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2 Computing Status Report
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More powerful supercomputers are inevitable, but is our

scientific usage of this technology keeping up?
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3 N Examples of Petascale Achievement

Phases of granular systems A 15

Glotzer, Sharon C., and Michael J. Solomon.

"Anisotropy of building blocks and their

assembly into complex structures." Nature

materials 6.8 (2007): 557-562.

H production in Water/Al

QMD on 16k particles
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L A Zepeda-Ruiz et al. Nature 550, 492-495 (2017) doi:10.1038/nature23472
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K. Shimamura et aL, "Hydrogen-on-Demand Using Metallic Alloy Mattox, Timothy I., et al. "Highly scalable discrete-particle simulations with novel coarse-graining: accessing the

Nanoparticles in Water," Nano Letters, vol. 14, no. 7,2014, pp. 4090-4096 microscale." Molecular Physics 116.15-16 (2018): 2061-2069.



4 I What is possible for MD at the Exascale?

Memory

Restrictions

Standard
Parallel MD

MD cost

— (N t)

E (C )P
EXRSCRLE COMPUTINS PROJECT

• Lets consider a 24hr allocation on a leadership platform

How to best spend this computational budget on MD?

• Memory/node — particles/processor + neighbor lists

• Time stepping overhead from network bandwidth +

MD comm pattern.

Communication

Restrictions

ps
Simulated Time (t)

• The 'feasibility envelope' favors

problems that require large atom

counts over long time sampling

How does this affect the research done

on these plafforms?



5 I The Master Plot
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• How does this affect the research done on these plafforms?

• Assume your problem has some specified length-scale

Shock Physics; dependence : N—La
N—t3 • Assume the associated time-scale goes as t—LY

Diffusive process•

• • in 3-D; Nt3/2

•
• •
• •
•

•

Soft Matter Dynamics

(polymers); N—t<3/2

EXAALT

pis ms

Simulated Time (t)

• But what if you care about a system

governed by rare event dynamics?



6 I EXAALT Team and Scope

eam by Institut

• Los Alamos National Lab
• Danny Perez(PI), Anders Niklasson(Co-PI), Marc

Cawkwell, Toks Adedoyin, Christian Negre, Yu Zhang,

Andrew Garmon, Enrique Martinez, Joshua Brown,

Nicholas Lubbers, Tim Germann

• Sandia National Lab
• Steve Plimpton(Deputy-PI), Aidan Thompson,

Mitchell Wood, Mary Alice Cusentino, Stan Moore

• Oak Ridge National Lab
• Brian Wirth, Li Yang

• External Collaborators
• Rahul Gayatri, Yasaman Ghadar, Christopher Knight,

Neil Mehta, Evan Weinberg, Art Voter(—retired)

EXRSCRLE COMPUTING PROJECT

Los Alamos
NATIONAL LABORATORY

EST.1943

litOAK RIDGE
National Laboratory

nvoiA.



7 EXAALT Team and Scope

Team by Primary Role

• LAMMPS
• Steve Plimpton, Aidan Thompson, Mitchell Wood

• LATTE
• Toks Adedoyin, Marc Cawkwell, Christian Negre,

Anders Niklasson, Yu Zhang

• ParSplice
• Andrew Garmon, Enrique Martinez, Danny Perez

• Machine Learned Potentials
• Joshua Brown, Mary Alice Cusentino, Nicholas

Lubbers, Aidan Thompson, Mitchell Wood
• Domain Science

• Brian Wirth, Li Yang
• Other Code Improvements

• Tim Germann, Rahul Gayatri, Yasaman Ghadar,

Christopher Knight, Neil Mehta, Stan Moore, Evan
Weinberg
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8 Parallel in Space,Time

Atoms/particles in space can be distributed across

processors

Need to track particles in nearby domains, reconstruct

neighbor lists as particles move

for all time;

Compute forces, update atom positions
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The goal is to generate

statistically correct state-to-state

traj ectories
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9 I Parallel in Time

Task Management

• Asynchronous master/slave architecture

• Master executes replica-based Accelerated MD algorithms

• Task managers prefetch tasks, fulfill data dependencies,
consolidate results, and cache intermediates

Data Management

• Key-value store

• Persistent backend

• Hierarchical in-memory caches

Computational Engines

• Workers wrap instances of LAMMPS that run on —1-1000

cores

• Quantum capabilities (at the DFTB level) provided by

LATTE, upcoming binding to NWChem

Task Management
Master

Task
Manager

Worke

In-
memory
cache

*
MD

Engine:
LAMMPS

Quantu
EnginE
LATTE

Work

MD
Engine:
LAMMPS

Quantum
Enginit
LATT

•
Persistent Database

In-memory cache

t Taskanager

MD
Engine:
LAMMPS

In-
memory
cache

fib
MD

II Engine:
LAMMPS
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11 I Parallel in Time

Computational Engines

• Workers wrap instances of LAMMPS that run on —1-1000
cores

• Quantum capabilities (at the DFTB level) provided by
LATTE, upcoming binding to NWChem

• ParSplice can initialize workers in newly discovered states to
improve diversity of spliced segments.

' Flowchart depicts all workers having

similar tasks (MD), not a strict rule

• LAMMPS can act as a client that calls

a server for information (forces)

Error checking or multi-fidelity

trajectories can be assembled (IAP,

TB, DFT)
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1 2 Applications of EXAALT

• ITER Fusion Reactor:

E (C
EXRSCRLE COMPUTING PROJECT

Plasma facing material is W at divertor, Be at inner wall

• Exposure to He, H and other plasma species at high

temperatures >1000K

• Fuzz buildup limits power output and useful lifetime of

divertor.

Near surface implantation, clustering of He
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Luis Sandoval, Blas Uberuaga, Danny Perez, Art Voter, Phys. Rev. Lett. (2015)

Sefta, R, Hammond, K. D., Juslin, N., & Wirth, B. D. (2013). Nudear Fusion, 5 3(7), 073015.



13 Performance Progress

Figure of Merit

• Atoms * Timesteps / second

0 Improved by atoms/replica, number of replicas, trajectory
segments spliced together

• Fusion energy FOM uses SNAP with 205 bispectrum components
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14 New Time Acceleration Methods (Voter, Perez, Plimpton)

Local/Global Hyperdynamics

• Adds a bias potential to 'strained' atom pairs, enables more rapid
events.

• Boost is proportional to energy barrier for rare events

o 0.4eV barrier, run @ 400K —> 500x boost

Movie frames are 2us apart, 500us
total

- 2.4M substrate atoms, 12k adatoms

• Run on 64 nodes of Theta (ALCF)
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15 Efficient Quantum Engines (Niklasson, Cawkwell, Negre...)

• Linear scaling quantum methods are useless without a low scaling prefactor

• Extended Lagrangian Born-Oppenheimer MD prodices stable trajectories, even

without a self-consistent field calculation at each timestep.
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— O(N) Linear scaling solver
Next Generation QMD

Next Generation QMD (speed up)
l) SCF-free XL-BOMD (xl 0)
II) Low pre-factor O(N) (x10)
III) Hybrid parallelism (x10)

QMD with classical MD speed

For practical QM D!

Next Generation QMD

System size (N)

-74.9494
a.)

ct -74.9495

b0 74 9496- •

7,4z: -74.9497
O
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• • BOMD (AE = 10 8Hartee)

dt= 10 a.u.T- 600K
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Niklasson & Cawkwell JCP 141,164123 (2014); Niklasson JCP 054103 (2017)



16 Return to the Master Plot
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Classical, Empirical Potentials

• Metals

o EAM: Assume spherical electron density
Ei = Fa(E j#i pfl(rij)) +1E j#i0afl(rij)

• Tncli•o-q ri ir.........

o Stillinger-Weber: Assume 2,3-body

harmonic springs

• Organic

o ReaxFF: Assume covalent bonding,

smooth bond-orders between all

interacting atoms
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Machine Learned Potentials

• Metals, Inorganic, Organic, etc.
o Assume energy and forces are some

function of local atomic neighborhood
descriptors

• Needs reference data to be properly trained
to get the 'right' energies and forces



18 MD Approximations Change Over Time

Twobody (B.C.)

Lennard-Jones, Hard

Sphere, Coulomb, Bonded

Manybody (1980s)

S tillinger-Web er, Ters o ff,

Embedded Atom Method

http://lammps.sandia.gov

Advanced (90s-2000s) Big Data / Deep /
REBO, BOP, COMB, Machine Learning (2010s)
ReaxFF GAP, SNAP, NN,...
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19 But Empirical Potentials are Faster! For now...

• EXAALT benchmark uses 205 bispectrum coefficients, tungsten crystal

• Mira (IBM BG/Q) baseline: 0.182 Katoms-steps/s/node * 49152 Mira nodes
Mira baseline, 1 replica/node

2018 LAMMPS performance on Summit: 33.7 Katom-steps/s/node * 4608 Summit nodes 17.4x faster than Mira baseline

Integrated more optimizations from TestSNAP into the Kokkos-LAMMPS

Current LAMMPS on Summit: 262.0 Katom-steps/s/node * 4608 Summit nodes

• Evan Weinberg (NVIDIA) has added additional optimizations to Kokkos SNAP in LAMMPS

New version being tested by CoPA and EXAALT project members

Not yet released, but should be merged into master LAMMPS soon

Unreleased LAMMPS on Summit: 407.7 Katom-steps/s/node * 4608 Summit nodes

And were not done yet!

(Thompson, Moore) (Lubbers, Germann)

4 Los Alamos
NATIONAL LABORATORY

EST.1943

(Gayatri)

134x faster than Mira baseline

210x faster than Mira baseline

(Weinberg)

nvIDIA®



19 Environment of Machine Learning Techniques

Physically

Motivated

Non-Linear

Optimization

1
BLAST-

Kernel Methods —
Structured

Neural Networks

L SNAP AGNI GAP HIP-

Convolutional

Neural Networks

SchNet Deep-MD

Adoption of machine learning techniques within molecular dynamics has been varied

Machine Learni

Global: e.g., rnulti-start.
genetic algorithm
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21 I SNAP Development — Neural Networks

Motivation

• Use Neural Networks to build better potentials
using fewer descriptors

• Tackle big data: training to hundreds of thousands
of atomic environments

• NN fitting techniques designed to naturally

generalize to new configurations

• Preliminary NN/SNAP W/Be potentials show
substantial improvements in force accuracy and
dramatic improvements in energy accuracy

A Oh Y
 IMAMS (Lubbers, Smith...)

E E
EXRSCRLE COMPUTING PROJECT

f ( Vv activation (output)

activation
function

X • VV. pre-activation

input vector

weight
vector

3 x 10-1 •

Energy Error (eV)



22 I SNAP Development — Neural Networks

I nfrastructur

• Efficiently couple LAMMPS and PyTorch using

Cython

• Neural Networks in PyTorch for fast and flexible

implementation of network structures

• Nonlinear SNAP models required reformulation of

SNAP gradient calculations — lead to new insights

into SNAP algorithm and computation speedups

for Linear SNAP models as well

• Force fitting algorithm for nonlinear energy models

(Lubbers, Smith...)

E E
EXRSCRLE COMPUTING PROJECT

LAMMPS::ForceCompute():
for i in AtomList: Bi = ConiptiteB(i)

Invoke callback to Python:

E = NN(li);

fj) = nE
# Back to LAMMPS
for j in FullAtoinList: Fi =
for i in AtoniList:

for j in NeighList(i):
0

Fii = CornputeFij(f3i,Bi)
Fi F,7; F7 += F77

o

Ci PyTorch



23 State-to-State Dynamics for Training

Designing Better Training

• Training data sets will be incomplete, ML-IAP need

to be 4ATTP11-11PligATPCP wilen eytrqnnlqtincr- ----v

• Structure of atomic configurations is highly

correlated, still exploring what descriptors + training

methods makes most sense.

Data \ eeds: 

When ND0F^'NTrain, high risk of overfitting —>
Poor Interpolation

•When training diversity is low —> Poor Extrapolation

RUNNING MD WILL EXPOSE THKSE
SHORTCOMINGS

Non-Linmr

NDOF
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Empirical Pots. Machine Learned Pots.
Model Form

"Performance and Cost Assessment of Machine Learning Interatomic Potentials" J. Phys. Chem. A (2020)



24 I Assembling a Better Training Set

Description NE NF UE UF

W-Be:

Elastic Deformt 3946 68040 3 • 105 2 • 103

Equation of Statet 1113 39627 2 • 105 4 • 104

DFT-MDt 3360 497124 7 • 104 6 • 102

Surface Adhesion 381 112527 2 • 104 9 • 104

t Multiple crystal phases included in this group:
4Ib •

C - 40:4.1 . A

User Generated Training

• Use cases for the potential are known, run

DFT on representative configurations

• Intrinsically biased to a small region of

configuration space

Task Management
Master

Persistent Database

In-memory cache

41111111111W-- --0000gOk

o, In-
Task Task

memory
Manager Manager

cache

In-
memory
cache

Worker Worker Worker Worker

MD MD MD MD
Engine: Engine: Engine: Engine:
LAMMPS LAMMPS LAMMPS LAMMPS

Quantum Quantum Quantum Quantum
Engine: Engine: Engine: Engine:
LATTE LATrE LATTE LATTE

Learn-on-the-Fly

• Framework o time acceleration tools can

generate new training by running

lots ot replicas

D with

• Resource demand is VERY HIGH, but can
1 1 • 1 1

1
1

proctuce tne meal general use potential.



25 I Learn On The Fly

Workload Management

• Computing resources now need to be
distributed proportional to the cost of the
individual task (MD, DFT, Fitting)

• New training configurations from MD do not
need to be reached in a time-accurate manner.

0 Currently still running small (-100atoms)
problems for MD in order to simplify the
handshake w/ DFT.

• An 'entropy maximized' training set has been

generated using bispectrum components
(SNAP descriptors) as an information entropy

0 —230k unique configurations generated in 16h
hours on Theta (ALCF)

MD Task
Manager

Worker

MD
Engine:
LAMMPS

Worker

MD
Engine:
LAMMPS

Task Management
Master

DFT
Task

Manager

Worker

Quantum
Engine

Tr
ai
ni
ng
 C
on

fi
g.

 C
o
u
n
t
 

•

Worker

LATTE /
VASP /
NWChem

6000

5000

4000

3000

2000

1000

0
-16 -15 -14 -13 -12 -11 -10 -9 -8

Worker

LATTE /
VASP /
NWChem

Worker

LATTE /
VASP /
NWChem

Fitting
Task

Manager

Worker

FitSNAP /
ANI-NN

Entropy Max Training Data —

l I

Configuration Energy (eV/atom)



26 I Conclusions and Path Forward

• The EXAALT project is

ensuring Exascale-ready MD

software beyond the length,

time-scales of standard MD

• While harder to quantify, the

fidelity of our MD simulations

needs to be a key consideration

at the Exascale

EXRSCRLE COMPUTING PROJECT

Los Alamos
NATIONAL LABORATORY

  EST.1943  

U.S. DEPARTMENT OF Office of
ENERGY Science

OAK RIDGE
National Laboratory

EXAALT

• New time accelerated methods

(Hyperdynamics, sub-lattice

ParSplice) made available

Data-driven interatomic

potentials (SNAP, SNAP-NN)
allow for MD predictions of
challenging material problems.

Contact Information:

mitwood@sandia.gov

danny perezglanl.gov
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Uses of ParSplice/EXAALT 
Defect evolution in fusion materials (w. Luis Sandoval, Blas Uberuaga, Art Voter). Up to

100,000 cores, —10,000 atoms on ms [Sci. Rep. 7, 2522 (2017)]

Jogs in nickel (w. Lauren Smith, Tom Swinburne, Dallas Trinkle), —1000 cores, —10,000

atoms, tens of ms

Cation defect evolution in pyrochlores (w. Romain Perriot, Blas Uberuaga, Art Voter),

—200 cores, —1000 atoms, tens of ms [Nature Comm., 8, 681 (2017)]

Shape evolution of metallic nanoparticles (w. Rao Huang, Art Voter). —1000 cores, —100

atoms, ms [JCP 147, 152717 (2017). JMR (in press)]

https://gitlab.com/exaalt 

https://github.com/FitSNAP/FitSNAP 

https://github.com/materialsvirtuallab/mlearn 
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