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2 | Highlights

= We propose a graph partitioning tool called Sphynx

= Sphynx uses several Trilinos packages using Kokkos
for performance portability

] Sp
= Sp
= Sp

ynx is the first MPI+Cuda hybrid partitioner

ynx implements a spectral partitioning approach

nynx on GPUs is up to 17x faster than Sphynx on

CPUs on irregular graphs

= Sphynx is up to 580x faster than the state-of-the art
multilevel partitioner on irregular graphs



3 | Graph Partitioning Problem

= Graph G = (V, E): set of vertices V, set of edges E ‘

= For the graph partitioning problem O)—)
each vertex v; is assigned a weight value ‘ [
(—) .

each edge e; ; is assigned a cost value

Given a K-way partition Il = {V;,V,, ...,V } of G
= e jiscalled cutif v; and v; are assigned to different parts |

= Cutsize of Il is the sum of the costs of the cut edges

Graph partitioning problem is to find a balanced K-way :
partition Il of G with minimum cutsize ‘



+ |Motivation for Sphynx

Applications are moving to accelerators
No accelerator-enabled graph partitioning tool exists

Moving the graph to CPUs, partitioning in on CPUs,
and moving it back to the accelerators is not practical

An accelerator-based portable partitioner is needed

[}

DoE facilities have announced different accelerators
AMD, Intel, NVIDIA



s |Spectral Partitioning in Sphynx

Form a Laplacian matrix associated with the given graph
Normalized Laplacian Ly = I — D~/24AD~1/2

= Find eigenvector x corresponding to smallest nontrivial eigenvalue A s.t.
Lx = Ax

= Traditional spectral methods [1] use recursive bipartitioning approach

Find an eigenvector, bipartition the graph using it, and recursively repeat
= Sphynx finds (log K + 1) eigenvectors on the Laplacian, all at once

= Computing all eigenvectors at once avoids

forming subgraphs and/or corresponding Laplacians

moving subgraphs across different processes or nodes

calling eigensolver multiple times, on different graphs

[1] A. Pothen, H. Simon, and K. Liou, “Partitioning sparse matrices with eigenvectors of graphs,” SIAM J. Matrix Anal., vol.
11, pp. 430452, July 1990.



e‘Sphynx

1. Form Laplacian L of G — Tpetra, Kokkos
2. Find (log K + 1) eigenvectors of L using LOBPCG [1] — Anasazi

- First eigenvector: trivial, not used

- Remaining vectors: coordinates to embed G into log K-dimensional space

3. Find a K-way partition Il on coordinates using multi-jagged [2] — Zoltan2
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[1] A. V. Knyazev,“Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method,” SIAM
Journal on Scientific Computing, vol. 23, no. 2, pp. 517-541, 2001.

[2] M. Deveci, S. Rajamanickam, K. D. Devine, and U. V. Catalyurek, “Multi-jagged: A scalable parallel spatial partitioning algorithm,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, pp. 803—817, March 2016.



7 | Experiments

Performance comparisons in terms of running time and quality

Tested 20 highly irregular graphs from SuiteSparse collection [1]

Evaluations:

[

Sphynx on GPUs vs Sphynx on CPUs

2. Parameter sensitivity of Sphynx

3. Running time breakdown of Sphynx into three steps
4. Sphynx vs ParMETIS [2]

=  Performed on Summit at ORNL
Each node contains 6 NVIDIA Volta V100 GPUs

= Used Same Trilinos driver for both Sphynx and ParMETIS
Zoltan?2 provides an interface for ParMETIS

1D block partitioning is used as the distribution of the graph

[1] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,” ACM Trans. Math. Softw., vol. 38, pp. 1:1-1:25, Dec. 2011.

[2] G. Karypis and V. Kumar, “ParMETIS: Parallel graph partitioning and sparse matrix ordering library,” tech. rep., Dept. Computer Science,
University of Minnesota, 1997.



s | Experiments

On 24 MPI processes (4 nodes)
10~ as convergence tolerance of LOBPCG in the 15t table

MPI+Cuda in the 2nd table

Speedup of MPI+Cuda over MPIl-only

all graphs > 1M vertices
geomean 3.27 6.83
maximum 17.77 17.77

Results of 103 normalized w.r.t. those of 1072

cutsize runtime Hiterations
geomean 1.19 2.77 3.89
maximum 1.48 4.68 6.22




> | Experiments

runtime (s)

Running time breakdown into three steps
24 GPUs, 102 as LOBPCG tolerance

Percentages of the running times of the three steps
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0 ‘Experiments -- Results

102 cit-Pgtents
= Sphynx on 24 GPUs vs ParMETIS [1] on
24 MPI processes S
£
= ParMETIS does not finish in 2 hours in :
largest 4 graphs while Sphynx does T
Sphynx
é 2‘4 QlG
Sphynx compared tO ParMETIS number of MPI processes (or GPUs)
cutsize deterioration | speedup
- wb-vedu
geomean 4.36 12.68
maximum 39.21 581.03
3 10 }
= Scalability is limited due to high ) ol
irregularity of these graphs and 1D ParMETIS
block partitioning - Sl . -

number of MPI processes (or GPUs)

[1] G. Karypis and V. Kumar, “ParMETIS: Parallel graph partitioning and sparse matrix ordering library,” tech. rep., Dept. Computer Science,
University of Minnesota, 1997.



