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Abstract
This paper describes an approach to identify undecoded
Controller Area Network (CAN) data from one vehicle, based
on the data similarity to previously decoded CAN data from
another vehicle. Modern vehicles communicate data and
signals from on-board sensors and controllers through the
CAN bus. Networked sensors contain information such as
wheel speeds, fuel gauges, turn signals, and radar signals.
In the effort to use this information and make cars safer
through human-in-the-loop CPS, signals on the CAN bus
such as wheel speed and radar can be used to support the
driver. However, data from the CAN bus are encoded and in
some cases compressed, and different car manufacturers use
different encoding schemes to represent data on the CAN
bus. With hundreds of messages and thousands of possible
encoding schemes to consider, it is laborious to identify the
unique bits and encoding schemes that represent signals on
each vehicle. In this study, we propose amethod for training a
Long Short-TermMemory (LSTM) neural network on known
radar signals from one vehicle manufacturer, a Toyota, and
successfully apply the network to identify the encoding for
radar signals on a different vehicle, a Honda. By augmenting
the training dataset with varied encoding bit boundaries, a
small and lightweight LSTM network can learn to recognize
radar data across different encoding schemes. The results are
an improvement on exhaustive-search algorithms and other
methods previously used in the search for such signals.

CCSConcepts: •Computer systems organization→Ex-
ternal interfaces for robotics; •Computingmethodolo-
gies→ Learning paradigms; Neural networks.
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1 Introduction
Modern vehicles integrate a variety of sensors which com-
municate through an on-board network, the CAN bus. The
vehicle’s sensors, such as encoders, radar sensors, and prox-
imity sensors, communicate across the CAN bus by broad-
casting a message with a unique ID, called a message ID,
for each type of message. A single message on a CAN bus,
which is generally a 64-bit signal, can contain within it mul-
tiple sensor measurements—signals. However, the specific
encoding scheme for these signals on the CAN bus, and the
identifying message ID for each message, are design choices
that vary from vehicle to vehicle. Signals within a message
are delineated by consistent bit locations—bit boundaries—
and are interpreted with a specific endianness, signed-ness,
scaling, and offset (see Figure 1).
CAN data from many modern vehicles can be read from

an easily accessible OBD-II port. However, currently, in order
to interpret the unlabeled stream of data from the CAN bus,
proprietary software from the vehicle’s manufacturer must
be used. Alternatively, a CAN labelling file, called a DBC file,
can be manually developed by searching through thousands
of possible encoding schemes. Some labeling schemes have
already been developed for specific vehicles through brute-
force methods. However, these methods are time-intensive
and yield results specific to each vehicle model.
The work in this paper reduces the time spent searching

for the exact encoding used for the radar signals on the CAN
bus by finding highly likely bit boundaries where signals are
located on a CAN bus message. We used labeled radar data
from a Toyota RAV4 to train an LSTM neural network to
distinguish between radar signals and non-radar signals and
be robust to incorrect encoding assumptions, thus making
the search for radar signals on non-labeled CAN data much
faster.

2 Problem Statement
CAN data is organized into messages labeled with a mes-
sage ID, timestamp, bus number, and data 8 bytes (64 bits) in
length. Each individual signal is identified by a unique mes-
sage ID, a set of bit boundaries for where the signal should
be interpreted within the 64 bits of the message, and an en-
coding scheme for the signal. CAN data was obtained from
both vehicles (the Toyota and Honda) by using a black panda
kit developed by comma.ai, which allows for interfacing to
the OBD-II port. Libpanda was used to interpret the signals
from the black panda kit.

27

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3459609.3460528
https://doi.org/10.1145/3459609.3460528
https://doi.org/10.1145/3459609.3460528
https://creativecommons.org/licenses/by/4.0/


DICPS ’21, May 18, 2021, Nashville, TN, USA Paul Ngo and Jonathan Sprinkle

Figure 1. A long CAN message is interpreted with specific bit boundaries and an encoding, resulting in a signal
output. A. A CAN message consists of a series of 64 bits which change each timestep. Bit boundaries delineate the start and
end of a possible signal. B. A signal is interpreted using an endianness, signedness, scale, and offset. C. A final interpreted
signal.

For the training data, we have a DBC file which labels the
known bit boundaries and encoding scheme for radar data
on the Toyota vehicle. This encoding scheme includes three
main components: a) the endianness, b) the unsigned/signed
nature of the signal, and c) the scale and offset of the signal.
We also have unlabeled CAN data from a Honda vehicle,

which includes 106 different message IDs, with data 8 bytes
in length. The goal is to findwhichmessage IDs contain radar
data on the Honda vehicle, as well as possible bit boundaries
within the messages which correspond to radar messages.
There are likely multiple CAN message IDs which contain
radar messages.
The search for radar signals is non-trivial. The hundreds

of other messages on the Toyota RAV4 and Honda include
many different types of signals. There are signals of fixed
values of 0s or 1s, continuous signals (such as wheel speed
and steering angle), indicator signals (such as for a turn
signal or for a dashboard setting), counters (signal values
which count upwards at a fixed rate), and checksums (signal
values which verify the correctness of another signal). The
challenge in the creation of a radar-finding algorithm is to
find a signal which not only demonstrates continuous signal
behavior—when the radar is tracking an object—but also
indicator behavior—when a radar signal is unable to track
an object, the signal often changes to a fixed value. Such
an algorithm must be able to distinguish between a radar
signal and other signals which may share some similar prop-
erties. Radar data is also highly discontinuous. While other
signals on the CAN bus may be more easily recognized and
classified with standard non-neural-network methods for
signal classification, radar data does not track a continuous
value. A radar signal may switch to track a different object
suddenly—resulting in signal discontinuities—or lose line of
sight with an object—resulting in a fixed unknown value.

3 Related Work
LSTMs, long-short-term-memory neural networks, are a type
of neural network called a Recurrent Neural Network (RNN).

LSTMs demonstrate excellent performance at predicting time
series data [1] and classifying time series data [2].
LSTMs have been demonstrated in the past to be effec-

tive at classifying ECG signals [3] and brain-wave data [4].
These signals are similar to CAN data in that an LSTM can
learn to identify important features of the complex signal
which cannot feasibly be determined manually. While a valid
parameterization for CAN signal classification may be man-
ually computed, the speed of using an LSTM can outperform
classification by hand.

LSTMs also demonstrate excellent performance on classi-
fying the modulation of signals, even with introduced noise
[5]. Many vehicle signals have frequency-related or cyclical
behavior based on the nature of the signal. In the context of
our problem, the rate at which a radar signal loses track of
an object which it is tracking or switches to track a different
object can be roughly approximated with driving speeds.
Stacking multiple layers of RNNs, such as LSTMs, allow

for the possibility of developing a latent space for higher
order features of data, including different time scales and
signal relationships in time [6]. Developing a model of higher
order features may be useful for classifying signals even with
incorrect bit boundary placements, which is demonstrated
with our results in this paper.

LSTMs have been successfully applied to CAN bus data for
a variety of applications. Qin et. al. applied an LSTM network
to detect anomalies in CAN data [7], and Hossain et. al. used
an LSTM network to detect malicious agents on a CAN bus
[8]. Driver behavior and profiling was also demonstrated
through the use of Convolutional Neural Networks (CNNs)
working in combination with LSTMs [9, 10]. These examples
demonstrate that LSTMs can be used to classify and describe
the structure and nature of CAN bus signals.
Different CAN bus signals, such as wheel speed, have

previously been found using LSTM networks. Huybrechts
et. al. trained models to extract wheel speed data signals
from the CAN bus and demonstrated that additional GPS
data improved signal identification performance [11]. We
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further develop this work by demonstrating that an LSTM
can be applied to highly discontinuous signals such as radar
signals, and that information about signal properties can be
transferred across different vehicles.

Similar larger-scale neuralmachine learningmethods have
been applied to reverse engineer the encoding of signals on
the CAN bus, such as the work from Verma et. al. on CAN-D
[12]. Our work extends the possibilities of applying machine
learning to signals which are highly discontinuous, unlike
the identified signals described in Verma et. al.’s work which
track continuous values.

4 Solution
A lightweight LSTM network was designed to distinguish
between radar and non-radar signals, and be robust to incor-
rect bit boundaries. The network used two LSTM layers of
128 units each, followed by a fully connected ("dense") layer
of 16 units (with linear activation), a dense layer of 128 units
(with ReLU activation), and a dense layer of 2 units (softmax
activation). Dropout with a rate of 0.5 was used between the
second LSTM layer and the first dense layer.

An LSTM was chosen to distinguish radar signals because
it performs well at classifying time series data. LSTMs im-
prove upon standard RNNs with a modification to improve
the ability for the network to learn long-term time dependen-
cies between the input sequence. Figure 2 shows the general
layout of an RNN. In the basic version of an RNN, the repeat-
ing modules’ output and time series input is concatenated
and passed into a single function, such as tanh. However,
with an LSTM, the repeating modules are modified so that
the network can selectively learn how strongly any repeat-
ing module’s output should affect the next repeating module,
or be passed along the network to the next layer.
The reason for using a relatively small network was to

be able to efficiently run the network across multiple mes-
sages with several combinations of bit boundaries. Dropout
was applied and a small layer size for the first dense layer
was chosen to deter over-fitting. The LSTM was applied to
identify radar signals in two steps: training and prediction.

For training, the labeled training data was specially modi-
fied in order to allow the LSTM layer to learn how to identify
radar signals even if a bit boundary is incorrectly guessed
during the prediction step.
Longitudinal radar data and non-radar signals were ex-

tracted from the Toyota CAN bus data using previously
known bit boundaries that were developed as part of an
open-source project [13] in an existing DBC file. These data
were established as ground truth through several different
methodologies. (1) The distance between fixed obstacles was
recorded using measurement tape, and readouts were ob-
tained from CAN data for these fixed obstacles while the
vehicle moved; and (2) a coordinated drive was conducted
between two vehicles, where velocity and GPS position of

Figure 2. Depiction of the general layout of an RNN.
Time series input is fed into several repeating modules. Each
repeating module has output which contributes to the mod-
ule associated with the next value in the time series.

each vehicle was recorded. We determined relative speed and
velocity information from the CAN readout and compared
these with data from the leading vehicle.
An additional perturbation to the data was performed

to generate additional training samples. Additional signal
data for both radar and non-radar signals were generated
using randomized shifts to the bit boundaries around the
signals. The randomized shifts, S, were drawn from a uniform
distribution between 1 and 5 bits, inclusive. Seven (7) distinct
perturbationswere performed to generate additional training
samples, resulting in an eight-fold increase in training data
volume. The perturbations on the bit boundaries for each
signal were:

• Shift both left and right bit boundary to the right by S
• Shift both left and right bit boundary to the left by S
• Shift right bit boundary to the right by S
• Shift right bit boundary to the left by S
• Shift left bit boundary to the right by S
• Shift left bit boundary to the left by S
• Shift left and right bit boundary to the left and to the
right by S, respectively

These perturbations to the bit boundaries were added so
that the neural network model would learn to identify radar
signals even when a guessed bit boundary was incorrect.
Therefore, not every bit boundary combination would need
to be evaluated for a radar-like signal score during prediction.
Close bit boundaries would still score highly, allowing rough
bit boundaries to be found quickly.
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Figure 3. Graph of identified signal in Honda CAN
data, based on bit boundaries predicted by the LSTM
network.

All signal data were then re-sampled to 0.01s per time-step
using the nearest point for the interpolation. This was impor-
tant because some signals rely upon very specific changes
to very high and very low values, and using a continuous in-
terpolation, rather than a nearest-point interpolation, would
modify the data signals unpredictably. The data were inter-
preted to be big-endian and unsigned. The data were indi-
vidually scaled to be between 0 and 1, and then split into
1000 time-step lengths (100s) for the LSTM to train and test
on. Finally, the LSTM was trained on shuffled data to predict
the likelihood of two classes (radar and non-radar), using an
80:20 training and testing split, and achieved an test classifi-
cation accuracy of 0.7125 over 9 epochs of training. Training
took 35 minutes on an AMD Ryzen 5 2600 (no GPU).
For prediction, unlabeled signals were generated from

each message ID from the Honda vehicle. We fixed bit bound-
aries to be of length 8 and iterated through all possible start-
ing positions separated by 4 bits to generate possible signals.
For the 106 message IDs, this generated 2552 signals. These
signals were re-sampled to 0.01s, scaled to be between 0 and
1, and separated into 100s lengths, as before. The trained
LSTM was used to generate predictions about whether each
signal was a longitudinal radar signal. The output of the
predictions were scores of each message ID and bit bound-
ary combination. Prediction took about 4 hours on an AMD
Ryzen 5 2600 (no GPU), running on a single core (without
parallelization).

5 Results
Predictions from the model estimated the probability of each
CANmessage ID and bit boundary combination containing a
radar signal. We expected that a group of similar message IDs
would all be scored with a high probability. This is because

car manufacturers commonly identify signals from similar
sensors to have message IDs close to one another. When
tabulating the results of the LSTM predictions, this was the
case: of the 30 signals which were rated to be radar signals
with a probability of 0.9 or higher, 25 of the signals were
between message IDs 1040 and 1090, inclusive. This suggests
that the radar signals on the Honda vehicle are all grouped
together on these message IDs, as expected. Time series plots
of the signals with high radar probability indicates that the
signals are very likely to be radar signals.
A longitudinal radar signal is characterized by a semi-

continuous set of values, broken by intermittent lower values
andmax values. The intermittent values are usually clustered
together around the same lower value, or equal to a fixed
value, such as 0. Figure 3 shows one of the extracted signals
from the algorithm which demonstrates these characteristics.
Predicted radar signals were verified by generating sig-

nals using bit boundaries within messages highly scored by
the LSTM network. The behavior of the predicted radar sig-
nals were compared alongside time-synced dashcam footage
recorded on the Honda vehicle. We know that a leading ve-
hicle that the Honda is following will be tracked by radar on
the Honda vehicle as a part of Honda’s Collision Mitigation
system. Therefore, we compare the predicted radar signal
value to the visual distance to a leading vehicle in the same
lane as the Honda.

Figure 4 verifies that a signal found by the LSTM network
indeed is a radar signal, by showing frames from a dashcam
video alongside the predicted radar signal. We were able to
verify the relationship by matching the timing of the flat
sections of the radar signal to the dashcam video showing
the Honda and leading car at stoplights. The discontinuous
behavior of the radar resumes after the Honda loses track of
the leading vehicle.

6 Future Work
Further work needs to be performed in order to verify com-
ponents of the radar messages, which may include additional
radar signals. The signals can be verified by running a con-
trolled test by comparing the radar data to known values
for driving the Honda vehicle alongside objects placed at
known locations, or validating from existing coordinated
drives between the Honda and Toyota vehicles. In these co-
ordinated drives, the known radar signals from the Toyota
vehicle can be used to validate the predicted radar signals
on the Honda vehicle. Additional radar-related signals on
the CAN bus of other vehicles such as the Toyota include
confidence scores, relative velocity, etc., and we would like
to identify and parse those signals in order to further inform
the properties of human driving when extracting data from
the CAN bus.
In the future, a similar network architecture can be used

to transfer known signals from one vehicle to another, to
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Figure 4. Verification of an identified radar signal. The Honda vehicle is following another leading vehicle in the same
lane. At time A, the Honda decreases its distance to the lead vehicle as both come to a stop at a red light. At time B, the Honda
comes to a stop behind the leading vehicle, matching with the flat part of the radar signal. The dashcam video matches with
the radar signal behavior for a total of 346 seconds, at which point the Honda stops following the leading vehicle.

identify different CAN bus signals, especially highly discon-
tinuous signals. Such a network architecture could be used
in an auto-encoder to represent different signal types in a
latent vector space and allow for efficient and accurate clas-
sification of CAN bus signals across multiple vehicle makes
and models.

7 Conclusion
Labeling and decoding signals on a vehicle’s CAN bus, even
with many discontinuities, can be greatly assisted by train-
ing a small LSTM network on previously labelled data on a
different vehicle. Such an LSTM network can be trained to
be robust to bit boundary perturbation of signals through
the manipulation of training set data, which allows for much
faster identification of rough bit boundaries for unlabeled
data. Furthermore, the LSTM architecture of a dropout con-
nection from an LSTM layer to a low-neuron-count dense
layer with linear activation proved successful in transferring
generalized information about the structure of highly dis-
continuous radar data from one vehicle to another. Given
the complex structure of a radar signal, it is likely that appli-
cations of a similar model to categorize a variety of different
vehicle signals would be successful.
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