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Vacuum Devices Still Around!

• Solid state devices began to replace vacuum tubes more than 60 years ago

• But vacuum electron devices have distinct advantages and are still in limited use!

• Communication: Radar, RF broadcasting

• NASA: Satellite communications, Electronics for space missions

• Industry: Industrial RF heating, THz technologies, Microwave electronic applications

Advantages of vacuum electron devices

• Ballistic transport in vacuum channel:

• No heat generation during electron transport in vacuum

• No dielectric breakdown (Dielectric strength = 1018V/m)

• Operation in harsh environments (radiation, temperature): no junction, vacuum channel unaffected

• As a result, vacuum devices can operate at higher frequencies & power than solid-state

semiconductor devices

Drawbacks of vacuum tubes: Size, cost, reliability, energy efficiency, integration, vacuum

High power, high frequency

Multiple 3 GHz Few
competing competing
technologies technologies

Vacuum Tubes

10
Frequency (GHz)

Source: http://www.electronicdesign.com/power/
optimize-power-scheme-these-transient-times
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Solid-State, Vacuum-Free "Vacuum" Electronics
Sandia
National
Laboratories

✓ Electron transport in air is vacuum-like if nanogap << Xe (r' 500 nm)
✓ Nanogap field emitters can operate in air and can be used for "vacuum" electronics

Needs Vacuum

Gate

Works in Air !

VEC

...

few µm

Nanogap

Nanogap << Ae (electron mean free path)

Solid state "vacuum" nanoelectronics integrates advantages of vacuum devices and semiconductor nanofabrication
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GaN: Superior Platform for Vacuum Nanoelectri

1. Difficult to get low voltage field emission

Fowler-Nordheim (FN) equation
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2. Device degradation/chemical instability

GaN has significantly higher bond strength

✓ Sputtering resistance and Iow degradation
✓ Chemical stability
✓ Operable at high temperature
✓ Radiation hardness
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3. High Power Operation

GaN has High Breakdown Field

✓ High power operation

✓ High frequency operation
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Enabling Sandia Capability: 3D GaN Nanofabrication
Sandia
National
Laboratories

World-leading capabilities for the top-down fabrication of 3D, high quality, GaN-based nanostructures
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Nanofabrication of GaN Lateral Field Emission 1FE) Structures

Sandia
National
Laboratories

III-N top-down fabrication process

Beam

Lithography

•►— Dry Etching

(ICP/RIE)
*

Wet Etching

(KOH

From knowledge of KOH wet etching of GaN:

• Orient collector // to m-plane to avoid m-plane microfacet protrusions

• Limit wet etch time to reduce wedge retraction effect

• consider dependence of wet etch on doping and composition (GaN v. AIN)

Epilayer designs: 100nm and 200 nm n-GaN on C-GaN, doping —5E18

100 nm n-GaN on C-GaN

Emitter

lCP dry etch: Angled side walls -
variable gap size, possible shorting
at bottom, sidewall damage

C-GaN insulatin

+ AZ400K wet etch: dertical side
walls, cleared gap, remove sidewall
damage, smoother m-face collector

GaN structures down to -30 nm gaps and
-20 nm wide emitters
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Working GaN Field Emission Devices

Proof-of-concept: Successful field emission (FE) in air with low turn on voltage and high emission current!

Field emission is diode-like for sharp emitter and flat collector (expected)

500 Ohmic contacts to n-GaN (Ti/Ni/Au)
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Fowler-Nordheim (FN) test for field emission

Straight line fitting of data
Slope = -1.40; Y-intercept = -13.16

Field enhancement factor 13
= 920 using cfi = 4 eV
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Effect of Emitter Size on Field Emission

Sharper emitter is desired to low voltage field emission
• Increases field enhancement
• Reduces the device turn on voltage

Emitter tip width " 20 nm

-1'.0 -0.5 • 0.0 • 01.5 1 1.0

V (Volt)

• Field enhancement factor (p) = 920
• Turn on voltage = 0.24 V @ 50pA

,e, 1 i 2 ) ( B03/2d
J = A (-

02 
exp

13V

13 4 Field enhancement factor, depends on geometry

Emitter tip width " 50 nm

-3 • -12 -1 • O • -I
V (Volt)

3

• Field enhancement factor (Ps) -
• Turn on voltage = 1.9 V @ 50pA
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Nanogap Size Dependency of the Field Emission

Devices with various nanogap sizes were fabricated
• Emitter tip width N 50nm
• Field emission observed in air (atmospheric pressure) with gap size as large as 93 nm
• IV data can be fitted with the Fowler-Nordheim field emission equation
• Turn-on voltage increases with increasing gap size

Diode characteristics of nanogap devices

100-

80

II 20-

-0— 25 nm Gap
48 nm Gap

—0— 93 nm Gap

I I 1 • 1 • 1 • 1 • 1 •
-50 -40 -30 -20 -10 0 10 20 30 40 50

V (Volt) .14

-24-

-20-

-21-

0.40 0.45 0.50 0.55

1/V

o Gap
— L ̂ ear F t

• 0.06 •
11V

0 93 nm Gap
— Linear Fit

0 R=9

0
0.0215 0.0220

k 

Keshab R Sapkota APS March Meeting, 2019



Effect of Pressure on Nanogap Field Emission

Established convention: nanogap is vacuum-Iike if nanogap size << electron mean free path
Does pressure affect field emission of nanogap device?

This experiment establishes
• Vacuum is not required to achieve field emission in nanogap device
• However, field emission is affected by pressure
• Pressure generally decreases field emission current and increase turn on voltage
• Overall pressure dependent behavior depends on gap size, gas species, and bias voltage (> gas ionization energy?)
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GaN Nanogap Devices Stability Check

Stability measurement:
• Time dependent measurements were carried out by applying constant bias for several hours
• Devices sitting in ambient environment for several days prior to measurements
Results
• Devices performed well for more than 55 hours during continuous measurement
• Devices exhibit excellent field emission behavior after long continuous measurements
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Conclusions

• All GaN-based nanogap field emission diode devices were successfully demonstrated for the first time

• Low turn-on voltage down to 0.24 V is achieved with high field emission current for 28nm gap, —20 nm radius sharp

emitter tip device

• The field emission characteristics can be well explained by Fowler-Nordheim equation

• Nanogap size dependent field emission characteristics are studied: turn-on voltage and constant current bias

potential increase linearly with nanogap size

• If nanogap size << electron mean free path, field emission in nanogap device can be achieved in air, however, field

emission is affected by gas environment and pressure

• GaN nanogap devices are found to be highly stable, surviving for several days of continuous operation
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Back up slides
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Working GaN Field Emission Devices
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Nanogap Size Dependency of the Field Emission
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Experimental Results

• Device turn on voltage increases linearly with
nanogap size

• Bias voltage needed to produce a fixed field emission
current increases linearly with nanogap size
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for fixed field emission current

Simulation Results 

Fowler-Nordheim equation can be written in linear form

1d2
ln = A + B —

V2 V

Here, A and B are constants which can

field emission data, d is nanogap size

• Solve V for l and d:

V = 
e(A+Byd) / 2

be obtained by linear fitting of

V = f (V) -

• V can be solved numerically 0
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