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21 Interpenetrating Polymer Networks (IPNs)

How do different resin components change IPN formation, printability, mechanical
properties, and cure kinetics?

Phase separation and domain sizes depend on:

AGmix = AHmix - TASmix
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31 UV-Thermal Dual Cure Resin Formulation

UV-thermal Epoxy/acrylate Formulation 

dimethacrylate
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4 UV-Thermal Dual Cure: Acrylate Network Formation
Characterizing UV-cure kinetics by UV-Differential Scanning Calorimetry (UV-DSC): Different wt% diacrylate

Pulsed UV-DSC: 2.4s pulses followed by 5 min. equilibration Continuous UV-DSC: 10 min UV exposure followed by 5 min.

109mW/cm2(10% UV-DSC intensity) equilibration and 10 min background
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I5 Dual-cure Components: Acrylate Network

Storage modulus
measurements by

torsional DMA at 30°C

Longitudinal Transverse

oscillates

UV-cure profile 
In situ UV during printing

(varying exposure time

6.9 mW/cm2)

30-minute flood cure

(5.7 mW/cm2)

Cure Only (Print Only

Resin Formulation Storage Modulus (MPa)

Print Direction L T

15 wt% dimethacrylate 4 (1) 9 (1)

30 wt% dimethacrylate 30 (1) 24 (7)

50 wt% dimethacrylate 184 (25) 199 (6)

UV Cure Only (Print + UV Flood

Resin Formulation Storage Modulus (MPa)

Print Direction L T

15 wt% dimethacrylate 6 (1) 9 (4)

30 wt% dimethacrylate 41 (5) 31 (6)

50 wt% dimethacrylate 240 (12) 281 (20)

Acrylate network
controls the green

strength

1
No consistent L vs T

differences in modulus

IModulus increases after
flood cure.

Dimethacrylate
conversion incomplete

after UV cure.



I6 Acrylate Network and UV Power Determine Printability

15 wt% dimethacrylate at 25% UVP

(35 W/cm2)

15 wt% dimethacrylate at 5% UVP

(7 W/cm2)

10 wt% dimethacrylate at 85% UVP

(115 W/cm2)



7 Thermal Cure and IPN Formation

Resin composition and cure profile determine post-thermal cure
properties.

In 50wt% acrylate systems there is distinct phase separation.
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8 Dual-cure Components: Varying wt% Acrylate Resins

Phase separation depends on thermodynamic miscibility
and cure kinetics.

50wt% acrylate: Epoxy gelation is slow due to inhibition
by the acrylate network. Allows time for phase separation.

Lower wt% acrylate: Epoxy gelation is faster and phase
separation is reduced.
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9 Dual-cure Components: 50wt% Acrylate Resin

Phase separation and stability depends on
thermodynamic miscibility and cure kinetics.

Minix = Al-Imix — TASmix

At low curing temperatures (TASmix) smaller than
unfavorable AHmix

At higher cure temperature (-TASmix) contribution
overcomes unfavorable ¿Hmix

Kinetics at higher curing temperature are faster, trap
system before phase separation.

Additional cure increases acrylate network Tg and phase
separation cannot be detected by Tg.
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10 Post-cure: additional network conversion

DSC shows significant additional cure after 150°C cure, no additional cure after 200°C cure or post-cure.
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11 IPN Network Formation: 50wt% Acrylate Formulations

Post-cure can result in a single Tg but post-cure
temperature must significantly exceed Tg.
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12 IPN Network Formation: 50wt% Acrylate Formulations
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13 Summary

For diepoxy/triepoxy/dimethacrylate dual-cure resins developed for DIW thermoset printing:

For UV cure of the acrylate component the UV exposure profile has a significant impact on
conversion.

Acrylate network formation kinetics and green strength are key to printability.

In tricomponent diepoxy/triepoxy/dimethacrylate resin systems there is complex IPN phase
behavior dependent on both thermodynamic miscibility and cure kinetics.

Understanding resin structure-function relationships and reaction and cure kinetics is
required to tune final properties and printability.

In-depth knowledge of UV cure kinetics is necessary to enable print-process scale-up and
successful translation to more complex geometries.

The effects of thermal cure and subsequent thermal exposures on microstructure formation
and evolution are key to understanding environmental performance limits, property
stability, and aging.
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17 Approaches to DIW Printing of Thermoset Resins

1) In situ cure — full or partial cure during printing

Single mechanism cure (e.g. UV curable)

Dual-cure (UV/thermal, UV/UV,
thermal/thermal)

Printed shape maintained by 'green strength' of
partially cured resin

2) Increase zero-shear viscosity

Moderate-to-high filler loadings

B-staging

• Shear thinning

O High zero-shear viscosity maintains printed
shape
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18  Why AM Printing of Thermosets?

May offer specific AM advantages relative to thermoplastics
lnterlayer adhesion/homogeneity
Key for mechanical and dielectric properties

Pm EHT = 10.00 kV WD = 24.5 mm Signal A = SE2 Width = 4.764 mm

SEM of cross section of DIW printed thermoset resin

1'4 ni" EHT = 10.00 kV WD = 10.2 mm Signal A = SE2 Width = 2.761 mm

SEM of cross section of FFF printed Nylon



19 Sandia's Approach
Development of thermoset resins for DIW

Develop dual-cure systems to target specific materials
requirements.

Epoxy/acrylate (UV/thermal)

Other dual-cure mechanisms and polymer systems

Characterize resin component contribution to physical
properties and cure kinetics to enable design of tunable resin
systems.

Characterize DIW-unique factors that impact network
formation, extent of cure, and final properties.

Characterize thermoset stability and aging characteristics.

Develop printability metrics and optimize print techniques for
thermoset systems.

-

-40

>10:1 w:h



20  Sandia's UV-assisted Direct-Ink Write Capability

Adam Cook/Derek Reinholtz

• LED spot-curing system, 365 nm, max

power 40 W/cm2

• Controllable UV intensity (0-100%)

• Print nozzle diameter from 0.15-1.55 mm

• Table speed 0.01 mm/s to —60mm/s

• Print volume 300x300x200 mm
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21 Dual-cure Components: 50wt% Acrylate Resin

Resin composition: 50wt% diacrylate, 23wt% diepoxy, 19wt% triepoxy

UV-cured only samples cycled to 250°C show only one Tg on ramp down.

100/150°C UV+thermal cured samples have two Tgs, which evolve but do
not coalesce with short duration temperature cycle.
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22 Dual-cure Components: 50wt% Acrylate Resin

For cycling to 250°C for short dwell times no further evolution of Tg is
observed.

Resin composition: 50wt% diacrylate, 23wt% diepoxy, 19wt% triepoxy
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23 Dual-cure Components: 50wt% Acrylate Resin
The dynamic evolution of the epoxy/acrylate interpenetrating polymer
network is observed during thermal cure.

Longer post-cure does lead to Tg/microstructure evolution, depending on Tmax of post-cure.
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24 Dual-cure Components: Acrylate Resin

Storage modulus measured at RT before thermal cycling on
samples printed in a transverse geometry.

varying wt%
acrylate resin'

-g
5 wt%

g,
(7,

Tg measured by VT DMA to 250°C.
No significant differences between transverse and longitudinal Tg.

T

oscillates

wt%
dimethacrylate

Storage
Modulus (MPa)

Tg up
(°C)

Tg down
(°C)

5 wt% 870 (40) 213 197

30 wt%

50 wt%

779 (173) 195

700 (20)
94
190

183

115
183

30 wt%

50 wt%

Resin composition: varying diacrylate, remainder 1:1 diepoxy:triepoxy
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25 Dual-cure Components: Triepoxy Resin

-30wt% acrylate, 63wt% epoxy (di/tri).

The triepoxy component moderately increases
the Tg but has no significant effect on the
storage modulus of the 150°C cured samples.

1
Triepoxy

Tg Up
(°C)

0 wt% 159

20 wt% 191

30 wt% 195

40 wt% 199

Tg Down
(°C)

156

177*

184

192

Storage Modulus
(MPa)

776 (156)

771 (125)

836 (116)

643 (113)

Tg measured by torsional VT DMA to 250°C.
Storage modulus at room temperature.
*additional peaks in loss modulus plot due to sample slipping
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20 wt% Tactix comparison of VT 1st cycle from 2 the different batches with UV sample

20 wt% Tactix samples VT

AMT 1-33-1 VT Ramp Up

AMT 1-33-1 VT Ramp Down

AMT 1-39-1 VT Ramp Up

AMT 1-39-1 VT Ramp Down

AMT 1-33-1 UV VT Ramp D

0.25
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Temperature (°C)
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27 Sandia's UV-Thermal Dual Cure: Rheology

Rheology of resins is not
highly sensitive to
monomer compositions.
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resin compositions while i
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/EXPORT CONTROLLED INFORMATION

28 Supplementary: UV Exposure and Dose for Different Sources

Device

Dual UV source
(printer)

Wavelength
& Dose

365nm 1.2 6.9

power

 10

14.3

%

&20

57.3 106.3

Measured
Intensity

Measured
intensity

(mW/cm2)
29.0

Dose (190s) 228 1,311 2,717 5,510 10,88720,197

Post-print UV
cure

365nm 5.7

Dose
(1800s)

10,260

Photo-DSC

365nm - 45 109 207 327 413

Dose
(12s)

539 1313 2,486 3,918 4,958

Dose
(2.4s)

- 108 263 497 784 992

Dosage: Intensity*time of exposure

Dual UV source: continuous coverage for 190s

Post-print UV: continuous coverage for 1800s (30 min)

Photo-DSC: 5 x 2.4s flashes



29  UV-Thermal Dual Cure
Characterizing UV-cure kinetics by UV-DSC

Photo-DSC @365nm
Measured intensity

(mW/cm2)

Dose

(5 pulses, 12s)

Dose

(1 pulse, 2.4s)

0

45 109 207 327

539 1313 2,486 3,918

108 263 497 784

2

80%

413

4,958

992

-0-5% POWer

-0-110% Power

-a-2M Power

40% Power

-0-80% POWeir

5 pulses at 10% power
in UV-DSC matches
calculated dose for
printing at 5% power

UV-DSC of 2:1 epoxy:acrylate

formulation at different

irradiation powers



30 Baseline problem in continuous exposures with low acrylate %?
Expt ID = AMT1-43-1 50wt% long Mean
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