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Abstract
Cyber-Physical Systems (CPS) generally involve time-critical
components due to physical dynamics, therefore necessitat-
ing high-performance subsystems. This is also true in data
collection scenarios to infer physical phenomena. This pa-
per covers Libpanda as an example of a component that
has been designed to address performance issues in CPS
implementations. Libpanda is a C++ library that interfaces
software with a Comma.ai Panda device. Pandas are used
for installation in modern vehicles to read the vehicle CAN
bus, providing rich sensor data and limited vehicle control
through message injection. The motivation to design lib-
panda stems from the lack of performance in Python-based
code that runs on inexpensive hardware like a Raspberry
Pi. In such situations, Python code would result in utilizing
92% CPU while also dropping around 40% of the CAN packet
due to bottlenecks. Without using different tools, inconsis-
tent data collection means a loss of time-based vehicle state
interpretation. Libpanda addresses these issues through im-
plementation in a different language and implementation of
different design paradigms involving asynchronous calls and
multithreading. The Panda also features a GPSmodule that al-
lows multiple instances to synchronize clocks for large-scale
data collection scenarios. Libpanda has been designed with
time-synchronization in mind to aid in the measurement of
inter-vehicle dynamics. The performance improvements of
libpanda have resulted in it becoming an important compo-
nent in automotive dynamics research that requires a higher
technical performance in large-scale experiments.

CCSConcepts: •Computer systems organization→Em-
bedded software; Reliability; •Networks→Cyber-physical
networks.
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1 Introduction
Many vehicle manufacturers are on the stepping stones in
integrating the infrastructure needed to have full self-driving
functionality. Cruise control is perhaps one of the earliest
integrations of this automation, letting the vehicle operate
one of the driving aspects for the driver. Engine Control
Units (ECUs) have been integrated to optimize engine per-
formance and emissions and to share diagnostic information
with mechanics. Since 1996, the United States has required
the implementation of OBD-II (On-Board Diagnostics) for
ensuring emissions standards are met by vehicles [13].

One of the electrical protocols that have become a standard
in vehicles is the Controller Area Network (CAN) specifi-
cation [7]. Devices communicate over a bus using frames
that contain an address, timestamp, and data. This lets many
of the micro-controller-based devices in a vehicle commu-
nicate using minimal wiring through sharing a single bus.
CAN is used as part of the OBD-II interface and has been en-
abling the full drive-by-wire design of vehicles [1]. Though
initially the CAN bus may have only been used for ECUs and
emissions tracking, CAN buses are now used for things like
turn signals and radio functions. Implementation of other
advanced behaviors like Adaptive Cruise Control (ACC) has
also made use of CAN to listen to radar proximity data and
send control commands to throttle and braking mechanisms
[20]. This has also been used for Lane KeepAssist (LKA) units
where camera data can be used to operate steering torque
[5], again using a CAN bus for device communication.
Since many modern vehicles are using a standard elec-

trical protocol and are designing mechanical systems to be
drive-by-wire, it is possible to tap into a vehicle’s infrastruc-
ture and either collect CAN data or even inject other CAN
messages to control the vehicle with custom software. Most
likely due to safety concerns and trade secrets, information
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on system protocols is generally not formally disclosed. How-
ever some open-source groups and companies have decoded
messaging protocols, democratizing knowledge about CAN
networks. These groups may intend to use the information
to manufacture devices that can expand on the capabilities of
LKA and ACC so that cars can fully self-drive. Such devices
are only possible based on the state of modern cars and the
built-in rich sensor data. Off-the-shelf devices, such as those
provided by Comma.ai, can also be used in other use-cases,
like data collection from in-vehicle experiments.

2 Background
Cyber-Physical Systems have an intrinsic problem in regards
to gathering reliable data. The physical component typically
involves continuous time domains whereas the cyber compo-
nent is discrete. The aspects of time regarding data collection
can be critical to fully understand the physical phenomena.
This is especially true in distributed systems where one sys-
tem’s physical process may affect the physical process of
another system. Three important qualities of time can greatly
affect the quality of CPS data: rate, timeliness, and synchro-
nization.

1. The rate at which data are captured should be suffi-
ciently dense to observe the phenomena for which
one is looking to validate or control. This is impor-
tant for performing post-processing like derivatives to
understand the dynamics of data.

2. The timestamps of data should be consistent between
distributed objects within control. This is important
to understand timing characteristics like delays be-
tween different physical processes that recorded data
in separate distributed systems [8] [18].

3. The timeliness of data capture must be certain to do
integration or derivatives of data for observer-based
analysis or control or timeliness in health data [21].
[3] [10].

In the context of libpanda, data are intended to be col-
lected to understand the physical dynamics of vehicle-to-
vehicle (V2V) interactions based on human driving dynam-
ics, eventually leading to controller design. Data need to
be sufficiently well-timed to design safe controllers. Well-
timed data in V2V systems is certainly not a new idea where
efforts have been done to ensure timely data [4]. In some
cases, it has been found that 10Hz is required for the vehicle
to be aware of cooperative agents in platooning scenarios
[2]. In other scenarios, the vehicle needs a data-rate of 50Hz
for safety control involving collision detection [12]. Poor
response time and delays can cause system instabilities in
V2V platooning [9].

One example system that is also an inspiration for this
work is from an experiment held in 2017 involving 22 cars
on a ring road to observe the phenomena of traffic waves
[17]. This experiment was set up to record velocities and

fuel consumption of all 22 cars, observing their inter-vehicle
dynamics. One car named the CAT Vehicle has been outfitted
with special control capabilities and high data-rate recording,
along with an OBD-II interface recorder. The remaining 21
of the cars (not modified for control) were also outfitted with
an OBD-II style interface based on the ELM-327, a common
OBD-II interpreter [16] [11]. The OBD-II readers measured
fuel consumption and velocity using a small computer in
each vehicle. With this setup it seems that data collection
and analysis would be trivial: however, the lack of confidence
in data timing resulted in the need for further effort.

• The 22-car experiment data were saved from all the
vehicles but significant post-processing was required
to cross-correlate signal streams and to align the times-
tamps.

• Additional cameraswere required to obtain high-frequency
data on velocities, which were used to observe the
emergent traffic waves.

• The CAT Vehicle provided ground-truth information
on the high-frequency velocity estimates which could
be used to align the OBD-II recorder on-board the
CAT Vehicle with its velocities, and in turn, align the
velocity observed by the camera system to the CAT
Vehicle’s onboard data collection. See Figure 1.

• Thus while it was possible to extrapolate information
from all the vehicles in the experiment, the amount of
time required for post-processing and custom projec-
tion into the experiment time-frame far exceeded the
time taken during the experiment, making it unlikely
to be used for larger-scale experiments that cannot fit
onto a ring road.

The challenge, therefore, is the following: how to record
meaningful data with existing off-the-shelf technology that
would provide many of the needed correlations on its own?
We describe in the following section what limitations still
exist when it comes to being able to analyze the data streams
at multiple timescales as required in CPS applications.

3 The Comma.ai Panda
Comma.ai sells multiple flavors of Panda with the intended
use case of connecting with their EON lineup. The EON is
a smartphone that has been modified by installing a Linux-
based operating system that can run the custom self-driving
software designed by Comma.ai. The phone however does
not have the hardware capabilities to interface with vehicles,
hence the use of the Panda to interface CAN and power buses
on the car through the USB data and charging port on the
phone. Through this USB interface, power can be back-fed
to the phone for charging while the phone acts as a USB host
for the CAN message reading and writing.
The EON is intended to be a complete package for users

to add self-driving functionality to their cars. Fortunately,
the open-source nature of the entire hardware and software
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Figure 1. Left: Velocity estimates gathered from high-frequency observational cameras provided velocity estimates that could
be compared to ground-truth information from the CAT Vehicle, which validated those measurements (note: the velocity of
the CAT Vehicle is proportionally faster than the camera estimate, as it drove in a slightly wider arc than the other vehicles for
experiment safety). Right: OBD-II data was obtained at a much lower frequency, and required significant post-processing to
account for time synchronization. In order to obtain results for just a few hours of driving of the seminal experiment, weeks
of data processing had to be performed, based on shared velocity estimates from the ground truth data as observed by the
cameras and the CAT Vehicle.

stack leads to the ability to use components for other use-
cases. This includes the Pandas, which can be leveraged for
interfacing vehicles with custom control algorithms and/or
data gathering software. There are three types of Panda
available: White, Grey, and Black. All of these devices have
the same feature sets regarding communication with CAN
busses but have different connectors and other features. At
the time of writing, the Grey Panda is being phased out of
production since it features a similar function set to the Black
Panda.

1. White Panda: Can connect over WiFi as well as USB,
has noGPS. Uses anOBD-II connector andmust be cou-
pled with a Comma.ai Giraffe for connecting to CAN
buses other than the vehicle’s OBD-II port through
parts of the vehicle’s wiring harness.

2. Black Panda: A smaller device that connects to both
the OBD-II port as well as a type (based on vehicle
model/year) of Comma.ai’s Car Harness. Has no WiFi
and instead has GPS.

3. Grey Panda: Similar to the White Panda in requiring
a Giraffe for car wire harness connection, but also
similar to the Black Panda in having no WiFi in favor
of a GPS.

All three devices use the same fundamentals for connection
to the CAN bus, from the USB handling to the functional
electrical connections in the car. For our purposes and even-
tual use cases the WiFi functionality was not needed due to
the safety-critical nature of using custom controls. Also, the
GPS functionality adds another useful data point and adds

GPS time-synchronization. Therefore even though libpanda
may still be able to use the CAN-bus functionality on the
Panda White, only the Grey and Black Pandas are directly
supported. Also, even though the Grey Panda is technically
functional, only the Black Panda will be discussed due to
future reduced product availability.

Figure 2 Shows how a Panda connects between a computer
(Raspberry Pi) and the vehicle harness and OBD-II port. The
Pandas are incapable of connecting to a vehicle’s wire har-
ness without the use of either the Giraffe (White/Grey) or
Comma.ai’s Car Harness (Black). Each of these is tailored
for different vehicle makes since they typically use differ-
ent electrical connectors on their CAN-based modules. As
a small note regarding the usage of the word "fake" in the
figure: though a USB-C and RJ-45 cable, are used to connect
Comma.ai devices they do not abide by USB nor Ethernet
electrical protocols and are simply means of connecting cus-
tom electrical signals. Also, the Panda Black is intended to
act as a client USB device while providing power to the EON,
back-feeding power to the host. To safely connect this to
a normal computer, the power lines must be severed
to avoid hardware damage.

4 Panda Hardware/Firmware
The Panda is capable of reading from the CAN bus, as well as
sending its own messages. One of the use cases for the Panda
is to operate as an alternative implementation of Adaptive
Cruise Control (ACC). There is a problem, however, if a vehi-
cle’s native devices are sending their commands as well: then
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Figure 2. Connections of the Black Panda.

there will be message conflicts and potential race conditions
if the Panda also sends commands. This has the potential to
cause errors in vehicle subsystems. To circumvent this issue
the Panda has been designed to be installed in between the
CAN bus and particular modules in the vehicle that sends
the commands of interest (acceleration/steering commands).
This lets the Panda block commands from being sent to pre-
vent conflicts and to pass through all other commands. Thus
the Panda is capable of reading, injecting, and blocking mes-
sages. In pure data collection scenarios, all messages will be
passed through.
This method of CAN message interception is defined by

firmware in Panda’s micro-controller. In other words, this is
not something that can be customized dynamically by host
software using the Panda as a USB device. It is possible to
create new firmware and is something necessary if new sup-
ported vehicles come out with different command structures
or change message IDs. Currently, the intended use of the
Panda is to be used only on vehicles supported by Comma.ai.
Since the Panda is intended to be general-purpose for any
of the supported vehicles, the firmware is designed to be
configurable by the host device. If the host knows the in-
stalled vehicle model and makes then the host is responsible
for informing the Panda of the connected vehicle type. The
Comma.ai EON goes through a fingerprinting process to
determine the vehicle type by observing the CAN message
IDs and lengths. The setting for the Panda vehicle type is
called "safety mode" since it also does low-level safety check-
ing to disengage autonomous driving based on the driver’s
vehicle interaction. Setting the Panda Safety mode, therefore,
accomplishes a few different tasks based on the vehicle’s
state.

• Listens for the cruise control state by reading the dri-
ver’s inputs for ACC operation.

• Intercepts cruise control messages. If the Panda de-
tects a host computer is connected and wants to send
commands, then messages corresponding to ACC and
LKA commands are blocked—permitting the computer
to inject these commands.

• Checks the values that the car reports for steering
torque and pedal presses. If pedals are pressed, then
control is relinquished to the operator.

• Times out for safety. If host control is active and any
command is sent slower than 1Hz, then control is also
relinquished due to a safety timeout.

In the case of pure data collection, the Panda safety mode
does not need to be set. Regardless of the safety mode setting,
all CAN information is sharedwith the host device. Onemore
detail to note is that vehicle control has no impact on data
collection, meaning that all data can be collected even if
messages are blocked.

5 USB Interfacing
Libusb is a library commonly used to interfacewith USB hard-
ware devices [6] and is suitable for Panda communication.
There exist variants in both C/C++ and Python. The Panda
does exhibit a mode to emulate an ELM327 - a commonly
used OBD-II to USB integrated circuit and thus ELM327 data
recording software can be utilized. However to fully use the
capabilities of the Panda regarding GPS and CAN message
interception, particular messages need to be sent by a cus-
tom hardware driver. Libusb lets a developer send commands
needed by the Panda to set particular safety modes and read
from the GPS.

The general USB protocol features four different methods
of data transfer, however, only some are used by the Panda:

1. Interrupt: Used to signal immediate data transmissions.
Unimplemented by the Panda.

2. Isochronous: Used for high data rates. Unimplemented
by the Panda

3. Bulk: Used exclusively for CAN bus communication
by the Panda

4. Control: Used to configure the Panda (e.g. safety mode)
as well as read GPS information

6 Python USB interfacing
Examples provided by Comma.ai involve the implementation
of libusb in Python to read data from the panda. To check
the feasibility of the comma.ai Panda, a minimal example in
Python was created for data-collection scenarios. This ex-
ample continuously polls the Panda device CAN bus buffers
and writes the data in a CSV format to file. This is based on
libusb bulk transfer calls.
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Using this code on Raspberry Pi 4 the Python process ex-
hibited 92% CPU usage. Figure 3 shows initial data collection
from a single CANmessage with an expected rate of 50Hz. By
plotting the differences of time between packets over time,
evidence of missed packets can be seen. Unfortunately, these
results implied that custom controllers would have no trust
in the safe operation of the vehicle if radar data was missed.
Even in data collection scenarios, loss of data could mean
a loss of important data interpretation. The performance of
the Python solution can be improved by the use of a higher
performance computer like a laptop however this is not a
scalable solution. Since this was an issue of software perfor-
mance there was clear motivation to explore enhancements
so that data can be collected in large-scale experiments. This
led to the exploration of optimization through both multi-
threading and a faster performing language.

Figure 3. Time differences of CANBusMessages with ID 180
using Python-USB interface. At an expected regular rate of
50Hz, the resulting differences around quantized increments
of 0.02 seconds away from 0.02s suggest packet loss.

7 Libpanda
Libpanda is designed to be a C++ library intended for a
variety of use cases. As implied by the name, libpanda is a
library for interacting with Comma.ai Panda devices through
USB protocol abstraction, providing data of interest from
the CAN bus and GPS as well as device control. Libpanda
can be used for data collection or vehicle control and be
integrated into utilities, service scripts, and the Robotics
Operating System (ROS). Since libpanda stemmed from the
lack of performance of Python running on a Raspberry Pi,
this library is tested and tuned based on these platforms.

7.1 Threading
The single-threaded Python implementation resulting in 92%
CPU utilization from the top on a 4-core Raspberry Pi 4.
This suggests that only one thread is using an entire core
and that more processing power may be available if needed.
This is likely the reason that CAN packets were dropped at a
40% rate. Restructuring the polling methodologies of libusb

could result in multi-core usage and reduce packet drop rate.
To facilitate multithreading, a library called libmogi was
partially used for its pthread-based abstraction for C++ [14].
This library was chosen purely by the developer’s familiarity
with the library. Within the C++ namespace of Mogi exists
class Thread.
Mogi::Threads are abstract classes that use terminology

from UML Statecharts, specifically regarding the virtual func-
tions of entryAction(), doAction(), and exitAction(). Upon
starting a thread, entryAction() is called if any thread initial-
ization is needed. doAction() is then called consistently until
the thread is told to be stopped. Once the thread has been
stopped and doAction completes, exitAction() is called for
any cleanup if needed.

A concrete implementation ofMogi::Thread then canmake
use of thread control functions start(), pause(), resume(),
stop(), lock(), and unlock(). Usage of lock() and unlock() are
based on pthreadmutual exclusion to prevent race conditions.
Calling start() will start the thread, causing entryAction() to
be called once followed by infinite calls to doAction(). Calling
pause() will temporarily prevent further calls of doAction(),
until resume() is called. Calling stop() will stop calls of doAc-
tion() then call exitAction() before stopping the thread.
The design of Mogi::Thread is simple and sufficient for

usage in the design for libpanda. This threadingmethodology
is used for handling USB as well as parsing CAN and GPS
data for data gathering.

7.2 Observer Design Pattern
The observer design pattern is used for sending immediate
notification messages to objects from an associated parent
object [15]. A class defined with an observer style pattern
holds a list of observer objects, invoking methods within
the observers so that the observers may handle the message
as needed. This is effectively an object-oriented method of
callback functions. Due to the safety-critical nature of a CPS,
the use case of libpanda, immediate notifications help mit-
igate issues of latency. Without a callback methodology, a
thread would need to constantly poll another object until
data is ready which would increase the CPU usage of each
thread. Observer patterns are used for USB events to notify
the handler of GPS and CAN handler objects which are also
notifiers that can distribute GPS and CANmessage to further
observers.

By employing C++, a std::vector<> is used to contain a list
of observers allowing for multiple observers to be attached
to a notifier. Classes that wish to be notified need to inherit
from an observer parent class. Notifications occur through
a virtual method defined in the parent class. This means
that base classes can be designed to be highly cohesive. For
example, one class can be designed for GPS data logging
while another can be designed for synchronizing the system
clock and be within the same vector of observers. Currently,
there does not exist any priority mechanism, and the order
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in which observers are added is the same order that they
will be executed on each notification. A caveat to using this
notification scheme is that a person designing a base class
needs to be fast with the data so that other processes are not
blocked. This can be mitigated by implementing a queue type
of method and have a separate thread for data consumption
based on the queue.

7.3 Asynchronous USB Handling
The prior implementations of writing to CSV files in Python
involved the procedure of requesting data, then reading data,
then writing formatted data to the file before repeating. This
effectively causes a potential bottleneck in requesting new
datawhile waiting to save data. Tomitigate this issue an asyn-
chronous method was integrated to allow for simultaneous
libusb requests and CSV logging. To check against synchro-
nous methods, libpanda is designed to be configurable as
synchronous or asynchronous. A class named Panda::Usb
has been designed to manage the methods of asynchronous
or synchronous calls.

The Python implementationwas purely synchronous through
the libusb calls of libusb_bulk_transfer() and the companion
method libusb_control_transfer(). This is a blocking call that
can be terminated based on a set timeout. In order to perform
an asynchronous bulk transfer, basic libusb control and bulk
transfer functions must be avoided. For implementation in
libpanda, a modified version of libusb_bulk_transfer() and
libusb_control_transfer() has been created: asyncBulkTrans-
fer() and asyncControlTransfer(). These functions are based
on the source of libusb_bulk_transfer and libusb_control_transfer,
respectively, however, they have been truncated to avoid
waiting for the submitted transfer to be finished. Libusb is
expected to perform a callback function with user data on
completion, so a static member function is provided and
is expected to receive a Panda::Usb object for handling the
libusb events.
Panda::Usb inherits from Mogi::Thread such that doAc-

tion() regularly performs libusb_handle_events_timeout(),
which handles the submitted transfers and invokes callback
functions as needed. The callback function for bulk and con-
trol transfers provided to asyncBulkTransfer() and async-
ControlTransfer() checks the status of the submitted transfer.
If libusb reports that the data is valid and complete, then the
list of transfer observers is notified.
In order to allow both synchronous and asynchronous

methodologies without a large restructuring, calls to libusb
and the asynchronous transfer methods are abstracted into
methods called requestUartData() and requestCanData(). Ei-
ther of these is called based on a configurable option in
Panda::Usb. The asynchronous pipeline has been described
above regarding the callback methodology with observers.
The synchronousmethod undergoes a similar pipeline, where
requestUartData() and a requestCanData() do not return any

data since data is is passed through observers. The synchro-
nous configuring simply notifies the observers immediately
after performing a libusb_bulk_transfer() or libusb_control_transfer().
This reduces the observer framework into a set of procedural
calls that occur during a call of requestCanData() or reques-
tUartData().
A final note on the threading implementation and syn-

chronous calls is that threading is only needed for the asyn-
chronous configuration of Panda::Usb. This is because syn-
chronous calls already invoke libusb_handle_events() and
therefore do not need to be handled externally. In doAction(),
the thread will be automatically paused if the mode is set
to be synchronous. This method of implementation results
in using identical pipelines for both asynchronous and syn-
chronous configurations without needing refactoring on a
per-use-case basis.

7.4 CAN Message Handling
A class named Panda::Can is integrated to manage the han-
dling of CAN message reading and parsing. This class uses
the Panda::Usb to invoke regular bulk read requests at the
proper USB endpoints. The panda does not directly trans-
mit raw data from the CAN bus, instead, it decodes a CAN
frame into data of interest like the message ID, bus, time,
and data. Panda::Usb takes this stream of data and parses it
into a Panda::CanFrame for convenience. Panda::Can works
with Panda::Usb by subscribing itself as a CAN data ob-
server. Upon each new message notification, Panda::Can
further applies the observer pattern to notify observers of
new Panda::CanFrames. This structure is intended for future
integration of libpanda in middleware like ROS.

Each CAN message fits into 16 bytes of data. Through ex-
perimentation, it was found that bulk read requests will only
be successful if the read request is at a minimum of 64 total
bytes, or a minimum of 4 total CAN packets. It is possible to
read more packets in a single read but this introduces a lack
of data timeliness.

Since the Panda does not provide a feature to check if data
is ready to be read, it is up to the host device to regularly
attempt data reads. These regular intervals may vary for
different vehicles depending on the message rates on the bus.
For a Toyota RAV4, we found regular polling intervals of
500us to be sufficient.

Panda::Can also features methods of convenience for data
logging. End-user code can set logfile names to enable log-
ging both raw data directly from the bulk transfers to file, as
well as a CSV-formatted variant for easier plotting. Part of
the CSV-formatted data also includes system time instead of
the CAN bus time to understand the true time of arrival of
data. To avoid similar issues to that of the Python variant by
blocking further CAN read, data is sent to a queue to prevent
blocking the Panda::Usb threads and ensure timeliness of
data while formatting data for files.
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Table 1. Python vs libpanda

Python libpanda
CPU Usage 92% 35%
10s File Size 1.3 MB 2.2 MB

Table 2. Comparisons between running top and measuring
file size over the same time period in the same Toyota RAV4

7.5 GPS Message Handling
GPS is handled in a very similar manner to CAN messages,
through a class named Panda::Gps. The design is nearly
identical with subtle differences due to requiring USB control
transfers instead of bulk transfers. The GPS module in the
Panda is only capable of sending data at a maximum of 10Hz
so the polling interval has been set at 100Hz to ensure data
timeliness while not causing a high thread CPU load. The
GPS module reports NMEA formatted strings, so just like
Panda::Can messages are parsed for convenience using a
library name NMEAParser [19]. Fully parsed NMEA strings
are then sent out as notifications to any GPS observer if
needed. As before, data can also be logged as raw NMEA
strings or as a CSV-formatted file containing system time,
GPS time, the GPS module state, quality, pose, motion, and
satellite information.

An additional class named Panda::SetSystemTimeObserver
can be attached to a Panda::Gps as an observer. This is a con-
venience class intended to synchronize the system’s time
based on GPS time. The original intent of this class is to
set a Raspberry Pi’s clock on startup since a battery-based
Real-Time Clock (RTC) is not included. This can be useful
in experiments where multiple cars are needed in the same
experiment and data needs to be compared between multi-
ple systems, just like in the 22-car experiment as shown in
Figure 1.

8 Comparisons
Table 2 shows the results of a test performed in the same
vehicle that remained running during each test. The vehicle
is Toyota RAV4 equipped with a RADAR for ACC. The com-
puter for data collection is a Raspberry Pi 4. The first test
shows the CPU usage measured using the "top" command.
The implementation of libpanda shows a significant improve-
ment over the Python code, running at 35% versus 92% CPU
usage. Libpanda in this case was also recording GPS data
while the Python version had not yet integrated this feature.
GPS data is only configurable to a maximum of 10Hz so it
may not impact CPU much, regardless asking more from the
Python code may result in more dropped packets.
During the initial development of libpanda, it should be

noted that the use of threads and the observer design pattern
were not integrated for initial tests. We were unsure if the

packet dropping issues were a result of the Panda or the
Python code, so a quick C++ port of the Python code was
first built to check for the feasibility of the language change.
The first test of C++ code, which was functionally identical
to the Python version, exhibited 50% CPU usage with no
packet loss. This was a clear sign that moving to C++ was
effective and what triggered the design efforts of libpanda.

Evidence of dropped packets was shown earlier in Figure
3, however, this phenomenon is also observable through ob-
serving file size growth over time. By running each version
of data collection for a set amount of time, the expected file
size from each session should be very close. Table 2 also
shows the output file sizes of libpanda and Python after run-
ning each for approximately 10 seconds. This data suggest
that Python was only able to record 59% of the data relative
to libpanda, a significant improvement. Though improved,
this is not evidence for not dropping packets.

Figure 4. Time diffs of an expected 50Hz message using
libpanda showing a significant improvement over the Python
implementation shown in figure 3

Evidence for an improvement in the reduction of packet
loss can be seen in Figure 4. This signal is the same 50Hz mes-
sage ID recorded in Figure 3. As can be seen, the messages are
close to a time difference of 0.020 seconds compared to the
jumps of up to 0.120 seconds from the Python version. This
implies that during this recording session, no packets were
missed since a single missed packet would exceed a time
difference of 0.040s which is not seen in this figure. There
are however a couple of items that should be noted regard-
ing this data. First, the current implementation of libpanda
results in a set of buffered data on the Panda at the start of
a recording session that gets read nearly all at once. This is
the anomaly seen at the very beginning with data arriving
with a time difference of 0.002-0.006 seconds. Implementing
a better initialization procedure would eliminate this. The
second note is in regard to the very clear outliers that stray
away from an expected 0.020s time difference. The majority
of these outliers are symmetric outlier about the average
time difference of 0.020s. Given regular message intervals,
this suggests that at times when a message is read too late
the next message will be read much earlier. These outliers
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could be the result of many things, either from the imple-
mentation of libpanda, a process on the Raspberry Pi causing
delays in libpanda execution time, the minimum of 4 packets
per bulk transfer, or the CAN bus on the vehicle being busy
with other messages. Approximately 95% of the data is very
close to the expectation, falling between 0.019s-0.021s, or
47.6Hz-52.6Hz.

9 Conclusion
Libpanda has been shown to address the initial issues with
the simple Python-based code. Along with addressing packet
loss and CPU utilization libpanda also has included meth-
ods of recording GPS data in addition to CAN data and has
introduced methods to synchronize clocks in multiple vehi-
cle experiments. This provides data that requires less post-
processing to align data, ensuring proper data interpretation.
By addressing these issues, usage of the Comma.ai Panda
is possible with low-cost hardware like the Raspberry Pi
for data collection, enabling scaling experiments to many
vehicles with less of an impact on the budget.

Further work can be done to further optimize the perfor-
mance and cost of the system. The Panda device currently
only allows for minimum block sizes of four messages to be
sent, introducing small delays in the first messages stored
in the queue. The panda also must be regularly polled in-
efficiently to check if data is available. Firmware changes
could alleviate these shortcomings, however, in their current
state, they are very workable. The current solution involves a
set of off-the-shelf hardware that is very flexible, eventually
cost could be reduced further by making a hardware solution
that accomplishes the functions of both the Raspberry Pi and
Panda for data collection.
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