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Motivation /Issues
@ All models are approximations of reality.
» Don't fully understand the modeled phenomena.
» Can't observe/resolve all relevant aspects of the phenomena.
@ Have to use them for prediction anyway, so need to understand their reliability.

@ Need model-form uncertainty representations that are physics-informed and predictive.

@ Our research group (PECOS) has focused on how to develop such representations.



Target source of uncertainty: multiscale models without sufficient scale separation.

@ Macroscopic quantities of interest depend on dynamics at smaller scales.
@ Common problem: smaller scales can't be observed or resolved.
o Effect: macroscopic model's dependence on the small scales is significant but uncertain.

@ Common to model away the dependence, but can cause errors.

Goal: Develop an uncertainty representation to account for missing dependence on small
scales in the context of contaminant transport.




Testbed problem: contaminant transport through heterogeneous porous media.

Isolate model-form uncertainty using a hierarchy of models.

@ High-fidelity model that resolves relevant physics, low-fidelity model that does not.
o Discrepancies between the models arises from this missing information.

@ Use high-fidelity model to generate data and probe the physics of the problem.



High-fidelity model for field-scale contaminant transport

% + V- (uc) =vplAc, (x,y)€[0,L]x[0,Ly]
u= —Kvp
V(=0

Periodic in x, zero Neumann in y

Problem:

e Don't know x(x, y).
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Permeability fields are highly heterogeneous, observed to vary over several orders of magnitude.

In(x) ~ N (0,02 exp (—% [(””;% 4 “’;—WD) L0% =3.04, £, = 0.09, ¢, = 0.04

However, their statistics are homogeneous.
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What do we have access to for the low-fidelity model?
o Statistics of k.

o y-averaged observations of c.

Try to predict average behavior instead.



(F(x,y)) = Li / "B, [f(x )] dy (1)

f(x,y) = (f(x,¥)) + f'(x,y) (2)

Represent ¢, u using (2), apply (1) to the 2D ADE to get

IR A e

Can't observe (u'c’) = dependence uncertain.



Typical closure model for (u'c’) is gradient-diffusion:

(U = —vm 88<;> :
\
0 0 0?
T —

{€) (0, 1) = (¢) (Lx, 1),
(€) (x,0) = co(x)-
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Transport through heterogeneous porous media induces anomalous diffusion in (c).

1.00 + —— True evolution
—— ADE evolution
0.75 A
=
X 0.50 1
<
0.25 A
T 1 1
0 1 2 3 4
X

The ADE for (c) can dangerously underpredict levels of contaminant downstream.



Goal: characterize the uncertainty in (c), given the lack of information about (uv/c’).
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For predictions, a model-form uncertainty representation should (Oliver et al. 2015):
@ Perturb the dynamics of the model.
@ Accurately extrapolate to prediction scenarios of interest.

@ Represent irreducible model uncertainty.

To do this it must:

Be embedded at the source of the uncertainty.

@ Act on the state variable(s).

Respect physical constraints.

@ Be scenario-dependent.

Be stochastic.




Requirement: state-dependence.

® Represent €my,04e) @s an operator acting on (c).

Requirement: embedded, scenario dependent.

emoae ((c)i8) = - 2D,

S scenario parameters.



Model-form uncertainty representation
Including the uncertainty representation, the model for (c) is

c 2 (¢
ot w <U> 88<X> - Vpaa)i2> + 6model(<c>;5).

Uncertainty representation development process:
@ Constrain the €modes's structure to reflect prior information (e.g. physical constraints).
@ Inspect and encode scenario dependence.
@ Characterize remaining uncertainties using probability distributions.

@ Update uncertainty representations using data.



2
> 88<;> = Vpaa)fzc> + 6model(<C>)

Physical constraints

€model = L, Lfix = Aify.

Linearity in (c)
Shift invariance fi = e”™x [ {ch=3", {tc) A eHLx

Conservation of mass Ao = 0.

el

Solution decays with time —vp (%)2 + R[] <0.

N
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@ Advection-diffusion induces decay in solution, causing information loss.

@ Can only inform the first ~10 eigenvalues.

@ Recast the problem to enable observation of eigenvalues directly.

For a given u define L such that

~ o (u'c)
L <c>y =~ L
Connection to mean:
- a(u'c), d(u'c')
E[‘CMY]ZE T ax | T ox




Let X = [X]_,X2, .. } be L's eigenvalues. Then

- o (U

L <C>y = _a—xy - Xk <6k>y = — (i27rk/Lx) <6C\I)k>y

(U'c’), random = A random.

If p(X) were known, could compute mean effect of (U'c’) exactly.

Developed a method to compute A directly instead of infer from observations of (c).
@ Given an ensemble of u, computed corresponding ensemble of .

Can study the statistics of the ensemble to learn about L.



Computing samples of Xk
R[(c),], t = 0.00

- 17
Given u, can determine Ai(t) using
the 2D ADE. 0 -
%—FV'(UC):VPAC‘F)“[(, -1-I T T T T
ot o
. S{e)y]
fic = a(t) (€k), (k) 1-
c(x,y,0) = exp (i%_’rx—kx), 0-
fx defined s.t. [ (&), | =1Vt -1 . . T T
0 1 2 3 4
%



Forcing = (&), (t) = ef(t) 5o

. 2 -
e/0(t) [I%— + i (u) <2ﬁ5>] = ¢/f(?) |:—-I/p (%) + Ak + oz]
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° p(j\) depends on stats of (uv/c’), which aren't available for practical problems.

@ Instead studied how p(;\) depends on proxy variables that are known a priori.

> (u) > = foLx <U<L:l,(;; ) dx’ integrated autocorrelation length
> <u/2>

Defined nondimensional scenario parameters (u2)"?/(u) and ¢/L,.

@ Studied how summary statistics for each ensemble depended on scenario parameters.

Computed ensembles of u, A, <c>y over a coarse grid on the 2D scenario space.




First, computed evolution of Gaussian pulse for each scenario.

(c)(x,0.40)
<u’<2u>>1/2 =083, £ =010 % =152, £ =0.10

0.4 .

0.2 1 |
Anomalous diffusion - | o [
increases with (u2)"?/(u) " quy = 084, 7, = 0.05 ] oy = 149, - =0.05
and ¢/L,.

0.21 |
001 T T T T L T T T T

0.5 1.0 1.5 2.0 2.5 3.0 05 1.0 1.5 2.0 2.5 3.0
x x
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Xk rapidly become
stationary (within one
flowthrough time

T = L/ ().
N[

Study stationary values
of A.

A(tﬁna[) = X for
remainder of analysis.

[(u/2>1/2/<u)75/1‘x] =[1.14, 0.07]

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
t(Eefuy) t( L fuy) ™!



Mean S‘E[Xk} and %[Xk] do not depend on a fixed power of k.

(u'2)1/2

(s[5

=117, +~=0.073

£
Ly

101 4
101 4

100 - 1004 7




Covariance between R[] and S[\«], and as a function of k, is significant.

Covariance matrix for Ay

1z 7 @iz 4]
[ L] = [0.83,0.1] 452, 2] = 117,0.)
15 1015 1 5 10 1520 1 5 10 15 1 5 10 15 20
21 20
5 -
< 15
1< 107 10
g 15 -
1 -
— 57 3 -5
=, 101 -10
&
15 A -15
20 - —20




Covariance matrix of the eigenvalues (X) admits a low-rank approximation.

. <’LL/2)1/2 ¢
Y eigenvalues wy, [ ,—} = [1.17,0.073]

<u> L,
1.00 +
0.75
)
< 0,50
3
0.25 1
0.00 1 T T T T T
1 10 20 30 40
k
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@ Uncertainty in L defined in terms of p(;\)
@ Unresolved dependence on statistics of (uv/c’) approximated in terms of (u2)'?/(u), ¢/L..

@ Express irreducible uncertainty in L by defining p(;\) w.r.t. hyperparameters &: p(X;E).



Modeling requirements for p(;\; E)

Prior knowledge

o Deterministic constraints: Ag = 0, R[A,] < 0

@ Scenario-based constraints: (v)?/(u), /L, - 0 = E(X), Var(X) — 0.

X ensemble analysis
° A rapidly become stationary.
° E(%[Xk}) and E(% [Xk]) different functions of k.

@ Covariance between %[Xk} and %[Xk] and as a function of k significant.

@ Covariance matrix admits rank-2 approximation.
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Prototype formulation of p(X; 5)

Assume X constant in time, i.e. A= Astationary -
p(;\, E) = N (]E I:X] model Zmodel)

E(%[/\k])model = fag(k), Y model = WVIV1 | + Wavovp |

]E(%[Xk])model = f)\l(k) (Vl)k = f"l(k)’ (V2)k = fV2(k)

@ Approximated fy., fa,, i, i, as linear functions of k.

@ Their slopes and intercepts and wy, wy are the hyperparameters §.
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@ ¢ depend on (u?)/?/(u), ¢/L., but dependence is uncertain: & ~ N(m, o).
o Computed &; directly for each ensemble generated in the scenario study.

@ Made polynomial fits to this data for m, o as functions of (v2)"?/(u) and ¢/L,.

(2(x[x])"

o & 0.9 (—]E(% [Xl]))m. Po(s) = (0.11)s + (0.27)s2 + (—0.07)s?
1.2 4 o
% 0.8 124
=
1.0 0.7 1.04
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e
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0.3 0.2
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Inspected push-forward of p(;\; E) to mean evolution of a Gaussian across a range of scenarios.

p(X€), [(@)22/ i, /L] = [1.14, 0.07]

(¢)(z,0.50) {e)(z, 1.50)
0.3 .
0.2 1 h
o _ f\
0.0 g
1 2 3 4 1 2 3 4
x x
= (c)£20(N,)"Y2 from DNS =1 (¢} + 20 from p(X;€)

For moderately anomalous cases, the prototype formulation reproduces (c) remarkably well.



For an extremely anomalous case, it fails to reproduce important features of (c)’s evolution.

p(X;€), [(W/2 /), L] = [1.49, 0.08]

c)(x,0.50 c)(x,1.50
i {e)( ) {e)( )
0.3 1 i
0.2 4 i
1 | M‘
0.0 1 J

1 2 3 4 1 2 3 4
T x
~ (¢ £20(N,)""/2 from DNS = () + 20 from p(X; &)

The location of the bulk ot the concentration is not captured at t = 1.5.



p(A: &), (W2, ¢/1,] = [1.49, 0.08]

R[] £ 20 SES
(U I 30

_5 20 A
~10- 107
_15 T T T T T O L T T T T T

1 5 10 15 20 1 5 10 15 20
k k
DNS = From stochastic linear distribution
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For nonanomalous cases, it also overpredicts diffusion.

p(X;8), [(W*/2/w), Y] = [0.49, 0.02]

(¢)(z,0.50) {¢)(z,1.50)
0.4 1 7
0.2 7
0.0 1 7
1 2 3 4 1 2 3 4
x x
— {¢) +20(N,)~Y/2 from DNS = {c) £ 20 from p(X; &)
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The linear model for IE()\) is invalid for nonanomalous cases with nonlinear dependence on k.

p(A; &), [(W)'/2 /), ¢/1,] = [0.49, 0.02]

R[] £ 20 3] £20
04 - 2

—24 11
4 - 0 T :
—64 —11

T T T T T _2 T T T T T

1 15 10 15 20 1 5 10 15 20

k k
DNS = From stochastic linear distribution



The prototype isn’'t perfect, but we know why not:
@ Assumed linear models for k dependence.

@ Made minimal asymptotic arguments for scenario dependence.

Propagating Astationary from the ensembles encapsulates the mean for all cases.

(e)(,0.50) (¢)(x,1.50)

0.4 q

0.3

0.2

N ] /\
0.0 4 1
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z x
= ({¢) £ 20 from DNS = (¢) £ 20 from p(X)



@ Developed a novel method to directly probe the uncertain dependence in a model.

@ Used the method to generate observations of the stochastic operator’s eigenvalues.

» Was able to learn about the operator's structure while avoiding an ill-posed inverse problem.

@ Used the observations of the eigenvalues to formulate a data-informed representation of
their distribution.
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