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INTRODUCTION

High-fidelity computational fluid dynamics (CFD) codes
typically require significant resources and simulation run-
times, making detailed computational analysis expensive to
perform. Low-fidelity thermal-hydraulics codes have a much
lower computational cost, which makes them an attractive al-
ternative to CFD in certain applications. High-to-low (Hi2Lo)
is the concept of using higher-fidelity data from experiments
and/or simulations to calibrate a lower-fidelity code to return
results consistent with the higher-fidelity data.

The Hi2Lo process is discussed using the CFD code
STAR-CCM+ (STAR) (high) and subchannel code CTF (low).
Two applications were the focus of FY17, FY18, and FY19
milestones for CASL [1, 2, 3, 4, 5]. The first application used
a Hi2Lo process to calibrate a mixing coefficient in CTF to
match experimental and simulation data. The second applica-
tion applied a mapping of the high-resolution data from STAR
to CTF to replicate the higher-fidelity simulation data. This
paper is a summary of the two applications.

MODEL GEOMETRY AND DESCRIPTION

The Hi2Lo applications were demonstrated with the West-
inghouse Electric Company (WEC) 5×5 facility. The WEC
5×5 bundle experiments are a series of electrically heated
rod bundle experiments. All rods are uniform in size and ax-
ial power shape. The radial power distribution is not uniform,
as shown by Fig. 1, where the "dashed" rods have a higher
relative power [6]. The experiment included either five mix-
ing or non-mixing vane grids along the heated length of the
geometry. Thermocouples were placed at the outlet to collect
time-averaged temperature data of the 36 subchannels.

The boundary conditions for the corresponding STAR
and CTF models were specified using outlet pressure, inlet
temperature, mass flow rate, and the average linear heat rate
per rod, defined as AFLUX = Power/(LNrods), where L is rod
length and Nrods is the total number of rods. Complete STAR
and CTF model information is in [1, 2].

FIRST HI2LO APPLICATION: CALIBRATION OF
CTF USING STAR

The first Hi2Lo application calibrated β , with β = 0 as
the nominal case (no mixing between subchannels), to induce
equivalent mixing in CTF and the experiment/STAR. β is a
constant mixing parameter in CTF and adjusts turbulent mix-
ing between bundle subchannels. It performs a similar func-
tion to a turbulence model in a CFD code. The non-mixing
vane grid WEC 5×5 tests were used for this application. Half
of the experimental data was reserved for validation; the other
half was used for calibration. This is a summary of [1, 2].

Fig. 1: WEC 5×5 exit cross-section with rod and subchannel
numbering. The hot rods are dashed. Adapted from [6].

Bayesian Calibration and Experimental Design Method

The goal of the Hi2Lo calibration of CTF using STAR
was to perform Bayesian calibration [7] of β . Dakota (Design
Analysis Kit for Optimization and Terascale Applications)
was used for all calibration steps, which is a toolkit for cal-
ibration and uncertainty quantification [8]. A surrogate was
required to perform Bayesian calibration as the WEC 5×5
CTF model requires approximately 5 minutes to run a sin-
gle core, which is expensive for Bayesian inference (typically
∼ 104 evaluations) [9]. The steps used to build the surrogate
are: 1) use Latin Hypercube Sampling (LHS) to generate CTF
results at those input points, 2) reserve a subsampling of the
LHS points, 3) build the surrogate model, excluding the re-
served points, and 4) evaluate the surrogate using the reserved
points to cross-validate the surrogate model.

Bayesian calibration was performed with the surrogate
using the experimental data. 11,000 chains were collected and
the first 1,000 samples were discarded to account for burn-in.
Kernel density estimators (KDEs) were evaluated from the last
10,000 chains of the calibration. After the initial Bayesian cal-
ibration, an experimental design process was performed. The
experimental design process steps are: 1) provide Dakota a list
of existing design points, 2) use one experimental data point
as an initial calibration point, 3) obtain the chain using the sur-
rogate model, 4) the new chain is sent to Dakota, which selects
a design point from the list provided in step 1, 5) this design
point is added to the list in step 2, and 6) steps 3-5 repeat until
Dakota uses all design points or meets a user-specified error
tolerance. The experimental design process was performed
using the STAR data (using an initial experimental data point
for step 2) and then repeated using the experimental data as
design point candidates.
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Results and Discussion

The β values obtained from the initial Bayesian calibra-
tion and experimental design steps are shown in Tab. I. The ex-
perimental design KDEs are shown in Fig. 2a and 2b. Improve-
ment was made statistically as the CTF L2 norm decreased
from the nominal case for all processes. However, it is hard to
judge if improvement was made by performing the experimen-
tal design process over the initial Bayesian calibration. Both
experimental design processes converged after 20 iterations
and their most uncertain iteration was the initial point (Fig. 2a
and 2b). However, the STAR data converged to β = 0.002881,
and the WEC data converged to β = 0.004025. The STAR β

is smaller than the WEC β , which is likely due to differences
in response shapes between STAR and the experiment.

TABLE I: Summary calibrated β coefficients [1, 2].

Description β L2 Norm

Nominal Case 0.0 1.44×10−2

Bayesian Calibration 0.003197 1.36×10−2

Experimental Design (STAR) 0.002881 1.36×10−2

Experimental Design (WEC) 0.004025 1.36×10−2

STAR and CTF show symmetry, as seen in Fig. 3. The
CTF results are always symmetric due to a global β being
used. The β = 0 nominal CTF case has no mixing between
subchannels and has the flattest response. The STAR results
are symmetric as there are no major geometric features in the
non-mixing vane grid simulation that would induce asymme-
try. The experimental data however is asymmetric. This may
be caused by several factors, which includes potential thermo-
couple misalignment/damage or the presence of features in the
actual geometry that would introduce asymmetry (e.g. dents
or misaligned grids). There may also be a CFD modeling error,
such as a coarse grid that is unable to resolve flow features.
The STAR β is smaller than the initial Bayesian calibration
and the WEC data β , which is likely due to the symmetry (and
less crossflow) in the STAR simulation.

Milestones [1, 2] concluded that the Hi2Lo process was
successful, however, a problem with greater sensitivity to
the calibration parameters would have been more useful for
demonstrating the Bayesian experimental design process. Im-
provements were made to the statistics compared to the nom-
inal and the uncertainty in the β parameter was reduced as
evidenced by the KDEs, however the relative insensitivity of
the problem to β and the different trends in the CTF results
and the experimental data made experimental design and cali-
bration difficult with this specific application.

SECOND HI2LO APPLICATION: HI2LO MAPPING
OF STAR RESULTS TO CTF

The second Hi2Lo application was to create an imple-
mentation of a surface map model between high-resolution
surface temperature data from STAR to the lower-resolution
subchannel code CTF. The surface map model generates high-
resolution surface temperature data after being supplied simu-
lation boundary conditions and low-resolution data obtained
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(a) STAR data experimental design.
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(b) WEC data experimental design.

Fig. 2: Experimental design KDEs for β . Adapted from [9].

from CTF. The surface map model requires large volumes of
data from STAR to train the model. This is a summary of the
models described in [5].

Summary of Models and Process

The surface map model is implemented in two steps. The
first step is the TAVG map model which uses average tem-
peratures from CTF (TCTFavg) and the simulation boundary
conditions to calculate an anticipated ratio of the STAR and
CTF heat transfer coefficients at each CTF cell (multiplier M).
The multiplier M is used to calculate the modeled average
surface temperature from STAR (referred to as TMODELavg).
The second step of the surface map model is the TSTAR map
model which uses TMODELavg and to predict the TMODEL
values (which is at the same resolution as the STAR mesh).
The TSTAR map model is beyond the scope of this summary
paper and can be found in [5].

The TAVG map model imparts heat transfer, Q, calculated
in STAR into CTF such that:

QCT F = QSTAR (1)

Since we assume that convection dominates the heat trans-
fer from solid to the bulk fluid, Eqn. 1 was rewritten:

hSTARA(T w,STAR−T f ,STAR) = hCT F A(T w,CT F−T f ,CT F) (2)

where h is the code convective heat transfer coefficient, A is
the heat transfer area (assumed to be equal), T w is the code
average wall temperatures, and T f is the code average bulk
fluid temperature in the subchannel. If we assume the average
bulk fluid temperature (T f ) is equal in STAR and CTF, the
heat transfer ratio (multiplier M) between codes is:



Fig. 3: Example comparison of the experimental, nominal, calibrated (WEC experimental design), and STAR outlet temperatures.

M =
hSTAR

hCT F
=

T w,CT F −T f

T w,STAR−T f
(3)

or in a form consistent with previous notation and using (θ ,z)
for spatial azimuthal and axial coordinates:

M(θ ,z) =
TCTFavg(θ ,z)−TFavg(θ ,z)

TSTARavg(θ ,z)−TFavg(θ ,z)
(4)

The TAVG map model should minimize the residual be-
tween TSTARavg and TMODELavg. For the initial set of data,
it is assumed that the same heat transfer ratio model for a
given flow geometry and power distribution could be used if
the same fluid properties were used in STAR and CTF and the
flow is single phase. This assumption should be revisited as
more data becomes available. The STAR data can be grouped
by characteristic rod geometry (side, corner, or middle rod
and vane orientation) and the mapping can be transformed on
the θ coordinate to align the location of the subchannel walls
(for the side and corner rods) and the mixing vanes to have
the same orientation and placement relative to the subchan-
nel walls. This methodology was chosen as it is useful when
applying the surface map model from simpler to more com-
plex geometry (e.g., applying from a 5×5 to a 17×17 rod
bundle).

Results and Discussion

The model boundary conditions in Table II were run with
the STAR and CTF 5×5 WEC models (with mixing vanes).
Case 1 was the base case and was used for calibration of the
surface map model. Cases 2 and 3 have different mass flow
rates compared to Case 1. Cases 4 and 5 use a non-uniform
axial power shape and Case 5 additionally uses a higher heat
rate than the base case, which results in two-phase conditions.
Table III summarizes the mean and max residuals found prior
to (CTF residuals) and after (model residuals) applying the
surface map model. All model mean and max residuals de-
creased significantly from the CTF residuals, including Case
5, which was two-phase. Milestone report [5] has significantly
more discussion of results, including images and discussion
of the higher resolution mapping.

1Non-uniform axial power shape used.
2Significant void/boiling observed in simulation results.

TABLE II: Boundary conditions used for the surface map
model. Outlet pressure = 159.9 bar.

Case Inlet Temperature Mass Flow Rate Heat Rate
(K) (kg/s) (kW/m)

1 565.9 10.10 18.26
2 565.9 8.586 18.26
3 565.9 11.62 18.26
4 565.9 10.10 18.261

5 584.0 10.10 22.8212

TABLE III: Results of |TCTFavg−TSTARavg| and
|TMODELavg−TSTARavg| for BCs in Tab. II.

Case CTF Residuals (K) Model Residuals (K)
|Mean| |Max| |Mean| |Max|

1 9.0 12.6 0.68 2.7
2 10.3 14.3 0.79 3.2
3 8.1 11.2 0.60 2.4
4 10.9 16.7 1.7 5.5
5 9.6 16.9 5.6 11.3

Case 1 was used to train the surface map model and is
expected to have small residual values for the surface map
model. The "middle rods" (rod numbers 17 to 25 in Fig. 1)
overall have the lowest model residuals (Fig. 4a). The surface
map model is performed on rods grouped by geometry type
rather than per individual rod, and these rods are generally
more uniform in flow geometry than the side or corner rods.

Case 2 and 3 decreased or increased the mass flow rates
through the bundle. Both cases use the same power distribu-
tion as Case 1 and have similar residuals. Case 4 and 5 have
a non-uniform axial power distribution. Interestingly, Case 4
still has relatively low residuals, which implies that the heat
transfer ratio between STAR and CTF (multiplier M) from
Case 1 can be applied to Case 4 and return reasonable results.

Case 5 TMODELavg does not closely match the values
for TSTARavg, which can be seen in Tab. III and Fig. 4b. This
is most likely because Case 5 has significant amounts of boil-
ing, which drastically changed the heat transfer ratios when
compared to Case 1, which was single-phase and used to train
the surface map model. Additionally, the shape of the multi-
plier M is different between Case 1 and Case 5, as shown by



Fig. 5, which would make it unlikely that the same equation
form could be used for the multiplier M. With additional two-
phase STAR data, it may be possible to get better results for
Case 5 and determine a better model for the multiplier M.
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Fig. 4: Comparing max and mean residuals of
|TMODELavg−TSTARavg| and |TCTFavg−TSTARavg|.
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Fig. 5: Case 1 and Case 5 multiplier M values. Case 1 is single-
phase. Case 5 is two-phase and has significant void/boiling.

The trained surface map model was able to reconstruct
data that is similar to high-resolution data from STAR by per-
forming the two-stage mapping process. For the 5×5 rod
bundle data, the surface map model was able to adequately
map the CTF data to a higher-resolution, however it did not
perform as well for Case 5, which included two-phase data.
Additional data is needed to evaluate if the surface map model
can be trained to be able to include two-phase data. It may
also be possible to include the surface map model in CTF di-
rectly on the single-phase flow and have CTF calculate the
two-phase quantities, post single-phase mapping. Additional
data and geometries should also be evaluated using the sur-
face map model such as data from a 17×17 rod bundle. The
inclusion of this data would allow us to see if the surface map
model can be used to generate high-resolution data for a more
complex geometry while leveraging a model trained on sim-
pler geometry.

OVERALL CONCLUSIONS

Many milestones in CASL have focused on various
Hi2Lo processes to varying degrees of success. Milestones
[1, 3, 2, 4, 5] looked at two different methodologies of ap-
plying a Hi2Lo process from STAR to CTF to improve CTF
predictions. Both approaches were relatively successful, how-
ever additional work can be performed to improve the re-
sults and more effectively demonstrate the processes. Both
approaches/processes can be applied to different applications
if opportunity or need arises.
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