This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. ' n S

(J
SAND2020- 2632C

of exchange coupled donors in silicon
in an effective mass theory framework

Benjamin Joecker
Andrea Morello’s group, CQC?T, UNSW Sydney

Andrew David Baczewski
Sandia National Laboratories, Albuquerque




Tonublt Gates in Silicon

1. Weak exchange and ESR pulses Donors

a) , T
) 90} //
= 60 | P
> 30 :
L w i i i i S i
b) 100 L, ! , . : —d
|S> | T T T \
L 4 |
N § 075¢
g 39.1381  39.1389 392413 392419
E 050} . .
o
-
o L ]
M) 5 o HE?EJ ol Ve
39.1591 391601 39.2521 392527
0.00

39.12 3914 3916 3918 3920 3922 3924 3926 39.28
10 Frequency (GHz)

AN A /V\

0.0
0 10 20 0 5 10 0 15 30 0
Microwave pulse length (us)

141)

—
Spin-up fraction &

LﬂBZ | To?

4

f

Madzik M., et al. in preparation é =

v



Two-Qubit Gates in Silicon

2. Strongly tuneable exchange SWAP oscillations:
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Requirements for High Fidelity

1. Weak exchange and ESR pulses
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2. Strongly tuneable exchange
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Multivalley Effective Mass Theory
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Ingredients:
e Effective donor potential
U(#) < 1/r
* Anisotropic effective mass
oy
* Valley orbit coupling
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Gamble J.K. et al. Physical Review B
91.23 (2015): 235318.
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s Configuration Interaction

Hartree-Fock Approximation:
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Configuration Interaction:
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Lattice orientations:

st Phosphorus Donor Molecule
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i Exchange Interaction
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Valley Oscillations along [110]
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i Valley Oscillations along [111]
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Electric Tunability for SWAP Gates
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Exchange Tunability
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Implementing a SWAP Gate
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i Highlights
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