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Why analogue quantum simulation?

1st

Analogue quantum simulations can teach us
about fundamental quantum physics in regimes
that are difficult to simulate classically
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The system determines the energy
landscape, we reduce errors by
cooling the system to the ground state



I An example system for demonstrating logical cooling

Weakly pushes data qubits to

100) and 111)
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Pulse sequence for logical cooling:

Larger-angle two-qubit gate
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Small-angle two-qubit gates
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Implementation of
Hamiltonian with
ground states 100>

and 111>
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Logical cooling to pull
energy out of system,

thus keeping the
system in 100> or 111>



I HOA2 supports long chains of ions
. - - re...-1•.-.1+..ala 4 .0 . 4. si

Operating
voltage

Ion height

Electrodes

Trap potential

Transport

Ion lifetime

1Q gate
fidelity

2Q gate
fidelity

250 V amplitude, 40 MHz

r

70 pm ion height, NA 0.21 through slot,
NA 0.12 skimming surface, NA > 0.6 from
surface

144 control electrodes (94 independent)

3 MHz radial, 1 MHz axial (for ytterbium)

Demonstrated junction transport and
controlled rotations

>100 hours demonstrated

99.993% (Sandia, ytterbium, microwave
gates)

99.5% (Sandia, ytterbium, 355nm Raman
lasers)



I Experimental apparatus —Trapping three ions
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I Experimental apparatus —Trapping three ions
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I Experimental apparatus —Trapping three ions
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I Experimental apparatus —Trapping three ions
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• Gates performed with microwaves or lasers

• lons addressed with 355 nm frequency comb

• Raman beams are power stabilized



Custom imaging system is needed

Custom design to

• Allow for the Raman laser gates
specific to each ion

• Accommodate needed degrees of
freedom in very cramped space

• Resilient to temperature changes
• Provide the needed mechanical

stability
• Optics are interferometrically

aligned and bonded during initial
assembly



Raman laser individual addressing ion test

• Co-propagating Raman transitions
• Three central beams are illuminated
• A single ion is moved through the beam
• For each position the probability to flip the spin is measured
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cent reams are clearly separated, and about' Position 41r1r1)
4.5 p.m apart

• The beam waists are nearly the designed values.
• The apparent optical crosstalk is small and we

are in process to fully characterize
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Initial optical crosstalk measurements look promising
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• Concern over crosstalk from Raman beams hitting neighboring ions
• Crosstalk can be optical, acoustic, or electrical
• Measured intensity as ion is scanned through multiple copropagating beams
• Observe multiple orders of magnitude suppression in driven pi time and hope

to suppress this further
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Developed custom electrons: RFSoC for coherent pulse generation
• Two tones per channel
• Coherent output synchronized between all channels
• Pulse envelopes and frequency- phase- modulation defined by splines
• Compact representation of gates for efficient streaming of circuits
• AOM Cross-talk compensation
• All data presented with Raman transitions taken with RFSoC
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Distinguishable detection for multiple ions

ion lens multicore PMTs
fiber
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Less than 0.5% detection crosstalk (not
including threshold detection) with
>90% throughput measured on the PMTs
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I Progress towards individual optical pumping

Moving detection light
through three ions and
looking at florescence

of each ion
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Observing optical pumping efficiency on each of three ions for different optical pumping beam positions (ideally only one
ion is optically pumped efficiently - not the case here)
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I Progress towards individual optical pumping

Moving detection light
through three ions and
looking at florescence

of each ion
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N ext steps

• Implement and characterize two qubit gates
• Further minimize the overlap for our individual optical

pumping
• Look at relaxing the trap to increase spacing

• Finish characterizing the individual addressing setup
• Improve coherence times (comparable to global

addressing coherence)
• Apply crosstalk minimization algorithms with RFSoC
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Trap design and fabrication

Matthew Blain

Trap packaging

Ray Haltli

Trap design and testing

Peter MaunzThank you
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Backup slides



Phoenix trap

3.00kV 29.3mm x9 SE 1/8/2020 110
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I Phoenix trap



Phoenix trap



Phoenix Packaging

Solder Die Attach

• Removes all packaging organics from chamber
• Solder spheres laser solder "jetted" onto package

surface
• Smaller solder spheres are an option
• Spheres auto-center on pads after reflow process
• To be done: shear testing, LN2 dunk and shear

tests
• Smaller solder spheres and populate every pad
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Individual Addressing Relay Subassembly
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I Single-Qubit GST Results
• Process infidelity z: diamond norm

• This indicates that we have
gotten rid of all systematic
errors

Below the threshold for fault-tolerant error
correction!

See P. Aliferis and A. W. Cross, Phys. Rev. Lett. 98, 220502 (2007)

• Co-propagating gates have infidelity
comparable to microwave gates, but
diamond norm indicates some
residual control errors

• Counter-propagating gates are
noticeably worse, but are necessary
for two-qubit gates

• Lower fidelity presumably results
from anomalous heating and optical
phase sensitivity

Microwave Gates

Gate Process Infidelity 1/2 0-Norm
Gi- 6.9(6) x 10-5 7.9(7) x 10-5
Gx 6.1(7) x 10-5 7.0(15) x 10-5
Gy 7.2(7) x 10-5 8.1(15) x 10-5

Laser Gates 

co-propagating

Gate Process Infidelity 1/2 0-Norm

GI- 1.17(7) x 10-4 5.3(2) x 10-4

Gx 5.0(7) x 10-5 3(6) x 10-4

Gy 6.9(6) x 10-5 4(9) x 10-4

counter-propagating

Gate Process Infidelity 1/2 Q-Norm
GI- 11.1(6) x 10-4 22.8(1) x 10-4
Gx 4.0(4) x 10-4 13.2(6) x 10-4
Gy 4.1(4) x 10-4 8.4(8) x 10-4



I Two-Qubit GST
Typical Approach: Entangled State Fidelity

1
T = —

2 
(P(100)) P(111))) + —

4
Two-Qubit GST

• Provides a true process fidelity

• Requires an extremely stable gate to take
long GST measurements
without constant recalibration
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• Currently limited to the

symmetric subspace

Gate Proc 1 .11 dellity .. Diamond norm

L6 x 10-3  1  L6 x 10-3 28 x 10-3 I 7 x 10-3

Gxx OA x 10-3 ± LO x 10-3 27 x 10-3 ± 5 x 10-3

Gyy 0.1 X 10-3 ± 0.9 x 1L0-3 26 x 10-3 ± 4 x 10-3

GMS 4.2 x 10-3  1  0.6 x 10-3 38 x 10-3  1  5 x 10-3

Fms = 0.9958(6)

2 IIGA4-5110 = 0.08(1)

95% confidence intervals

• Much more rigorous
characterization

• Gate is stable for
several hours

X Z



Distinguishable Detection Less than 0.5% detection crosstalk (not
including threshold detection) with
>90% throughput measured on the PMTs
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I Experimental apparatus
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(Stretch goal for sympathetic cooling)
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Thunderbird Trap
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• Sandia's "claim to fame"
in microfabricated traps

• 2 metal levels
• 48 I/0
• No exposed dielectric

Evolving microfabricated ion traps at Sandia

1
4gh Optical Access Trap Platform \

• Sandia invented the high optical access
ion trap

• Realized through MEMS-like release
singulation process

• 4 metal levels realized for electrical
routing

• No exposed dielectric
• 94 I/0

Phoenix Trap

3400 10.0kV 37.9mm x13 SE 11/1/2018

• Reduction of rf dissipation in device
• Additional electrode segmentation to control long ion
chains

• Enable shuttling while maintaining trap characteristics
• Improve slot sidewall to enable continuous metal film
• Integrated trench capacitors on device
• Packaging with solder die attach on custom SiN
ceramic package (eliminates organics)



Coherence measurements test phase noise on RFSoC
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Coherence demonstrates low phase noise on the RFSoC system
System has demonstrated coherence times > 5s with both microwaves and
Raman transitions



1 Imaging system works!

• Adjacent beams are clearly separated, and about
4.5 p.m apart

• The beam waists are nearly the designed values.
• The apparent optical crosstalk is small and we

are in process to fully characterize
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Experimental apparatus —Trapping three ions
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Experimental apparatus —Trapping three ions
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I Experimental apparatus — two ion gates

At 2p3/2
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I Experimental apparatus — Individual addressing with Raman beams
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• Gates performed with microwaves or lasers

• lons addressed with 355 nm frequency comb

• Raman beams are power stabilized

200 um

6 um

4.5 um

♦
0.8 um

8 um


