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2 I Computing Status Report

More powerful supercomputers are inevitable, but is our
scientific usage of this technology keeping up?
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3 I Examples of Petascale Achievement

Limits of material plastlcl

Phases of granular systems A &l ' B ‘- o ' ] %f 9
Glotzer, Sharon C., and Michael J. Solomon. =) ) g el 8
"Anisotropy of building blocks and their LI_:: FCC °
assembly into complex structures." Nazure o e g -
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L A Zepeda-Ruiz ez al. Nature 550, 492-495 (2017) doi:10.1038/nature23472

Shock Response of coarse grained explosives

Grain Interfaces
I"L‘q’; mmx !g‘ E‘m Mmﬁﬂ qﬂ‘l

K. Shimamura et al., “Hydrogen-on-Demand Using Metallic Alloy Mattox, Timothy 1., et al. "Highly scalable discrete-particle simulations with novel coarse-graining: accessing the
Nanoparticles in Water,” Nano Letters, vol. 14, no. 7,2014, pp. 40904096 microscale." Molecular Physies 116.15-16 (2018): 2061-2069.



4 | What is possible for MD at the Exascale? =

* Lets consider a 24hr allocation on a leadership platform
How to best spend this computational budget on MD?

=

14, *  Memory/node ~ particles/processor + neighbor lists

= * Time stepping overhead from network bandwidth +

S ll\ézesrtlzi(z:gons MD comm pattern.

31012 — -

E MD cost

= ~ O(Nt)

z ¢ The ‘feasibility envelope’ favors
problems that require large atom
counts over long time sampling

\ How does this affect the research done
| Communication on these platforms? I
g;?-gﬂg[dMD | Restrictions |

S
Simulated Time (t)
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s I The Master Plot _\(

EXASCALE COMPUTING PROJECT

*  How does this affect the research done on these platforms?

* Assume your problem has some specified length-scale
Shock Physics; dependence : N~L“
1A\T~t3 * Assume the associated time-scale goes as t~LY

(Hardware Dependent)
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Soft Matter Dynamics
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*  But what if you care about a system

Standard

governed by rare event dynamics?
Parallel MD Er

Accuracy (?)

Simulated Time (t)



s I EXAALT Team and Scope "':\\
=L P

Tea m by I N St] tu t] on EXASCALE COMPUTING PROJECT

S

» Los Alamos
NATIONAL LABORATORY
EST.1943

- Sandia
- laboratories

OAK RIDGE

National Laboratory

%

* Oak Ridge National Lab
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* External Collaborators
* Rahul Gayatri, Yasaman Ghadar, Christopher Knight,
Neil Mehta, Evan Weinberg, Art Voter(~retired)
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Lubbers Aidan Thompson Mitche]l Wood
* Domain Science
* Brian Wirth, Li Yang
* Other Code Improvements

* Tim Germann, Rahul Gayatri, Yasaman Ghadar,
Christopher Knight, Neil Mehta, Stan Moore, Evan
Weinberg




8 I Parallel in Space, Time

* Atoms/particles in space can be distributed across
processors
*  Need to track particles in nearby domains, reconstruct
neighbor lists as particles move
* for all time;
Compute forces, update atom positions

* The goal is to generate

statistically correct state-to-state
trajectories
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[Le Bris, Lelievre, Luskin, and Perez, MCMA 18, 119 (2012)]




9 | Parallel in Time

Task Management

* Asynchronous master/slave architecture
* Master executes replica-based Accelerated MD algorithms

* Task managers prefetch tasks, fulfill data dependencies,
consolidate results, and cache intermediates

Data Management

* Key-value store
e Persistent backend

* Hierarchical in-memory caches

Computational Engines

* Workers wrap instances of LAMMPS that run on ~1-1000
cores

* Quantum capabilities (at the DFTB level) provided by
LATTE, upcoming binding to NWChem

Task Management
Master

LAMMPS LAMMPS

Quantum
Engine:
LATTE

Quantum
Engine:
LATTE

Persistent Database

In-memory cache

LAMMPS LAMMPS

Quantum
Engine:
LATTE

Quantum
Engine:
LATTE




10 | Parallel in Time

Task Management
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11 | Parallel in Time

Computational Engines

* Workers wrap instances of LAMMPS that run on ~1-1000

CO1ES

Persi D
T —— ersistent Database

Master

In-memory cache

* Quantum capabilities (at the DFTB level) provided by
LATTE, upcoming binding to NWChem

* ParSplice can initialize workers in newly discovered states to
improve diversity of spliced segments.

*  Flowchart depicts all workers having
similar tasks (MD), not a strict rule

Engine: Engine:

*  LAMMPS can act as a client that calls Engine:
for information (F — :
a server for information (forces) LAMMPS LAMMPS LAMMPS LAMMPS

Quantum Quantum Quantum
Engine: Engine: Engine:
LATTE LATTE LATTE

*  Error checking or multi-fidelity i
trajectories can be assembled (IAP,

TB, DFT)
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Applications of EXAALT

ITER Fusion Reactor:

[ -ﬂﬂ”'.."«‘.,’

_\C\\),_,

EXASCALE COMPUTING PROJECT

Plasma facing material is W at divertor, Be at inner wall

Exposure to He, H and other plasma species at high
temperatures >1000K

Fuzz buildup limits power output and useful lifetime of
divertor.

Near surface implantation, clustering of He

apn e e v Ay M el ey, -4 VET T e e gt mw ciTgn por
g . L4 ¥

ﬂ ’ ) ‘E. . o
‘[[111]". 4 . ¢ ¢y

Luis Sandoval, Blas Uberuaga, Danny Perez, Art Voter, Phys. Rev. Lett. (2015)
Sefta, F., Hammond, K. D, Juslin, N., & Wirth, B. D. (2013). Nuclear Fusion, 53(7), 073015.
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13 | Performance Progress

Figure of Merit

¢ Atoms * Timesteps / second

o Improved by atoms/replica, number of replicas, trajectory
segments spliced together

* Fusion energy FOM uses SNAP with 205 bispectrum components
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14

New Time Acceleration Methods

(Voter, Perez, Plimpton)

Local/Global Hyperdynamics

* Adds a bias potential to ‘strained’ atom pairs, enables more rapid

events.

* Boost is proportional to energy barrier for rare events

o 0.4eV barrier, run @ 400K — 500x boost

Movie frames are 2us apart, 500us
total

2.4M substrate atoms, 12k adatoms

Run on 64 nodes of Theta (ALCF)

Time 0.0us

In-
memory

Task
Manager

LAMMPS

Quantum Quantum
Engine: Engine:
LATTE LATTE
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Efficient Quantum Engines

(Niklasson, Cawkwell, Negre...)

* Linear scaling quantum methods are useless without a low scaling prefactor

* Extended Lagrangian Born-Oppenheimer MD prodices stable trajectories, even
without a self-consistent field calculation at each timestep.

In-
memory

Task
Manager

Quantum
Engine:

Quantum
Engine:

o
[ — 3 . . ot == "Exact" BOMD
= ON) I.)lagonallgatlon > -74.9494- . X1 BOMD (0-SCF) 50' 8 fi
AL — O(N) Linear scaling solver © |- BOMD (AE = 10*Hartee) R % %',‘%
S b — Next Generation QMD g eyl —— é s ‘lw
3 ’ .
; i s Next Generation QMD  (speed up) E 3';'1meq(gs)
— ) SCF-free XL-BOMD  (x10) S ve 119 924 e,
g - Il) Low pre-factor O(N) (x10) &D 74.9496 888 SERbHL aoibcs GebEy bR, S, § T
— N ll) Hybrid parallelism (x10) QC:) 2
~ | @ e
§ -/ —» QMD with classical MD speed = -74.9497 o 5 o8 _
" e ey bt o g
U B / For practical QMD! @) i e oirls
=' — H,O (HF/STO-3G)
< g | dt=10a.u.T~600 K "
B \ Next Generation QMD 74.9498 , 1 : | : | . |
e et} .1 T T T . O 100 ZQO 300 400
System size (N) Time (fs)

Niklasson & Cawkwell JCP 141,164123 (2014); Niklasson JCP 054103 (2017)
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EXASCALE COMPUTING PROJECT

Classical, Empirical Potentials

(Hardware Dependent)

—
o
—_
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1012

Number of Particles (N)

Organic

o ReaxFF: Assume covalent bonding,
smooth bond-orders between all
interacting atoms

.

.
.

-*

Standard
Parallel MD

Accuracy (?) Simulated Time (t)



— =)
17 I Return to the Master Plot \(\._ )

EXASCALE COMPUTING PROJECT

|_)

Machine Learned Potentials

(Hardware Dependent)

1

=
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Number of Particles (N)

Standard
Parallel MD

Accuracy (?) Simulated Time (t)
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18 I MD Approximations Change Over Time

Twobody (B.C.) Manybody (1980s) Advanced (90s-2000s) Big Data / Deep /
Lennard-Jones, Hard Stillinger-Weber, Tersoff, REBO, BOP, COMB, Machine Learning (2010s)
Sphere, Coulomb, Bonded Embedded Atom Method ReaxFF GAP, SNAP, NN....
] ' | ' | |
10_2 3 I\P/IIIFTSPE)SIlZ?igI (ngﬂrgison’ ° = Resources are limited, which is your best choice?
@ AP 20+ https://github.com/materialsvirtuallab/mlearn
- - & O i}
5 -3 ey = 3
QE) 10°€ COMB E 2 % ° O/
g : o © 2 ~
i ReaxFF  CFF qSNAP > 10'. @ @ hidden layE)rs [16, 16]
E . AIREBO .NAz ° ._ GE) | © Hd o o
g 10 ; MEAM .:op e \: ' O . e
Z CHARMM ® o 51 O GAP ';/ o ®
= 5 SPC/E, o EIM = sl
8 1O “SEllinger-Weber J?EBO o 3 o @ NNP /@
U EA Tersoff "(7)‘ O SNAP 4 ‘ P
|i') ® q SNAP 20 polynomial powers |
2 2000 kernels
-6 ' ' ' ' ' ' ' - ., -5  .-4 -3 -2
10 7980 1990 2000 2010 2020 10 10 10 10 10

Year Published Computational cost s/(MD step - atom)



19 | But Empirical Potentials are Faster! For now...

* EXAALT benchmark uses 205 bispectrum coefficients, tungsten crystal
* Mira IBM BG/Q) baseline: 0.182 Katoms-steps/s/node * 49152 Mira nodes

¢ 2018 LAMMPS performance on Summit: 33.7 Katom-steps/s/node * 4608 Summit nodes
Integrated more optimizations from TestSNAP into the Kokkos-LAMMPS

*  Current LAMMPS on Summit: 262.0 Katom-steps/s/node * 4608 Summit nodes

*  Evan Weinberg (NVIDIA) has added additional optimizations to Kokkos SNAP in LAMMPS
New version being tested by CoPA and EXAALT project members
Not yet released, but should be merged into master LAMMPS soon

*  Unreleased LAMMPS on Summit: 407.7 Katom-steps/s/node * 4608 Summit nodes

And were not done yet!

Thompson, Moore ubbers, Germann Gayatri
1% Y

Sandia A

National . Los Alamos
iﬁbﬂ]‘ﬁt@]‘lw NATIONA ELSTL.:.\; 3 30R ATORY

i

Mira baseline, 1 replica/node

17.4x faster than Mira baseline

134x faster than Mira baseline |

210x faster than Mira baseline

(Weinberg)

<3

NVIDIA.



19 I Environment of Machine Learning Techniques

_ Non-Linear
Phygcally Optimization Kernel Methods
Motivated @ L _ .

BLAST-MLL. ~ SNAP AGNI GAP

Structured

Neural Networks I

HIP-NN SchNet

Deep-MD

Convolutional
Neural Networks

* Adoption of machine learning techniques within molecular dynamics has been varied

Machine Learning

Global: e.g., multi-start,
genetic algorithm

\ 4

e.g., simplex,
Levenberg-Marquardt

Data
Generator

Data

DFT, AIMD, QMC, ...

' DeePMD-kit
‘ MD support

| MD Interface
lassical MD: LAM
path integral MD

Model
MPS
2 i-Pl

DeePMD-kit
Train/Test

v
DeePMD
networks

Data-Science
Motivated

90eJ13]Ul MO|4J0SUS|
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21 I SNAP Development — Neural Networks

Motivation 107 4

—

2|Max f()"( . W) activation (output)
—— 4
——
—— 8 y
- 10 activation
*  4(NN) i

* Use Neural Networks to build better potentials °§
using fewer descriptors T
~— % 10~
:O: X-W pre-activation
A
e Tackle big data: training to hundreds of thousands 5 -
. 5 o -]
of atomic environments S 10 Wo M1/ ™% yector
Xo| X, X%, %5 [X,
3= 107! " input vector
* NN fitting techniques designed to naturally 10-2 01 100
generalize to new configurations Energy Error (eV)

* Preliminary NN/SNAP W/Be potentials show
substantial improvements in force accuracy and
dramatic improvements in energy accuracy

MATIONAL LABORATORY
- EST.1943 - (Lubbers, Smith...)

Nnos
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22 | SNAP Development — Neural Networks

Infrastructure LAMMPS::ForceCompute():
for ¢ in AtomList: B; = ComputeB(7)

* Efficiently couple LAMMPS and PyTorch using # Tnvoke callback to Python:
Cython E = NN(B);
B=VsE

. - , # Back to LAMMPS
Neural Networks in PyTorch for fast and flexible for j in FullAtomList: F; = 0

implementation of network structures T T
for j in NeighList(¢): o
F;; = ComputeFij(8,;,B;)
F; += —Fu F; += Fy;

* Nonlinear SNAP models required reformulation of
SNAP gradient calculations — lead to new insights
into SNAP algorithm and computation speedups
for Linear SNAP models as well

* Force fitting algorithm for nonlinear energy models

a Los Alam

NATIONAL LABORATORY
- EST. 1943 - (Lubbers, Smith...)




23 | State-to-State Dynamics for Training = F

correlated, still exploring what descriptors + training 10

1 . 11 B - : S tored Convolutional .
Designing Better Training thods [ S e T Neo Mmoo Data-Science
* Training data sets will be incomplete, ML-IAP need ‘ 1 1 |
to be ‘well-behaved” when extrapolating | ] “ I
BLAST-ML. SNAP AGNI GAP HIP-NN SchNet Deep-MD
* Structure of atomic configurations 1s highly Npor |

methods makes most sense.
103
Data Needs:

*When Npop~Nrrqin, high risk of overfitting —
Poor Interpolation 101

*When training diversity is low — Poor Extrapolation Model Form

“RUNNING MD WILL EXPOSE THESE Empirical Pots. Machine Learned Pots.

SHORTCOMINGS

“Performance and Cost Assessment of Machine Learning Interatomic Potentials” J. Phys. Chem. A (2020)



24 I Assembling a Better Training Set

S T — Persistent Database

Description Ng Nr oEg OF Master
W-Be:

Elastic Deform! 3946 68040 3-10° 2-10°
Equation of State’ 1113 39627 2-10° 4-10*
DFT-MDf 3360 497124 7-10* 610
Surface Adhesion 381 112527 2-10* 9-10*
T Multiple crystal phases included in this group: Worker Worker Worker Worker

In-memory cache

MD MD MD MD
Engine: Engine: Engine: Engine:
LAMMPS | LAMMPS B LAMMPS [l LAMMPS

Quantum Quantum @ Quantum Quantum
Engine: Engine: Engine: Engine:
LATTE LATTE LATTE LATTE

Learn-on-the-Fly

User Generated Training

* Intrinsically biased to a small region of
configuration space

* Resource demand is VERY HIGH, but can

produce the ideal general use potential.



25 | Learn On The Fly

Workload Management

* Computing resources now need to be M =3

. . . anager
distributed proportional to the cost of the

individual task (MD, DFT, Fitting)

Task Management
Master

Fitting
Task
Manager

Manager

Worker Worker Worker Worker Worker

LATTE / LATTE / LATTE /
VASP / VASP / VASP /
NWChem @l NWChem@ NWChem

FitSNAP /
ANI-NN

Quantum
Engine

* New training configurations from MD do not
need to be reached in a time-accurate mannetr.

6000
o Currently still running small (~100atoms) Erimepy e Tralning Baba S
problems for MD in order to simplify the o 2O00F
handshake w/ DFT. S 4000 |
S
=
§ 3000 |-
* An ‘entropy maximized’ training set has been o
. . £ 2000
generated using bispectrum components | &
. . : =
(SNAP descriptors) as an information entropy 1000 |-
o ~230k unique configurations generated in 16h 0 | ! | l | !

-16 -15 -14 -13 -12 -11 -10 -9 -8
Configuration Energy (eV/atom)

hours on Theta (ALCF)



26 I Conclusions and Path Forward

» o

E"
g |
*  The EXAALT project 1s % ol = = = = - *  New time accelerated methods
ensuring Exascale-ready MD ;;%: (Hyperdynamics, sub-lattice
software beyond the length, 5 ParSplice) made available
time-scales of standard MD g ‘ b,
=5 5 % *  Data-driven interatomic
*  While harder to quantify, the potentials (SNAP, SNAP-NN)
fidelity of our MD simulations \ allow for MD predictions of
needs to be a key consideration m@m 5 EXAALT challenging material problems.
at the Exascale
/ - Simulated Time ®

— \ _ % Gandia @ Contact Information:
= \(\g\) [ .LosAlamos National

NATIONAL LABORATORY 1 mitwood(@sandia.gov
laboratories NMVIDIA.

danny perez(@lanl.gov
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Uses of ParSplice/EXAALT
Defect evolution in fusion materials (w. Luis Sandoval, Blas Uberuaga, Art Voter). Up to
100,000 cores, ~10,000 atoms on ms [Sci. Rep. 7, 2522 (2017)]

Jogs in nickel (w. Lauren Smith, Tom Swinburne, Dallas Trinkle), ~1000 cores, ~10,000
atoms, tens of ms

Cation defect evolution in pyrochlores (w. Romain Perriot, Blas Uberuaga, Art Voter),
~200 cores, ~1000 atoms, tens of ms [Nature Comm., 8, 681 (2017)]

Shape evolution of metallic nanoparticles (w. Rao Huang, Art Voter). ~1000 cores, ~100
atoms, ms [JCP 147,152717 (2017). JMR (in press)]

https://gitlab.com/exaalt
https://github.com/FitSNAP/FitSNAP
https://github.com/materialsvirtuallab/mlearn
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