
From CAN to ROS: A Monitoring and Data Recording
Bridge

Safwan Elmadani
safwanelmadani@email.arizona.edu

University of Arizona
Tucson, AZ, USA

Matthew Nice
matthew.nice@vanderbilt.edu

Vanderbilt University
Nashville, Tennessee, USA

Matthew Bunting
mosfet@email.arizona.edu

University of Arizona
Tucson, Arizona, USA

Jonathan Sprinkle
sprinkle@acm.org

University of Arizona
Tucson, AZ, USA

Rahul Bhadani
rahulbhadani@email.arizona.edu

University of Arizona
Tucson, AZ, USA

Abstract
The Controller Area Network (CAN) bus protocol is used
in modern vehicles for sharing messages between several
control units within a vehicle. CAN bus messages are en-
coded with unknown scheme and decoding these messages
provide unlimited access to valuable information that is used
in many autonomous vehicles applications . This paper pro-
poses a ROS based package (CAN-to-ROS) for monitoring,
recording, and real-time and offline decoding of CAN bus
messages. The package is developed in the ROS framework to
add modularity and ease of integration with other software,
and it is written in C++ to guarantee speed of the execution
during run-time. For realtime decoding of CAN bus data,
CAN-to-ROS package used in conjunction with other library
called Libpanda that provide access to CAN bus message
from a vehicle. The package was evaluated and tested on a
Raspberry Pi with real CAN bus data from a Toyota RAV4.
The results confirm the capabilities of CAN-to-ROS package
and resulted in using the package in other research projects.

CCSConcepts: •Computer systems organization→Em-
bedded systems; Redundancy; Robotics; • Networks →
Network reliability.

Keywords: CAN-to-ROS, Libpanda, CAN Coach, ROS

ACM Reference Format:
Safwan Elmadani, MatthewNice, Matthew Bunting, Jonathan Sprin-
kle, and Rahul Bhadani. 2021. From CAN to ROS: A Monitoring and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DICPS ’21, May 18, 2021, Nashville, TN, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8445-2/21/05. . . $15.00
https://doi.org/10.1145/3459609.3460531

Data Recording Bridge. In The Workshop on Data-Driven and Intel-
ligent Cyber-Physical Systems (DICPS ’21), May 18, 2021, Nashville,
TN, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3459609.3460531

1 Introduction
The Electronic Control Units (ECUs) are embedded systems
in vehicles that are designed for controlling different func-
tions. The ECUs are mainly used to control systems such
as fuel injection, airbags, air conditioning, power steering
control, etc [6]. A vehicle’s ECUs are interconnected via the
Controller Area Network (CAN) bus [8] so that information
can flow between individual ECUs. The CAN bus of a vehicle
provides access to data flowing between the ECUs which, to
some people, could be valuable for controller design, drive-
by-wire design, training and testing machine learning model,
etc [9]. However, in its raw state, CAN bus data is not in
human readable format and it has to be decoded before it
can be used. Furthermore, similar to other network proto-
cols, the CAN protocol does not define encoding scheme
for the data, and vehicle manufacturers develop their own
proprietary implementation which makes decoding CAN
data challenging and very time consuming.
To decode CAN data, a CAN database file (DBC) needs

to be provided to identify packets sent over the CAN bus
network. The DBC file is an ASCII based translation file that
specifies how a CAN data frame is translated to human read-
able data by defining information such as names, scaling,
bit order, offsets, and signed/unsigned. The DBC files are
generated by the community through hacking and reverse
engineering of CAN bus. The current approaches for de-
coding CAN bus messages are implemented in Python [2].
Cantools is the most widely used Python package that han-
dles encoding and decoding CAN bus messages. However,
the Python code suffers from performance limitations when
decoding CAN data in real-time, and integrating the code
with off the shelf libraries written in C/C++ to improve the
performance is difficult and increases program’s complexity.

17

https://doi.org/10.1145/3459609.3460531
https://doi.org/10.1145/3459609.3460531
https://doi.org/10.1145/3459609.3460531

DICPS ’21, May 18, 2021, Nashville, TN, USA S. Elmadani, M. Nice, M. Bunting, J. Sprinkle, R. Bhadani

In this paper, we take a different approach to tackle some
of the challenges with decoding CAN bus messages. Our
approach is to use ROS as framework to build a package
for decoding CAN data in real-time and offline. ROS is a
language agnostic, and ROS packages are written mainly in
Python and C++. Our approach is advantageous because for
heavy tasks and real time processing we can utilize C++ lan-
guage to achieve fast execution and use Python for simpler
tasks and post-processing. In addition, ROS framework has
a built-in network system that allows packages written in
different languages to communicate with one another. The
CAN-to-ROS package has been used in research work (CAN
Coach) that requires access to decoded CAN bus messages
from a Toyota RAV4 in real-time. The modularity of ROS
framework makes the process of integrating the software
needed for CAN Coach system feasible. The CAN-to-ROS
packagewas integratedwith C++ library i.e. Libpanda [3]that
interfaces with the car to provide the CAN Coach system
with a decoded stream of sensor data.

The remainder of this paper is organized as follows: sec-
tion 2 provides an overview of the ROS system, section 3
presents an overview of the CAN-to-ROS package and its
components, section 4 discuses visualization of CAN data in
ROS, section 5 describes the CAN Coach system, section 6
introduces some limitations. Finally, the conclusion is drawn
in section 7.

2 ROS
The Robotic Operating System (ROS) is an open source oper-
ating system for robotics [7]. It is a framework that provides
the tools and libraries to facilitate the creation of robotic
applications [4]. ROS supports a variety of programming
languages (C++, Python, and Lisp) and it has a network sys-
tem that handles communication between processes. ROS
applications are deployed in one or more ROS packages. A
ROS package is the organizational unit of ROS code and
each package contains the source code, libraries and script.
ROS runs executable as a process called node. Nodes are able
to communicate with each other by exchanging messages
through a publisher/subscriber scheme. If a node has data to
share, it publishes to the applicable topic and when a node
requires some data, it subscribes to the relevant topic. This
scheme eases software deployment and integration because
many of the low level interactions are handled by the ROS
framework. The data in a running ROS system can be easily
recorded with a ROS tool and saved into a bag file. The bag
file can be used to play back the recorded data to produce a
similar environment in a running ROS system.

3 CAN-to-ROS overview
This section discusses the Libpanda library, CAN data and
DBC files, and CAN-to-ROS package workflow.

3.1 Libpanda
Libpanda is a low-level C++ library intended to act as an
interface with the Comma.ai Panda. The efforts of libpanda
stemmed from a lack of data-collection performance from
minimal Python-based code on low-cost hardware, result-
ing in a language shift as well as different design structures.
The Python version running on a Raspberry Pi 4 resulted in
92% CPU usage while also dropping 40% of the CAN packets.
Throughmulti threading, observer design patterns, and asyn-
chronous USB calls, libpanda has been able to reduce CPU
usage to 35% while not dropping any packets. In addition to
this performance, libpanda is able to record GPS data and
send control commands to the car.
Libpanda utilizes a thread to establish and maintain a

connection with a Panda device using libusb-1.0. The use of
the observer design pattern allows classes to be designed in
a highly cohesive manner and subscribe to notifications of
lower-level handlers. Libpanda provides two observers to
USB data, used for GPS and CAN data. These classes can be
attached and perform data polling and regular time intervals,
then parse notifications of newly incoming data for further
observers. In the case of the CAN-to-ROS framework, a ROS
node subscribes to the CAN parser provided by libpanda.

3.2 CAN data and DBC files
Libpanda is capable of saving CAN bus data in a CSV file as
timeseries data for offline processing. As seen in Figure 1, the
CAN messages do not give much information if not decoded.
The CAN-to-ROS offline mode takes as input a CSV file with
same format shown in Figure 1 and uses it to generate a CAN
bus data stream in ROS. The most important columns in the
file are Time, MessageID, and Messages. The Time column is
used to infer the frequency at which eachmessage is received.
The MessageID column links the a message with its DBC
file definition and the Message column has the actual sensor
data that is yet to be decoded. It is useful to note that a single
CAN bus message does not mean a single sensor readings
because a message could have multiple signals from different
sensors combined depending on the message length.

Figure 1. CAN bus data saved in a CSV file format by Lib-
panda

In order to decode CAN messages correctly, a DBC file
that corresponds to a specific vehicle model is needed to
add the proper functions for each message ID. Figure 2 pro-
vides the DBC definition of the steering angle for Toyota
RAV4 2019. The steering angle messages contains 3 signals

18

From CAN to ROS: A Monitoring and Data Recording Bridge DICPS ’21, May 18, 2021, Nashville, TN, USA

STEER_ANGLE, STEER_FACTION, and STEER_RATE. The
following are the key observations :

• The Message name is STEER_ANGLE_SENSOR, mes-
sage ID is 37, and the length of the message is 8 bytes.

• The signal STEER_ANGLE has the following specifi-
cations:
– 3|12: the signal starts at bit position 3 and the size
is 12 bits.

– @0-: the 0 indicates that the signal is big-endian (
1 for little-endian), and the - sign indicates that the
signal is signed value (+ for unsigned value).

– (1.5,0): A scalar to multiply by the signal and offset
value.

– [-500|500]: the min and max values of the signal.
– “deg”: units (degrees).

Every CAN bus message must have a definition in the
DBC similar to the one described above in order to decode it.
However, CAN bus documentation of a vehicle is proprietary
and some of the CAN messages’ definitions are unknown.

Figure 2. DBC definition of the steering angle for Toyota
RAV4 2019

3.3 CAN-to-ROS package workflow
The CAN-to-ROS consists of three primary nodes that han-
dle the decoding of CAN bus messages. The nodes are writ-
ten in C++ to provide fast performance. The package has a
core library that nodes can invoke to perform decoding pro-
cesses. In Figure 3, the realtime_pub and offline_pub nodes
are the two nodes that handle preparing the data before
decoding. The only difference between them is that real-
time_pub node uses CAN parser provided by Libpanda to
publish CAN bus messages from the vehicle to a ROS topic
named realtime_can. On the other hand, the offline_pub
node reads CAN bus data from a file that is passed as ar-
gument to it and it publishes the CAN bus messages to the
offline_can topic. Finally, the decode_subs node subscribes
to both topics i.e. realtime_can and offline_can and it has
multiple callback functions that get invoked only when a
new message arrives on either topics. When a new mes-
sage arrives on realtime_can or offline_can topics, a callback
function gets invoked that utilizes the core library to pass
the message and its ID to a function to decode the message.
After the function call inside the callback function returns
the decoded message, the callback function proceeds with
execution and finishes by publishing the data to its respec-
tive topic. This process repeats for every new message that

arrives. Figure 3 shows some of the topics that decode_subs
node publishes to.

Figure 3. Nodes and topics used in CAN-to-ROS package

4 Data visualization in ROS
ROS framework has great visualization tool e.g. rqt_plot and
rviz for visualizing robots and sensor data. Using the CAN-
to-ROS package, a bridge between the CAN bus and ROS
framework can be created, and sensor data from a vehicle is
easily accessible within the ROS environment. A demonstra-
tion of such integration is presented in Figure 5 where radar
traces from Toyota RAV4 CAN bus are visualized in ROS us-
ing a 3D visualization tool (rviz). This is done by publishing
the radar traces of the RAV4 as visualization_msgs/Marker
messages to ROS topic of the same type, and once rviz is
launched the topic is easily added from a drop down menu
in the UI. To give a more accurate representation of the ve-
hicle’s location with respect to the radar traces, a vehicle
model that is used in CAT Vehicle Testbed simulator [1] is
imported and used to represent the RAV4’s body. In Figure 4,
an image of the Toyota RAV4 with a lead vehicle is shown.
Comparing Figure 4 and Figure 5, we see that the radar sen-
sor is capturing some of the objects in front of the vehicle
and on the sides. The two red dots in the front of the vehicle
represent the lead vehicle and the closest red dot on the right
side of the car represents the electricity pole.

Figure 4. An image of Toyota RAV4 behind another vehicle

19

DICPS ’21, May 18, 2021, Nashville, TN, USA S. Elmadani, M. Nice, M. Bunting, J. Sprinkle, R. Bhadani

Figure 5. Visualizing radar traces of Toyota RAV4 using rviz
and CAN-to-ROS

5 CAN Coach
CAN-to-ROS was instrumental in the human-in-the-loop
experiments conducted in [5]. CAN-to-ROS allowed for the
smooth transition of critical data from the lower-level CAN
data bus to the ROS software layer where there is freedom to
process, record, and distribute the information reliably and
at high frequency.
The CAN Coach is a system that puts the human into

the loop with vehicle sensors, with audio feedback derived
from CAN data in real time. The CAN Coach subscribes to
velocity, relative distance, and relative velocity data obtained
from the CAN bus via CAN-to-ROS.

In field tests, a Raspberry Pi 4 decodes the messages, trans-
forms them into Robotic Operating System (ROS) messages,
executes the CAN Coach to generate an auditory feedback
for the human-in-the-loop, and records all data from the car
and from all ROS nodes. Having CAN-to-ROS allowed for
critical data playback from ROS during testing and develop-
ment, as well as easy analysis.

6 Limitations
During the CAN Coach experiment, we have noticed some
inconsistencies between the data recordedwith Libpanda Fig-
ure 6 versus the same data recorded with ROS tools Figure 7.
Later, it was discovered that due to the limited resources of
the Raspberry Pi running the ROS system, some of the pack-
ets were dropped and new packets received after a couple
of seconds. Figure 7 shows the spots of the dropped pack-
ets. When running the CAN coach experiment, all CAN bus
messages are published to the ROS network at a frequency
of approximately 2500 Hz which the ROS communication
system could not handle. The complication was resolved by
narrowing down the CAN bus messages that were being
published to ROS and only publishing messages needed for
the system. That reduced the publish rate to approximately
500 Hz.

Figure 6. Data recorded with Libpanda

Figure 7. Data recorded with ROSbag

7 Conclusion
Our work has demonstrated the ability to bridge the inter-
face gap between the CAN bus and ROS, opening the door
to the use for component-based software additions through
ROS middleware. Our results include a demonstration that
the acquired data can be analyzed in real-time and feedback
given to a human-in-the-loop. We have also demonstrated
that the computational burden is such that it is possible to im-
plement the CAN-to-ROS bridge on inexpensive computing
hardware such as a Raspberry Pi.

Acknowledgments
This work is supported by the National Science Foundation
under awards 1544395 and 1837652. This material is based
upon work supported by the U.S. Department of Energy’s
Office of Energy Efficiency and Renewable Energy (EERE)
under the Vehicle Technologies Office award number CID
DE-EE0008872. The views expressed herein do not necessar-
ily represent the views of the U.S. Department of Energy or
the United States Government.

References
[1] Rahul Bhadani, Jonathan Sprinkle, and Matthew Bunting. 2018. The

CAT Vehicle Testbed: A Simulator with Hardware in the Loop for Au-
tonomous Vehicle Applications. Proceedings of 2nd International Work-
shop on Safe Control of Autonomous Vehicles (SCAV 2018), Porto, Portugal,

20

From CAN to ROS: A Monitoring and Data Recording Bridge DICPS ’21, May 18, 2021, Nashville, TN, USA

10th April 2018, Electronic Proceedings in Theoretical Computer Science
269, pp. 32–47 (2018).

[2] Bhadani, Rahul and Sprinkle, Jonathan. 2020. Strym: A data-analytic tool
for CAN-bus messages. Department of Electrical & Computer Engineer-
ing, The University of Arizona. https://jmscslgroup.github.io/strym/
0.3.1.

[3] Matthew Bunting, Rahul Bhadani, Safwan Elmadani, and Jonathan
Sprinkle. 2020. Libpanda: A software library and utilities for interfacing
with vehicle hardware systems. The University of Arizona. https:
//jmscslgroup.github.io/libpanda/

[4] David Come, Julien Brunel, and David Doose. 2018. Improving code
quality in ROS packages using a temporal extension of first-order logic.
Encyclopedia with Semantic Computing and Robotic Intelligence 2, 01
(2018), 1850003.

[5] Matthew Nice, Safwan Elmadani, Rahul Bhadani, Matt Bunting,
Jonathan Sprinkle, and Dan. Work. 2021. CAN Coach: Vehicular Control

through Human Cyber-Physical Systems. 12th ACM/IEEE International
Conference on Cyber-Physical Systems (2021).

[6] Jayshri Sudhir Potdar and Yashwant B Mane. 2018. Hardware Design
and Development of Engine Control Unit for Four Cylinder Engine.
In 2018 Fourth International Conference on Computing Communication
Control and Automation (ICCUBEA). IEEE, 1–5.

[7] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-
source Robot Operating System. In ICRA workshop on open source soft-
ware, Vol. 3. Kobe, Japan, 5.

[8] ISO Standard. 2003. Road vehicles–Controller area network (CAN)–Part
1: Data link layer and physical signalling. ISO 11898 (2003), 1.

[9] Leng Yi, Li Qingxia, Liu Sheng, and Dong Tianlin. 2008. Direct tire
pressure monitoring system based on wireless sensor and CAN bus.
Chinese Journal of Scientific Instrument 29, 4 (2008), 711.

21

https://jmscslgroup.github.io/strym/
https://jmscslgroup.github.io/libpanda/
https://jmscslgroup.github.io/libpanda/

	Abstract
	1 Introduction
	2 ROS
	3 CAN-to-ROS overview
	3.1 Libpanda
	3.2 CAN data and DBC files
	3.3 CAN-to-ROS package workflow

	4 Data visualization in ROS
	5 CAN Coach
	6 Limitations
	7 Conclusion
	Acknowledgments
	References

