid state particle detector that can measure energy and

momentum would be a significant contribution to particle physics
• Small footprint

— Application as a portable radiation detector
— Implementation in current particle detectors for testing and experimental

verification
— Potential to create an array of devices for implementation in larger research

experiments

• Potential applications include
— More accurate dosimeter for protection of radiation workers
— Utilization in an urban radiation detection network
— In parallel with other detection techniques like optical radiation detection
— In conjunction with other detectors for nuclear nonproliferation treaty

verification
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Transient Response Modeling

• Using data from preliminary testing
(August 2018), the event is
modeled as a current impulse in
the transistor

• Initial simulations seem promising
as the impulse is translated to the
output voltage Vref

• Simulation result details
— Modeling was done with generic

FET SPICE models before we had
Cree models

— Reference voltage returns to
steady state much more slowly
than predicted for unknown
reason(s)
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Circuit Modeling Upcoming Work

• Recently received complete model for GaN HEMTs from manufacturer
Cree

— Incorporate these models into simulations

• Find and incorporate accurate device models for matched transistors in
the circuit

• Continue implementation of transient response modeling

• Investigate why the operational amplifier stage not working in
modeling or in experiment
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