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Hydrogen degrades fracture toughness

J (kd m™®)

Crack Growth Resistance (J-R) Curve

800

600
400

200

Forged 304L Stainless Steel

Non-charged

H-Charged |
223K o=t
-m@‘-f"&g@&

&7 —he— 293 K, lower-strength
—@— 293 K, higher-strength
---{\:-- 223 K, lower-strength

---QO--- 223 K, higher-strength

—af— Non-charged

Aa (mm)

1.5 2

th

Microvoid initiation at

intersecting deformation-bands

223K

140 wppm H 8

H. Jackson, C. San Marchi, D. Balch, B. Somerday, J. Michael, Metallurgical and Materials Transactions A, 2016




Microvoid nucleation at intersection of =
planar deformation bands with GBs

Fracture processes in H-Charged 304L associated with void nucleation

Deformation bands
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What are the deformation bands and how do they depend on hydrogen?
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Focus for this talk: e
800 304L forging e on
* Structure of the planar _ —on
deformation bands = o 400
g 500 \
-Microstructure in specimens £ o \ 20% strain
. . 8 \ interrupt
from interrupted Tensile Tests. 5 30l mo
n 5506 interrupt
-nge forged 304L material 100 = T=293K
as in Jackson 2016 study  —"| Forged

Engineering Strain

* Relationship of the bands to o' martensite nucleation

-Influence of hydrogen on e-martensite formation
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Initial As-forged microstructure @z

EBSD Measurements
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Misorientation

» Some pre-existing twins within the microstructure
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As-forged microstructure: dense dislocation network [ &,

Diffraction Contrast Scanning Transmission Electron Microscopy
(DC-STEM)

1 micron

How does this microstructure evolve with plastic strain?




H increases density of deformation bands e,
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STEM: Insight to Development of Shear Bands (i) &=

As-forged and H-charged 5% strain 20% strain
(140 ppm H) (140 ppm H) (140 ppm H)
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Dislocation cells and Parallel bands of deformation Intersecing shear bands (twins,
: twins and e-martensite g-martensite)
SXIEhider Steeking famls (no a'-martensite observed) o' — martensite at intersections
Scanning 2l .
diffraction to =3l BRI Kcy techniques:
. sample . . .
determine o -Diffraction-Contrast STEM
interphase : : -Scanning nano-beam diffraction
crystallography at -Atomic-resolution STEM

nanometer-scale
resolution




Orientions and phases in shear-bands can be g ws

distinguished through nanobeam diffraction

Austenite: Austenite &  Austenite &
matrix & twin  g¢-martensite o'-martensite
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Orientations align close-packed planes and directions:
Austenite//e-martensite: Burgers relation
Austenite//a'-martensite: Kurdumow-Sachs relation




Hydrogen charging promotes =
g-martensite formation in shear bands

Nanobeam diffraction line-scan analysis
Twinning in non charged materlal

; ;
| Austenite Twin

>0.8
@ ® O
2056 NC 2 .
.% 0.4 ‘ ‘ " . ~ o
xo2 ‘ | .\ l ‘ “ Yl @ Yz @.

i /™ J J I — = = =

o

0 200 400 600 800 1000 1200
Scan Position (nm)

e-martensite in H-charged material e-Martensite

g ‘&U N""‘” RS

0 100 200 300 400 500 700 . .
Scan Position (nm) 5% tensile strain

1

Relatwe Intensﬂy




e

ed

ogen-Charg

ion bands
Hydr

d
M
=
p
(@

[ Pt
()

©

o
@

deta
| Non-Charge -

HRSTEM:

5% strain




0% Strain: limited initiation of s-martensite -
in non-charged material

Faulting in vicinity of
twin boundaries

1-2 layers of e-
martensite
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Promotion of e-martensite by hydrogen: )

an open mechanistic question

Understanding relationship to stacking fault formation and
partial dislocation motion is critical

-Reducitlon .|n S:E Ilf’l often invoked FCC to HCP transformation by passage
as exp anat.lon. “ntiuence on of series of (1/6)<112> dislocations
shear localization. FCC (v) HCP (2)
Existing experimental literature shows 1—C A L
small reductions in SFE with H. | s B ................... B ..............
(e.qg., Ferreira, Mat Sci Forum 1996,
Pontini’ Scrlpta Mat 1997) .+.:C".A ............... .B...A.. ...... + i
-Solute drag effects: A= B .. -
Preferential pinning of trailing partials by A B
hydrogen gives kinetic mechanism for fault
extension. (e.g., Sills et al., 2016) 1=C AL
B B
-Does not explain how faults would A A
order into required ABAB... stacking
sequence




Strain-induced o’-martensite transformation in 304L () ki
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At RT and low volume of transformation,
hydrogen promotes o'-martensite
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Higher Strain: Activation of multiple slip e

gives cross-hatched microstructure

20% Strain
Hydrogen
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martensite at shear band intersections () &k

DC-STEM,304L,
20% strain,
140 ppm H

Olsen & Cohen model for a'-martensite
nucleation at shearbands

Before intersection

Schematic from Bracke et
al. Scripta Materialia 2007
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Atomistic calculations

o' nucleation a
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Increased potency for o' nucleation at intersections of e-martensite

Increase of BCC a'-martensite with internal hydrogen may be a

secondary effect of hydrogen increasing s-martensite formation

18




Conclusions ()}

 Complex, multiscale evolution of microstructure under tensile
strain in forged austenitic stainless steel.

* Microstructure affected by presence of internal hydrogen
-Strain localization into planar deformation bands

-Twinning in non-charged 304L

-Both twinning and martensite formation in H-charged 304L
& —martensite in shear-bands
a-martensite at intersections of shear-bands

-¢ Umartensite provides a favorable pathway to o'.
-Likely that the initial increase in ' with H is a secondary

effect of hydrogen promoting s-martensite formation,
aiding o' nucleation

 Open mechanistic questions:

-Promotion of s-martensite formation by H?
-Low T reduction of o' by presence of H?
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