

SPHYNX: Spectral Partitioning for HYbrid aNd aXelerator-based systems

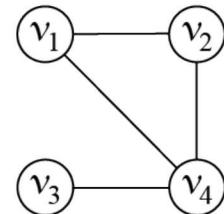
Seher Acer – sacer@sandia.gov

Erik G. Boman – egboman@sandia.gov

Siva Rajamanickam – srajama@sandia.gov

AsHES, IPDPS -- May 18, 2020

Highlights



- We propose a graph partitioning tool called **Sphynx**
- **Sphynx** uses several Trilinos packages using Kokkos for performance portability
- **Sphynx** is the first MPI+Cuda hybrid partitioner
- **Sphynx** implements a spectral partitioning approach
- **Sphynx** on GPUs is up to 17x faster than **Sphynx** on CPUs on irregular graphs
- **Sphynx** is up to 580x faster than the state-of-the art multilevel partitioner on irregular graphs

Graph Partitioning Problem

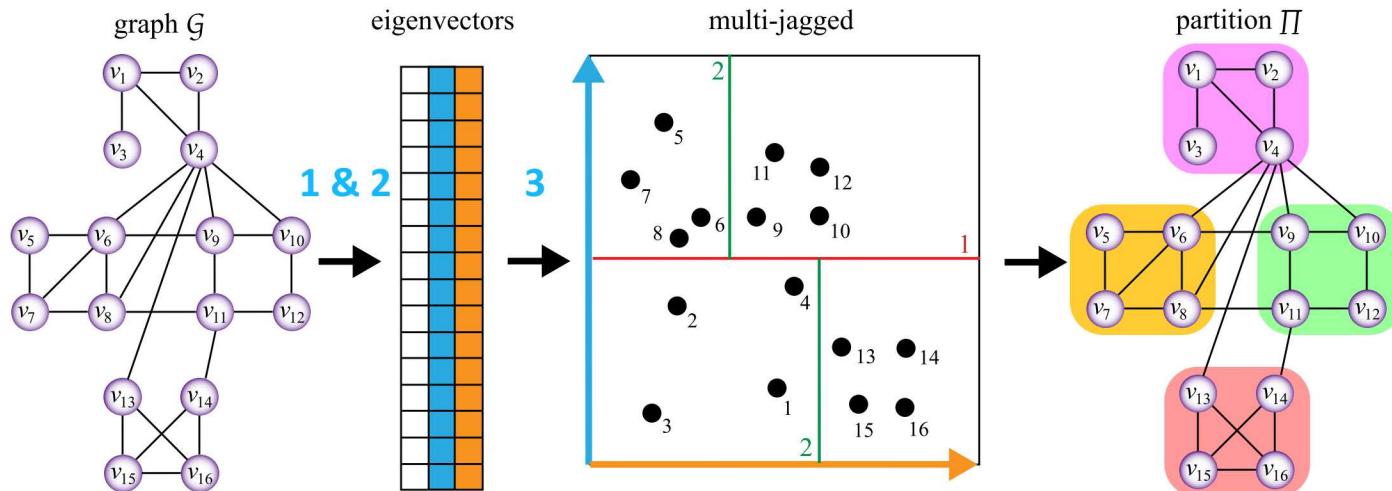
- Graph $G = (V, E)$: set of vertices V , set of edges E
- For the graph partitioning problem
 - each vertex v_i is assigned a **weight** value
 - each edge $e_{i,j}$ is assigned a **cost** value
- Given a K -way partition $\Pi = \{V_1, V_2, \dots, V_K\}$ of G
 - $e_{i,j}$ is called **cut** if v_i and v_j are assigned to different parts
 - **Cutsizes** of Π is the sum of the **costs** of the **cut** edges
- **Graph partitioning problem** is to find a **balanced K -way** partition Π of G with minimum **cutsizes**

Motivation for Sphynx

- Applications are moving to **accelerators**
- No accelerator-enabled graph partitioning tool exists
- Moving the graph to CPUs, partitioning in on CPUs, and moving it back to the accelerators is not practical
- An **accelerator-based portable** partitioner is needed
- DoE facilities have announced **different accelerators**
 - AMD, Intel, NVIDIA

Spectral Partitioning in Sphynx

- Form a Laplacian matrix associated with the given graph
- Normalized Laplacian $L_N = I - D^{-1/2}AD^{-1/2}$
- Find eigenvector x corresponding to smallest nontrivial eigenvalue λ s.t.


$$Lx = \lambda x$$

- Traditional spectral methods [1] use recursive bipartitioning approach
 - Find an eigenvector, bipartition the graph using it, and recursively repeat
- Sphynx finds $(\log K + 1)$ eigenvectors on the Laplacian, all at once
- Computing all eigenvectors at once avoids
 - forming subgraphs and/or corresponding Laplacians
 - moving subgraphs across different processes or nodes
 - calling eigensolver multiple times, on different graphs

[1] A. Pothen, H. Simon, and K. Liou, “Partitioning sparse matrices with eigenvectors of graphs,” SIAM J. Matrix Anal., vol. 11, pp. 430–452, July 1990.

1. Form Laplacian L of G – [Tpetra, Kokkos](#)
2. Find $(\log K + 1)$ eigenvectors of L using LOBPCG [1] – [Anasazi](#)
 - First eigenvector: trivial, not used
 - Remaining vectors: coordinates to embed G into $\log K$ -dimensional space
3. Find a K -way partition Π on coordinates using multi-jagged [2] – [Zoltan2](#)

[1] A. V. Knyazev, "Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method," *SIAM Journal on Scientific Computing*, vol. 23, no. 2, pp. 517–541, 2001.

[2] M. Deveci, S. Rajamanickam, K. D. Devine, and U. V. Catalyurek, "Multi-jagged: A scalable parallel spatial partitioning algorithm," *IEEE Transactions on Parallel and Distributed Systems*, vol. 27, pp. 803–817, March 2016.

Experiments

- Performance comparisons in terms of running time and quality
- Tested 20 highly irregular graphs from SuiteSparse collection [1]
- Evaluations:
 1. Sphynx on GPUs vs Sphynx on CPUs
 2. Parameter sensitivity of Sphynx
 3. Running time breakdown of Sphynx into three steps
 4. Sphynx vs ParMETIS [2]
- Performed on Summit at ORNL
 - Each node contains 6 NVIDIA Volta V100 GPUs
 - Used Same Trilinos driver for both Sphynx and ParMETIS
 - Zoltan2 provides an interface for ParMETIS
 - 1D block partitioning is used as the distribution of the graph

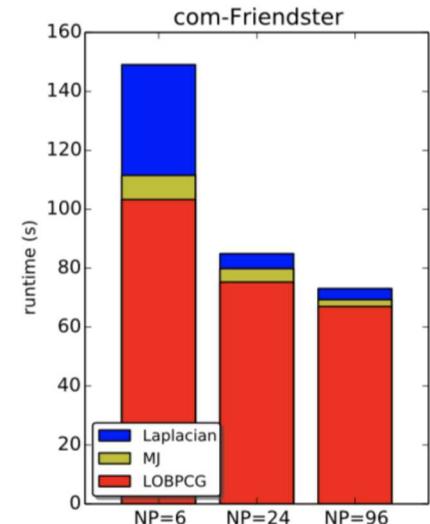
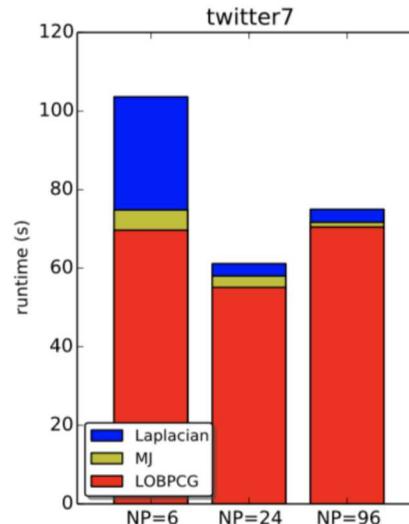
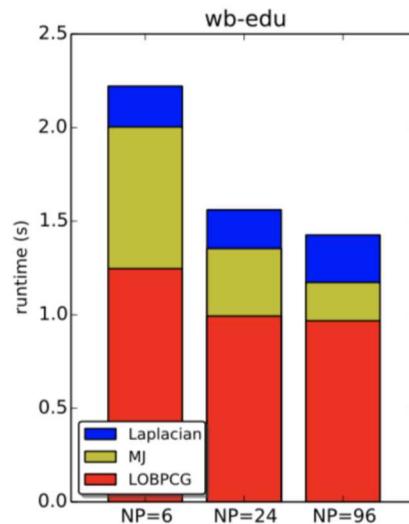
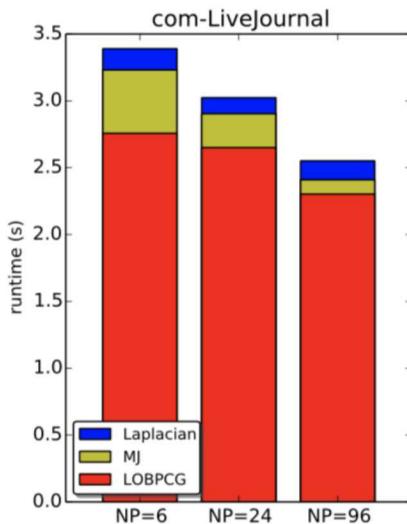
[1] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,” ACM Trans. Math. Softw., vol. 38, pp. 1:1–1:25, Dec. 2011.

[2] G. Karypis and V. Kumar, “ParMETIS: Parallel graph partitioning and sparse matrix ordering library,” tech. rep., Dept. Computer Science, University of Minnesota, 1997.

Experiments

- On 24 MPI processes (4 nodes)
- 10^{-2} as convergence tolerance of LOBPCG in the 1st table
- MPI+Cuda in the 2nd table

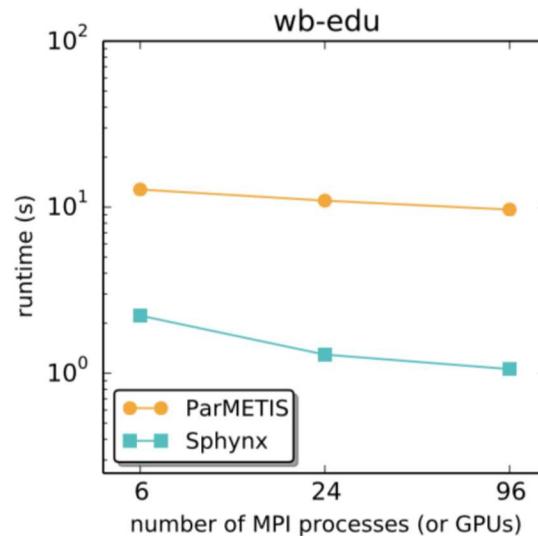
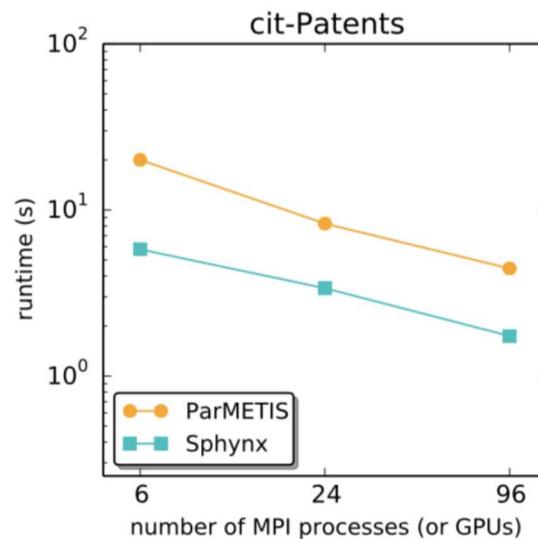
Speedup of MPI+Cuda over MPI-only		
	all graphs	> 1M vertices
geomean	3.27	6.83
maximum	17.77	17.77





	cutsize	runtime	#iterations
geomean	1.19	2.77	3.89
maximum	1.48	4.68	6.22

Experiments

- Running time breakdown into three steps
- 24 GPUs, 10^{-2} as LOBPCG tolerance

Percentages of the running times of the three steps			
	Laplacian	LOBPCG	MJ
geomean	6.2	84.2	5.0
maximum	28.1	95.7	23.1



Experiments -- Results

- Sphynx on 24 GPUs vs ParMETIS [1] on 24 MPI processes
- ParMETIS does not finish in 2 hours in largest 4 graphs while Sphynx does

Sphynx compared to ParMETIS		
	cutsize deterioration	speedup
geomean	4.36	12.68
maximum	39.21	581.03

- Scalability is limited due to high irregularity of these graphs and 1D block partitioning

[1] G. Karypis and V. Kumar, "ParMETIS: Parallel graph partitioning and sparse matrix ordering library," tech. rep., Dept. Computer Science, University of Minnesota, 1997.