- S

SST Paths for ARIAA

=

Clay Hughes, Sandia National Laboratories
_ — B

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2

Overview

Pursuing two paths, independent of one another

essent integration: firrtl > RTL simulation
- Emits C++ that can be compiled to make a fast simulator of the design

o Typical flow: essent to make C++ from the firrtl input - write a C++ harness for the emitted
code - compile everything - run the simulation

SST dataflow component: HLL - cycle-approximate simulation
o Compile HLL to IR

o Execute host code in front-end simulator, execute device code on dataflow accelerator

3 SST + essent

Will most likely need a to develop a set of
shims to provide a common interface for other
components

Pros

- Component generated directly from hardware
description

Memory SHim

=i
B

Cons
o Inflexible design

- New components require expertise hardware to
generate

o Simulation is likely to be slow

> Programming model is unknown and likely to change
with each component

essent SST Component Generation

Hardware description as input Hardware Convert to

> Verilog o)

- Chisel model Description firrtl

essent ingests firrtl representation |;—' N — :

and generates a C++ model of the @ @
design

Model is integrated with SST via
common shims

> Memory

o Control path

| SST + Dataflow Component

Connected to other components via
common SST links

Pros

o Faster than HDL simulation

> More flexible than HDL simulation

o Easier integration with programming model

Cons
- Variable accuracy dependent on kernel complexity

> Open design space creates many possible corner
cases

Integration With Programming Model

High-level algorithm (C/C++/Python?)
LLVM lowers to IR (not sure if it's LLVM IR or MLIR yet)
LLVM compiles binary

SST ingests both the binary and the IR @ N QLLVM
> Binary to frontend COMPILER

INFRASTRUCTURE

> |R to dataflow component

i Internal Software Description, Derived From IR

Additional compilation pass to dump IR
o Binary in directory containing IR files
> When frontend encounters offload regain, function name is mapped back to the correct IR
o Component is responsible for parsing the IR and building CDFG

Likely that offload targets will need a specific naming scheme or additional syntax

void multiply_mod(int* a, int *b, int* const ¢)
int d = *a;
int e = *b; @m, 32+ %b, aﬁg@ @Bz, 32% %a, ang@l

intf=3*d;
intg=2%*e;

9%mull = shl i32 %1, 1 %mul = mul nsw i32 %0, 3

%add = add nsw 132 %mull, %mul

*c=f+g;

store 132 %add, i32* %c, align 4, !tbaa 12

|
|

8

Hardware Description

Passed as argument to component

Fixed organization and fixed function PEs initially
o Can do any basic operation — add, sub, mul, efc.
o More complex mappings later — connectivity, function, etc.

. | Mapping Software to Hardware

Not easy to find best fit
- Essentially mapping a graph to a grid

Will simplify by assuming that all PEs

|
Map CDFG to hardware |
can do everything |

Mapping Software to Hardware

10

Map CDFG to hardware

Not easy to find best fit
- Essentially mapping a graph to a grid

Will simplify by assuming that all PEs
can do everything

load i32 load 132
i32* %b

add nsw i32 shl i32
east, west

north, i32* %c

| Llyr Sample Configuration

llyr = sst.Component("dataflowd", "llyr.llyr")
Llyr.addParams ({

"verbose": "1",

"clock" : "1GHz",

"config" : "maeri layout.cfg",
"fp lat" : "4",

"int lat": "1",

i LAt : "g",

‘mul_lat": "2",
)}

Clock: Operating frequency for entire device ‘Hem [HBM

Config: Input hardware layout

xxX_lat: Number of cycles to complete the operation

Rough Timelines
12

essent
> 12-18mo

SST Dataflow Component
- SST Component 6-9mo
o Compiler Component 6-12mo
o Graph Optimization ?7?

Links
13

essent
o https://github.com/ucsc-vama/essent

Yosys Verilog-to-Firrtl
o https://github.com/YosysHQ/yosys

Chisel3 (Hardware DSL)
o https://qgithub.com/freechipsproject/chisel3

SST

o https://github.com/sstsimulator

BACKUP SLIDES

