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Abstract—Organic scintillators doped with capture agents
provide a detectable signal for both fast and slow neutrons. A
new boron-loaded organic glass developed at Sandia National
Laboratories enables such capability. This work characterizes
the neutron capture response of the boron-loaded organic glass
and provides a comparison to the response of the commercially
available boron-loaded plastic organic scintillator, EJ-254. To
isolate the neutron capture response, an AmBe source with
polyethylene moderator was made incident on the boron-loaded
scintillator surrounded by an array of EJ-309 observation de-
tectors with pulse shape discrimination (PSD) capability. Events
in the target scintillator were identified in coincidence with the
signature 478.5 keV y ray resulting from decay of the residual 7Li
nucleus following boron neutron capture, and charge integration
was used to evaluate the response. The boron loading of the EJ-
254 scintillator provides increased detection efficiency for slow
neutrons, but the poor PSD between fast neutron and 7 ray
signals as well as the overlap of the capture feature with low
energy y rays may limit the applicability of this material in
some scenarios. Comparatively, the boron-loaded organic glass
exhibits good PSD between fast neutrons and 7 rays, with events
resulting from neutron capture lying on top of the neutron band
in PSD space.

I. INTRODUCTION

N uclei that exhibit a high neutron capture cross section
e.g., 1613 and 6Li, can be loaded in organic scintilla-

tors to enable detection of both fast and slow neutrons [1],
[2]. This capability is useful for a range of applications in
national security, radiation safety, and neutron imaging [3],
[4]. For example, in homeland security applications, organic
scintillators doped with capture agents increase the detection
efficiency for shielded sources of special nuclear material [5].
For antineutrino-based approaches to nuclear reactor monitor-
ing, capture doped organic scintillators can improve rejection
criteria to reduce fast neutron backgrounds [6].
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To support the application of organic scintillators for neu-
tron detection over wide energy ranges, this work character-
izes the neutron capture response of a boron-doped organic
glass scintillator developed by Sandia National Laboratories
in comparison to that of EJ-254, a commercially-available
boron-doped plastic organic scintillator from Eljen Technol-
ogy. The EJ-254 scintillator is comprised of a polyvinyltoluene
(PVT) plastic matrix loaded with approximately 1% 10B
(for a 5% natural boron loading by weight). The organic
glass composition studied in this work was a 90:10 mixture
of bis(9,9-dimethy1-9H-fluoren-2-y1)(dimethyl)silane (`P2') :
tris(9,9-dimethy1-9H-fluoren-2-y1)(methyl)silane (`P3'), along
with 0.2 wt. % of 1,4-Bis(2-methylstyryl)benzene (`bis-MSW)
and a loading by weight of XX % natural boron. The boron-
doped organic glass scintillator monolith was melt-cast in
an aluminum mold according to procedures described in the
literature [7].

For neutrons below tens of keV, the number of photons
produced by the recoiling protons from n-p scattering events
is negligibly small and it is the residual nuclei following boron
capture and subsequent breakup that provide scintillation effi-
ciency via Coulombic interactions. That is:

oB n =

{7Li 4He, Q= 2.792 MeV, 6%

7 Li + 4He -y(478.5 keV), Q. 2.310 MeV, 94% 
(1)

With a 94% branching ratio, the residual 7Li nucleus is
populated in its first excited state, which decays via prompt
7 emission with Ey = 478.5 keV. This work uses this
characteristic -y ray from the capture reaction to isolate the
slow neutron response.

II. EXPERIMENTAL METHODS

The identification of neutron capture events was accom-
plished using a method adapted from Sun et al. [8], where
the target scintillator was placed near an AmBe source with
several EJ-309 observation detectors placed at forward angles
with flight paths ranging from 0.7 — 2 m. The EJ-254 and
boron-loaded organic glass targets used in this work were
right circular cylinders of 5.08 cm dia. and 2.54 cm dia.,
respectively. A minimum of 5 mm of Pb and 7.6 cm of
polyethylene was placed between the boron-loaded scintillator
and the source, as shown in Fig. 1. The Pb shielding reduced
contributions from the 59.5 keV -y ray produced by the
AmBe source and the moderator slowed neutrons to increase
the neutron capture efficiency. The acquisition master trigger
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Fig. 1. Schematic of the experimental setup used to isolate neutron capture
events. The boron-loaded scintillator is represented in blue, the polyethylene
shielding in red, and the lead shielding in grey. The AmBe source (gold) was
positioned flush against the lead shielding.
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Fig. 2. PSD plot for the boron-doped organic glass scintillator as a function
of light output, where the black points correspond to neutron scattering events
and the red points correspond to neutron capture and -y -ray scattering events.

required a coincidence between the target scintillator and at
least one of the EJ-309 detectors within a 160 ns window. The
light unit was calibrated using the 59.5 keV photopeak of a
241Am source.

Figure 2 and Figure 3 provide PSD plots using charge
integration for events in the target scintillator in coincidence
with events in the observation detectors for the boron-loaded
organic glass and EJ-254, respectively. The data were refined
using PSD in the observation detectors and coincident time-
of-flight constraints corresponding to neutron scattering events
(black) and neutron capture events (red) in the target scintil-
lator. The neutron capture events of interest have the same
time signature as 7--y coincident events, which give rise to the
red band at low tail-to-peak charge ratios. The boron-loaded
organic glass demonstrates capability for discrimination of fast
neutron and -y-ray signals comparable to dual-mode organic
glass scintillators [9], with the thermal neutron response fea-
ture overlapping the fast neutron band. In comparison, EJ-254
provides poor n--y discrimination and neutron capture events
overlap both the fast neutron and -y-ray bands.

Figure 4 provides projections of the neutron capture feature
for the boron-doped organic glass and EJ-254 scintillator.
Additionally, PSD constraints in the boron-doped organic glass
scintillator were applied. The slow neutron feature is centered
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Fig. 3. PSD plot for the EJ-254 scintillator as a function of light output,
where the black points correspond to neutron scattering events and the red
points correspond to neutron capture and -y-ray scattering events.
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Fig. 4. Relative light output spectrum for capture-gated events for the EJ-254
(red) and organic glass (blue) scintillators.

about approximately 1.6 and 2.1 relative light units for the EJ-
254 and boron-doped organic glass, respectively, indicative of
higher ionization quenching in the EJ-254.
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