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1. Weak exchange and ESR pulses
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2. Strongly tuneable exchange
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1. Weak exchange and ESR pulses 2. Strongly tuneable exchange
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Hartree-Fock Approximation:

(1) = \T(IiPilPi)III) — 11PilPi)111))

Configuration Interaction:
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  Phosphorus Donor Molecule
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Valley Oscillations along [111]
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