
SST Paths for ARIAA

Presented By:

Clay Hughes, Sandia National Laboratories

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International inc., for the U.S. Department of

Energys National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-4970PE



Overview
2

Pursuing two paths, independent of one another

essent integration: firrtl 4 RTL simulation
Emits C++ that can be compiled to make a fast simulator of the design

Typical flow: essent to make C++ from the firrtl input 4 write a C++ harness for the emitted
code 4 compile everything 4 run the simulation

SST dataflow component: HLL 4 cycle-approximate simulation
Compile HLL to IR

Execute host code in front-end simulator, execute device code on dataflow accelerator



SST + essent
3

Will most likely need a to develop a set of
shims to provide a common interface for other
components

Pros
Component generated directly from hardware
description

Cons
Inflexible design

New components require expertise hardware to
generate

Simulation is likely to be slow

Programming model is unknown and likely to change
with each component

LV
MD

MI
IT

IT
 

L1

L2

Memory SHim

L1

■



essent SST Component Generation
4

Hardware description as input
Verilog

Chisel model

essent ingests firrtl representation
and generates a C++ model of the
design

Model is integrated with SST via
common shims

Memory

Control path

Hardware Convert to
Description firrtl



SST + Dataflow Component
5

Connected to other components via
common SST links

Pros
Faster than HDL simulation

More flexible than HDL simulation

Easier integration with programming model

Cons
Variable accuracy dependent on kernel complexity

Open design space creates many possible corner
cases

Ariel

L1

L2

L1

■



Integration With Programming Model

High-level algorithm (C/C++/Python?)

LLVM lowers to IR (not sure if it's LLVM IR or MLIR yet)

LLVM compiles binary

SST ingests both the binary and the IR
Binary to frontend

IR to dataflow component

■

LLVM
COMPILER
INFRASTRUCTURE



Internal Software Description, Derived From IR
7

Additional compilation pass to dump IR
Binary in directory containing IR files

When frontend encounters offload regain, function name is mapped back to the correct IR

Component is responsible for parsing the IR and building CDFG

Likely that offload targets will need a specific naming scheme or additional syntax
void multiply_mod(int* a, int *b, int* const c)
{
int d = *a;
int e = *b;

int f = 3 * d;
int g = 2 * e;

*c=f+g;
}

%1 = load i32, i32* %b, align 4, !tbaa !2 %0 = load i32, i32* %a, align 4, !tbaa !2

%mul = rnul nsw i32 %0, 3

%add = add nsw i32 %mull, %mul

store i32 %add, i32* %c, align 4, !tbaa !2

Cret voiD



8 I 
Hardware Description

Passed as argument to component

Fixed organization and fixed function PEs initially
Can do any basic operation — add, sub, mul, etc.

More complex mappings later — connectivity, function, etc.



Mapping Software to Hardware
9

Map CDFG to hardware

Not easy to find best fit
Essentially mapping a graph to a grid

Will simplify by assuming that all PEs
can do everything

%1 = load i32, i32* %b, align 4, !tbaa !2

%mull = shl i32 %1 1

%0 = load i32, i32* %a, align 4, !tbaa !2

%mul = mul nsw i32 %0, 3

32* %c, align 4, !tbaa !2

Cret—D

•



Mapping Software to Hardware
10

Map CDFG to hardware

Not easy to find best fit
Essentially mapping a graph to a grid

Will simplify by assuming that all PEs
can do everything

load i32
i32* %a

mul nsw i32
north, 3

add nsw i32
east, west

st i32
north, i32* %c

load i32
i32* %b

shl i32
north,

%1 = load i32, i32* %b, align 4, !tbaa !2

%mull = shl i32 %1 1

%0 = load i32, i32* %a, align 4, !tbaa !2

%mul = mul nsw i32 %0, 3

%add = add nsw i32 %mull, %mul

store i32 %add, i32* %c, align 4, !tbaa !2

ret voicD



Llyr Sample Configuration

llyr = sst.Component(Hdataflow0", "llyr.11yr")
llyr.addParams({

"verbose": H1H,
"clock" : H1GHz",
"configH : Hmaeri layout.cfgH
"fp latH : "4",
"int lat": "1
"div lat": "3
"mul lat": H2
)}

I

I

I

,

,

,

,

Clock: Operating frequency for entire device

Config: Input hardware layout

xxx_lat: Number of cycles to complete the operation

L1

L1

1
HBM

L1

HBM

I

N



Rough Timelines
12

essent
12-18mo

SST Dataflow Component
SST Component 6-9mo

Compiler Component 6-12mo

Graph Optimization ??



Links
13

essent
https://github.com/ucsc-vama/essent 

Yosys Verilog-to-Firrtl
https://github.com/YosysHQ/yosys 

Chisel3 (Hardware DSL)
https://github.com/freechipsprojectichisel3 

SST
https://github.com/sstsimulator



QUEST CN5



BACKUP SLIDES



Section Break Slide


