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Abstract 

Radar is by its basic nature a ranging instrument.  If radar range measurements from multiple 
directions can be made and assembled, then multilateration allows locating a feature common to 
the set of Synthetic Aperture Radar (SAR) images to an accurate 3-D coordinate.  The ability to 
employ effective multilateration algorithms is highly dependent on the geometry of the data 
collections, and the accuracy with which relative range measurements can be made.  The 
problem can be cast as a least-squares exercise, and the concept of Dilution of Precision can 
describe the accuracy and precision with which a 3-D location can be made. 
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1 Introduction and Background 

Synthetic Aperture Radar (SAR) is a coherent imaging technique whereby maps of radar 
reflectivity are made from radar echo soundings along some flight path.  Note that a SAR image 
is essentially a 2-D projection of a 3-D scene.  The utility of the SAR image is considerably 
enhanced with accurate and precise geolocation of the image, especially features in the image.   

Radar is by its basic nature a ranging instrument.  In fact, the final “r” in the acronym “radar” is 
for “ranging.”  If radar range measurements from multiple directions can be made and 
assembled, then the prospect of using multilateration might allow locating a feature common to a 
set of SAR images to an accurate 3-D coordinate for that feature. 

To be sure, the ability to employ effective multilateration algorithms is highly dependent on the 
geometry of the data collections, and the accuracy with which relative range measurements can 
be made. 

We offer as relevant background information the following publications. 

SAND99-2643 details a stereoscopic technique for height estimation from two SAR 
images.1 

SAND2001-2585 extends the stereoscopic technique to more than two images.2 

SAND2013-1096 details effects of the atmosphere on radar ranging.3 

SAND2012-10690 details refraction more generally in the atmosphere.4 

SAND2020-10779 discusses the impact of radar motion measurement errors on single-
image geolocation accuracy.5 

SAND2021-0144 discusses the effects of geometry on Height of Focus for SAR images.6 

In his Ph.D. dissertation, Wonnacott discusses in detail geolocation from spotlight SAR 
images.7 

Herein this report we will assume that multiple range measurements will be made from 
independent SAR images over a set of viewing directions, and that those range measurements are 
independent and noncoherent in characteristic.  As such this constitutes a Multiple-Image 
Geopositioning (MIG) problem versus a Single-Image Geopositioning (SIG) problem. 

We will ignore any Direction of Arrival (DOA) measurements due to Doppler or other 
interferometry within an image, generally relying on range measurements only.  We will also 
assume that the feature of interest in the set of SAR images is accurately identified, and 
corresponded in the image set.  Techniques for selecting a common feature with accuracy and 
precision, and establishing correspondence across the images, are beyond the scope of this 
report.   
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This report will further assess the “goodness” of various data collection geometries, using a 
Dilution of Precision (DOP) measure. 

Finally, we note that radar-based geolocation is of particular interest to the US National 
Geospatial-Intelligence Agency (NGA), who publishes standards in the area, including SAR-
based Geopositioning.8 
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2 Basic Trilateration 

Our intent is to discern the spatial location of some radar scatterer, or retroreflector.  The true 
geolocation of the scatterer is specified by a vector containing three coordinate coefficients.  
Finding these three unknowns requires three suitable independent measurements.  The geometry 
of our problem is given in Figure 1. 

 
Figure 1.  Geometry of geolocation problem. 

We accordingly define some specific locations as 

Universal Origin = the origin of a common coordinate system (e.g. earth center),  
Universal SRP = some common Scene Reference Point (SRP), 
S = scattering location to be geolocated, and 
APCi = Antenna Phase Center (APC) at ith radar position for a ranging measurement. (1) 

The Universal Origin for our purposes is somewhat arbitrary.  It is defined for us mainly as a 
reference for any position/motion measurements of the radar. 

The Universal SRP is a reference location, expected to be within the neighborhood of the 
scattering location to be geolocated.  It might be the SRP for one or more of the SAR images, or 
not.  For our problem it is defined at the beginning of the data analysis. 

These positions allow us to define specific vectors as 
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0r  = vector from Universal Origin to Universal SRP,  

s  = vector from Universal SRP to the scattering location S, and 

,a ir  = vector from Universal Origin to the ith radar position measurement. (2) 

The vector ,a ir  is measured by the radar’s motion measurement, or navigation subsystem. 

These vectors allow us to calculate 

, , 0c i a i  r r r  = vector from Universal SRP to ith radar position APCi,  

, ,s i c i  r r s  = vector from scattering location S to ith radar position APCi. (3) 

The radar, by means of its echolocation, attempts to measure the magnitude of ,s ir , namely 

,s ir  = what the radar attempts to measure with its echo range soundings. (4) 

We may expand our radar measurements to 

      2 2 2 2
, , , , , ,2s i c i c i c i c i c i                  r r s r s r s r s r s . (5) 

This may be rearranged and rewritten as 

2 2 2
, , , ,

1

2
T

c i c i c i s i
         
  

r s r s r r s , (6) 

where the “T” superscript denotes transpose. 

Given three radar positions with independent measurements, we may construct the matrix 
equation 

2 2 2
,1 ,1

,1
2 2 2

,2 ,2 ,2

,3 2 2 2
,3 ,3

1

2
1

2
1

2

c sT
c

T
c c s

T
c

c s

                                                        

r r s
r

r s r r s

r
r r s

. (7) 

This equation is of the well-known form 

 A s b , (8) 

where the matrices and vectors are identified as 
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,1

,2

,3

T
c

T
c

T
c

  
  
   
  
    

r

A r

r

 = 3×3 square matrix, and 

2 2 2
,1 ,1

2 2 2
,2 ,2

2 2 2
,3 ,3

1

2
1

2
1

2

c s

c s

c s

              
             

  
              

r r s

b r r s

r r s

 = 3×1 column vector. (9) 

If A has full rank, it has an inverse, and we may calculate the 3-D geolocation of scattering 
location S as 

1  s A b , (10) 

just like back in engineering school, except that we have a few minor issues to take care of first. 

Some Comments on Calculating a Solution 

We offer the following comments. 

  First, we note that our b vector contains 2s , which is of course a function of the thing we 

are trying to calculate.  We might treat this in any of several ways, 

a. We might simply ignore it, and accept the error it generates in our calculations. 

b. We might use an approximation of s, based on its location on one or more of the 
SAR images. 

c. We might iterate our calculation to continuously improve our estimate of s.  Our 
calculation algorithm would then become 

1. Within the b vector set   0 0 0 T s . 

2. Calculate a new s vector using Eq. (10). 

3. Use the new s vector to construct a new b vector using Eq. (9). 

4. Go back to step 2, iterating until convergence. 

Anecdotally, convergence is typically very quick to sub-millimeter accuracy. 

d. We might use an elimination method, as shown later in Section 6, or in a paper by 
Manolakis.9 
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  Second, we are presuming that the radar can reasonably accurately measure range ,s ir .  

This isn’t always as easy as it might seem.  A radar “measures” range by measuring an 
echo time delay and assuming a propagation velocity for the radar waveform round trip.  
In fact, even the measured time delay is really a measure of clock cycles of an assumed 
stable clock period.  Many radar systems assume a free-space velocity of propagation, 
and ignore the slowing of this velocity due to atmospheric dielectric properties, which 
may slow propagation by several hundred parts per million.  This of course causes a 
range error, perhaps significant, unless compensated in some manner.3  Although an 
exact value for the resulting range error is unknowable to the radar, we can often improve 
our estimate to some degree by making intelligent assumptions for atmospheric 
properties, and compensating accordingly.  In addition, imprecise knowledge of 
transmission delays within the radar hardware itself will also cause uncertainties in a 
radar’s range “measurement.”  Such hardware delays can be mitigated with good radar 
calibration.10 

  Third, we are presuming that our navigation subsystem can  reasonably accurately 
measure radar position ,a ir , and by extension ,c ir .  A good GPS-aided Inertial 

Navigation System (INS) will typically be able to keep any navigation errors fairly small, 
often in the meter range with a high degree of temporal correlation.5  For analysis, radar 
position errors are often combined with radar range measurement errors. 

  Fourth, to make Eq. (10) work at all, matrix A must have full rank.  Even better, we 
would like A to be well-conditioned to better tolerate input measurement errors.  Since A 
is essentially a function of radar positions, i.e. flight path, this means that the “goodness” 
of our geolocation is highly dependent on the data collection geometry, i.e. the geometry 
of the radar positions. 

For example, if all APCi are colinear, matrix A is singular, and hence not invertible.  This 
means a collection geometry that involves radar locations on a straight line is not 
adequate for geolocation.  Even a “nearly” straight-line radar collection geometry will 
result in an ill-conditioned matrix A, still too unsuitable for adequate geolocation. 

Furthermore, in fact, even if not colinear, if all APCi are merely coplanar with the 
Universal SRP, then A is again effectively singular, and hence not invertible.  This means 
essentially if we need to calculate a 3-D solution for s, then A needs to be invertible, 
which in turn means that we need radar positions that are not coplanar; we need out-of-
plane ranging measurements.†   

 

† Out-of-plane means that if two radar positions with the Universal SRP define a plane, then the third radar position 
needs to be not in this plane. 
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2.1 Extension to Arbitrary Multilateration 

The preceding development assumed exactly three measurements for calculating the three 
unknown coordinates of s.  We now allow for more than three measurements to calculate s, in a 
Minimum Mean Squared Error (MMSE) sense. Let us now assume M independent range 
measurements from M radar positions.  The over-constrained matrix equation becomes 

2 2 2
,1 ,1

,1
2 2 2

,2 ,2,2

2 2, 2
, ,

1

2
1

2

1

2

c sT
c

T
c sc

T
c M

c M s M

                                                       
    

r r s
r

r r sr
s

r
r r s

 
 

. (11) 

This equation is still of the form 

 A s b , (12) 

where 

,1

,2

,

T
c

T
c

T
c M

  
  
  

   
  
  
  

r

r
A

r

 
 = 3M   matrix, and 

2 2 2
,1 ,1

2 2 2
,2 ,2

2 2 2
, ,

1

2
1

2

1

2

c s

c s

c M s M

              
             

  
  
          

    

r r s

r r s
b

r r s

 

 = 1M   column vector. (13) 

If A has full column rank (independent columns), it has a pseudo-inverse, and we may calculate 
the MMSE geolocation of scattering location S as 

  1
ˆ T T 
 s A A A b . (14) 

We note that our b vector still contains 2s , which can be treated in the same manner as for 

3M   above.  In fact, the solution for 3M   is just a special case of Eq. (14), meaning that Eq. 
(14) is valid for 3M  , noting that for the case 3M   and full-rank A, we equate 

  1 1T T   A A A A , for full-rank square A. (15) 
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2.2 Weighted Least Squares Solution 

The solution in Eq. (14) tacitly assumes that all observations of ,s ir  are equally accurate and 

precise in a statistical sense.  This may be a reasonable assumption if all the ,s ir  are of a similar 

magnitude.  However, if there is a substantial spread in ,s ir  magnitudes, then this assumption 

may not be quite right.  Indeed, ranges will vary, and the nature of many sources of error in range 
calculations are somewhat range dependent, often increasing the error with range. 

Consider that an error in ,s ir  will cause an error in the b vector as 

  

  

  

22 2
,1 ,1 ,1

22 2
,2 ,2 ,2

22 2
, , ,

1

2

1

2

1

2

c s s

c s s
b

c M s M s M

 

 

 

               
                 
  
  

               

r r s

r r s
b ε

r r s

 

, (16) 

where 

bε  = the resulting error in b, and 

,s i  = the error in the measure of ,s ir . (17) 

From this, we may relate 

2
,1 ,1 ,1

,1 ,1

2
,2 ,2 ,2 ,2 ,2

, ,2
, , ,

1

2

1

2

1

2

s s s
s s

s s s s s
b

s M s M
s M s M s M

  
 

   

 
  

                                                                    

r
r

r r
ε

r
r

  

, (18) 

noting that the squared-error terms are expected to be tiny by comparison.  We will presume that 
the errors are independent, hence uncorrelated.  While a credible argument can be made that 
some degree of correlation in these errors might be expected, we will forego this complication 
and leave a calculation of its effects as an exercise for the reader.  For our immediate purposes, 
assuming uncorrelated errors is adequate. 

The covariance of bε  may then be calculated as 
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   2 2 22 2 2
,1 ,1 ,2 ,2 , ,diagT

b b b s s s s s M s ME E    
                                      

Σ ε ε r r r . (19) 

This may be written as 

2 2 22 2 2
,1 ,1 ,2 ,2 , ,diagb s s s s s M s M                                    

Σ r r r , (20) 

where 

  2 2
, ,s i s iE    = the variance in the individual range measurements. (21) 

This allows us to write the covariance matrix bΣ  as 

2 2
,b s ref ref  Σ r K , (22) 

where 

2 2 22 2 2
,1 ,1 ,2 ,2 , ,

2 2 22 2 2
, , ,

diag
s s s s s M s M

s ref ref s ref ref s ref ref

   

   

          
                                         

r r r
K

r r r
 , 

2
ref  = nominal reference variance for measured range error, and 

,s refr  = nominal reference range. (23) 

The variation in variance at different ranges is manifest in matrix K.  Consequently, we may 
choose a weighting matrix for a weighted least-squares solution to be 

1 1 1
2 2 22 2 2

,1 ,1 ,2 ,2 , ,1
2 2 22 2 2

, , ,

diag
s s s s s M s M

s ref ref s ref ref s ref ref

   

   

   

 

                                                        

r r r
W K

r r r
 . (24) 

Using this we may calculate the weighted least-squares solution to be 

  1
ˆ T T 
 s A WA A W b , (25) 

where optimal weights are given in Eq. (24). 

We note that this weighting is related to "whitening" techniques in signal processing. 
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2.3 Dilution of Precision (DOP) 

Dilution of Precision (DOP) is a figure of merit for a linear system that relates an output standard 
deviation to an input standard deviation.  Accordingly, using the results in Appendix B, we 
identify the output covariance matrix as 

T
s b Σ C Σ C , (26) 

where generally for a weighted least-squares solution 

  1T T 
 C A WA A W , (27) 

and bΣ  is the same as in the previous section, above.  Expanding Eq. (26) using Eq. (22) yields 

22
,

T
s ref s ref  Σ r C K C . (28) 

Normalizing to 2
ref  yields 

2
,2

Ts
s ref

ref 
 

Σ
r C K C . (29) 

The square-root of the diagonal elements of 2
s ref Σ  are the DOP values, with the constraint 

that they are generally relative to ,s refr  and 2
ref , depending on how we define the K matrix.  

We will write this as 

1 2

2
diag s

DOP
ref 

  
   
  
  

Σ
d , (30) 

understanding that the square-root operation is on elements of the diagonal.  The DOP values 
themselves are then a ratio of standard deviations. 

Comments 

At ranges of a few tens of km, in a well-calibrated radar, with ranges compensated for 
atmospheric propagation (discussed in more detail later in Section 7) the bulk of the variances 

2
,s i  are probably due to the accuracy and precision of the position of the radar, APCi.  

Consequently, it is not unreasonable to assume that all 2
,s i  are somewhat equal, and may 

reasonably be represented with a common representative variance, so that 

2 2 2
, ,s i s j ref     . (31) 
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Case 1.  Simple Constant Range Collection 

We note that for a simple uniformly weighted case where   K W I , then Eq. (29) reduces to 

  12
,2

Ts
s ref

ref 

 
 

Σ
r A A . (32) 

This, of course, assumes that for all range measurements ,s ir ,  the products of squared ranges 

and variances are equal, that is 

22 2 2
, , ,s i s i s ref ref   r r . (33) 

A sufficient condition for Eq. (33) to hold is that ranges themselves are equal, and the variance in 
their measurements are equal, namely 

2 2
,s i ref    = constant, and 

, ,s i s ref r r  = constant. (34) 

 

Case 2.  Simple Variable Range Collection 

We now examine the case where variances are equal for each measurement, but the ranges may 
vary, namely where 

2 2
,s i ref    = constant and 

,s ir  = independent and not necessarily constant. (35) 

In this case the specific choice for ,s refr  can be somewhat arbitrary, as whatever value we 

choose will cancel in the final calculation anyway.  This allows us to calculate 

2 2 2
,1 ,2 ,

2 2 2
, , ,

diag
s s s M

s ref s ref s ref

          
                                         

r r r
K

r r r
 . (36) 

If we assume uniform weighting, such that  W I , then Eq. (29) becomes 

    1 12
,2

T T Ts
s ref

ref 

  
 

Σ
r A A A KA A A . (37) 
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Case 3. Weighted Variable Range, Variable Variance Collection 

For this case we allow both ranges and variances to vary. Furthermore, we will weight the 
measurements according to Eq. (24).  If we implement the weighting as given in Eq. (24), with 
Eq. (27), then Eq. (29) becomes  

  12
,2

Ts
s ref

ref 

 
 

Σ
r A WA . (38) 

A tacit assumption here is that the various variances are known, or at least presumed known well 

enough.  While choice of reference range ,s refr  can be somewhat arbitrary, because its value 

will cancel anyway in the final calculation of Eq. (38), the choice for 2
ref  is a little more 

problematic.  We might choose 2
ref  to be equal to the variance of a particular measurement, or 

some function of all the variances from all the measurements.  However, for purposes of 
evaluating the goodness of data from various data collection geometries and conditions, it might 

be just as easy, and perhaps ultimately more meaningful, to set 2 1ref  , in which case Eq. (38) 

becomes a calculation of the covariance matrix sΣ  itself. 
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2.4 Multilateration Examples 

We now exemplify the previous discussion with some examples. 

2.4.1 Straight-line Collection Geometry 

Consider a collection geometry as illustrated in Figure 2, where seven SAR images are collected 
along a horizontal straight line.  In addition, we are observing a scatterer at a true location with 
respect to a universal SRP of 

  3 2 1 T s  m. (39) 

However, the matrix A for this geometry is identified as 

-9396.9 -6264.6 -3132.3 0 3132.3 6264.6 9396.9

9396.9 9396.9 9396.9 9396.9 9396.9 9396.9 9396.9

3420.2 3420.2 3420.2 3420.2 3420.2 3420.2 3420.2

T
  
     
    

A , (40) 

which clearly has a rank of only two.  Consequently TA A  is singular, its inverse doesn’t exist, 
and Eq. (14) cannot be calculated.  This renders this geometry as unsuitable for 3-D geolocation 
using range-only measurements. 

 
Figure 2.   Straight-line data collection geometry.  All numerical values in meters. 
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2.4.2 Circular Orbit Arc 

Now consider the collection geometry of Figure 3, where the SAR images are collected along a 
constant-radius (from the SRP) circular orbiting arc.  As before, we are observing a scatterer at a 
true location with respect to a universal SRP of 

  3 2 1 T s  m. (41) 

For this geometry, A is of full rank, and exhibits a condition number of about 22.‡  With no 
measurement errors, we may use Eq. (14) to calculate a solution that exactly yields the scatterer 
coordinates in Eq. (41).  We may furthermore calculate the DOP numbers as 

  0.8324 3.5789 8.6092 T
DOP  d . (42) 

This suggests that for this geometry, estimating the scatterer height (z component) from noisy 
measurements will amplify the standard deviation by about 8.6, which isn’t too bad at all. 

 

 

 
Figure 3.   Circular Orbit Arc collection geometry.  All numerical values in meters. 

 

‡ As calculated by the Matlab 2-norm condition number with respect to inversion function, cond(). 
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We may illustrate sensitivity to measurement noise by adding a small amount of random noise to 

all measurements ,s ir .  We will presume to add independent zero-mean Gaussian distributed 

noise with a standard deviation of 0.1 m.  Table 1 details some sample results from a set of 
independent experimental simulations.  Note that as the DOP values suggest, small errors in 
range measurements yield relatively small errors in estimated scatterer geolocation. 
 

Table 1.  Sample results from a set of independent experimental simulations where noise 
with a standard deviation of 0.1 m was added to the range measurements.  Scatterer true 

location is at   3 2 1 T s . 

Simulation Estimated Scatterer Geolocation (m) 

1 [2.9289    1.8348    1.4177] T 

2 [2.9610    1.7169    1.7289] T 

3 [3.1101    2.1985    0.4718] T 

4 [2.9925    2.3402    0.2849] T 

5 [3.0252    1.7686    1.3758] T 

We can improve the DOP values somewhat by collecting additional range measurements.  For 
example, if instead of collecting only 7 range samples along the quarter-circle arc in Figure 3, we 
collect 77 range samples, then the DOP values are improved to 

  0.2812 1.3447 3.3336 T
DOP  d . (43) 

Let us now consider that instead of a random zero-mean error added to the measurements ,s ir , 

we instead add a bias of 3 m to all measurements ,s ir .  Such an error is in the neighborhood of 

what an atmospheric propagation delay might cause at these ranges.  The result is an estimated 
scatterer geolocation of 

  ˆ 3.0009 2.0006 -7.7638 T s  m. (44) 

Note that for this geometry, a measurement bias in ,s ir  yields primarily an error in geolocation 

height.  A positive bias pushes the estimated height downward. 
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“What's right is what's left if you do everything else wrong.” 
-- Robin Williams 
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3 Multilateration with a Range Bias 

Heretofore we have assumed that the radar can make reasonably accurate “true range” 

measurements ,s ir , and tacitly assumed that any error is zero mean.  For a radar system to 

optimally calculate true range means that it needs to be well calibrated, and compensate for the 
actual velocity of propagation in the atmosphere.  Falling short in either of these will impart a 
bias to the range error.  This error bias may have elements that are common to all range 
measurements, and some that vary somewhat with collection geometry.  Since we might expect a 
high degree of correlation in this error bias across our ranging samples (that’s kind of what 
“bias” means), we might consider estimating this bias from the data itself, and compensating for 
this estimate in our estimation of scattering location S. 

Let us now consider an error bias in the radar’s measurement of range.  Accordingly, we define 

, ,s true ir  = magnitude of the true geometric range from S to APCi,  

, ,s meas ir  = magnitude of radar’s estimate or measure of the true range, and 

,bias ir  = bias in , ,s meas ir . (45) 

We might consider that the bias is a mean error, namely 

  , , , , ,bias i s meas i s true ir E  r r . (46) 

In the absence of any statistical variations, we might simply assume 

, , , , ,bias i s meas i s true ir   r r . (47) 

In this case, Eq. (6) becomes 

2 2 2
, , , ,

1

2
T

c i c i s true i
       
  

r s r r s , (48) 

which can now be expanded to explicitly show the measured range and range bias as 

  22 2 2
, , , , , , , ,

1

2
T

c i c i s meas i bias i s meas i bias ir r         
  

r s r r s r . (49) 

This might be rearranged to the equality 

  22 2 2
, , , , , , , ,

1

2
T

c i s meas i bias i c i s meas i bias ir r         
  

r s r r r s . (50) 
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Since each measure , ,s meas ir  may potentially have its own range bias ,bias ir , and we need to 

additionally estimate an unknown scattering location vector s, relying on range measurements 
alone will never allow us to have enough independent measurements to calculate all the 
unknowns we wish to calculate.   

Consequently, for the following development we will assume a single range bias common to all 

range measurements , ,s meas ir .  If we assume that all the range biases are equal, then we can 

write a collection of range measurements as 

  

  

  

22 2 2
,1 , ,1

,1 , ,1
22 2 2

,2 , ,2,2 , ,2

22, , , 2 2
, , ,

1

2

1

2

1

2

c s meas biasT
c s meas

T
c s meas biasc s meas

bias

T
c M s meas M

c M s meas M bias

r

r

r

r

                    
                                 
                     

r r s
r r

s r r sr r

r r
r r s

   

 

, (51) 

where  

,bias i biasr r  = common constant, albeit unknown. (52) 

This is of course of the well-known form 

 Ax b , (53) 

where the matrix and vector elements are now 

biasr

  
   
  

s
x  = 4×1 column vector, 

,1 , ,1

,2 , ,2

, , ,

T
c s meas

T
c s meas

T
c M s meas M

   
  
   
   
  
  
     

r r

r r
A

r r

  
 = M×4 matrix, and 

  

  

  

22 2 2
,1 , ,1

22 2 2
,2 , ,2

22 2 2
, , ,

1

2

1

2

1

2

c s meas bias

c s meas bias

c M s meas M bias

r

r

r

               
                
  
  

               

r r s

r r s
b

r r s

 

 = M×1 column vector. (54) 
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With this new parameter to estimate, for a solution, we now require at least four independent 
measurements, that is 4M  . 

For precisely four independent measurements, if A is full rank, we may calculate 

1ˆ   x A b . (55) 

If we have more than four measurements, with A being full rank, we may calculate a least-
squares solution as 

  1
ˆ T T 
 x A A A b . (56) 

And finally, if wish to weight the input measurements, then we may calculate 

  1
ˆ T T 
 x A WA A Wb , (57) 

where often W is chosen to be a diagonal matrix with diagonal elements that are the inverse of 
the variances of the inputs in, or elements of, the b vector. 

The x̂  vector contains estimates of its constituents 

ˆ
ˆ

b̂iasr

  
   
  

s
x . (58) 

 

Some Comments on Calculating a Solution 

Similar to the comments on solving Eq. (10), we comment on several issues of potential concern 
while calculating a solution to Eq. (53). 

  First, as with Eq. (10), we note that our b vector still contains 2s , but now also contains 
2

biasr , both functions of the things we are trying to calculate.  The same options 

previously discussed still apply here, namely ignoring the issue, using an approximation, 
using iteration in calculating a solution, or using elimination methods. 

  Second, we are still presuming that the radar can reasonably accurately measure range 

,s ir , at least to within some hopefully small common range bias.  We observe 

anecdotally that approximate solutions and iterative techniques usually work best the 
closer we begin to the final solution.  Consequently, if we have “better” models for 
atmospheric propagation, then we should use them in compensating any “known” or 

“approximately known” structural biases in ,s ir  perhaps due to variations in range, prior 
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to engaging any of the calculation Eq. (55) through Eq. (57).  We may then leave any bias 
estimation for estimating a common residual bias error.   

  Third, we continue to presume that our navigation subsystem can  reasonably accurately 
measure radar position ,a ir , and by extension ,c ir .   

  Fourth, it is still true that to use any of the calculations Eq. (55) through Eq. (57), the 

matrix A must be of full rank.  Furthermore, we really desire that   TA A  is well 

conditioned so that small errors in b don’t blow up.  This means that we still cannot 
tolerate colinear or coplanar radar collection geometries.   

However, the addition of a fourth parameter to estimate, in this case biasr , provides us 

with another column in matrix A, and hence another opportunity for linear dependence.  
That is, the first three columns of A that are associated with position vector s might still 
be linearly independent, but we also require the fourth column to be linearly independent 
of the others as well.  Because we want to estimate four parameters now, we need the 
rank of matrix A to be four.  A rank of three is no longer good enough. 

This additional constraint on the fourth column of A, because we want to estimate biasr , 

places addition constraints on radar collection geometries.  This means that data 
collection geometries that are good enough for otherwise estimating only s, may not be 
good enough for estimating both s and biasr  together.  For example, a radar exhibiting a 

constant altitude and constant range circular orbit around some scattering location will 
render a range bias as indistinguishable from a height error, as shown in the example of 
Section 2.4.2.  Even an approximate circular orbit can be expected to yield large errors in 

biasr  and/or height estimation. 

The bottom line is that if we want to estimate range bias from ranging data in addition to 
3D scattering location s, then collecting that data with a constant altitude and constant 
range circular orbit is generally a no-no. 

One exception to this generalization might be if we had independent measurements or 
other information of either biasr  or scatterer height that are uncorrelated with the other, 

which would need to be included in the A matrix. 
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3.1 Dilution of Precision (DOP) 

The DOP calculations are essentially the same as in Section 2.3, namely they are derived from 
the diagonal of a normalized covariance matrix 

2
,2

Ts
s ref

ref 
 

Σ
r C K C , (59) 

where in the general sense 

  1T T 
 C A WA A W , (60) 

and 

2 2 22 2 2
,1 ,1 ,2 ,2 , ,

2 2 22 2 2
, , ,

diag
s s s s s M s M

s ref ref s ref ref s ref ref

   

   

          
                                         

r r r
K

r r r
 . (61) 

Specifically, the DOP values are 

1 2

2
diag s

DOP
ref 

  
   
  
  

Σ
d , (62) 

understanding that the square-root operation is on elements of the diagonal.  The difference now 
is that DOPd  is a 4-element vector, that includes the DOP for geolocation estimate s, and now 

also the DOP for the bias estimate biasr . 

Depending on the nature of ,s ir  and 2
,s i , we might choose  W I , or perhaps a weighted least-

squares solution with 1  W K . 

Comments 

Although we have added the estimation of a common range bias, the underlying measurements 
from which we derive these estimates are the same.  That is, the K matrix in this section is the 
same as for the DOP calculations in Section 2.3.   
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3.2 Multilateration Examples 

We now exemplify the previous discussion with some examples. 

3.2.1 Circular Orbit Arc 

We now revisit the example in Section 2.4.2, where the SAR images are collected along a 
constant-radius (from the SRP) circular orbiting arc, as illustrated again in Figure 4.  As before, 
we are observing a scatterer at a true location with respect to a universal SRP, but now also with 
a fixed true range bias, of 

  3 2 1 T s  m, and 

biasr  =   m. (63) 

For this geometry, although matrix A is technically of full rank, it exhibits an incredibly poor 
condition number of about 109.  With no measurement errors, we may use Eq. (56) and Eq. (58) 
to calculate a solution that yields the estimates§ 

  ˆ 3.0009 2.0006 -9.6778 T s  m, and 

b̂iasr  = -0.71145 m. (64) 

 
Figure 4.   Circular Orbit Arc collection geometry.  All numerical values in meters. 

 

§ Calcluations using Matlab double-precision arithmetic. 
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Observe that the error in the calculated range bias is about 3.7 m, which is worse than if we had 
just ignored it entirely.  Furthermore, the error in scatterer height estimation is almost 11 m, 
again worse than if we had just ignored the range bias.  So, by attempting to estimate the range 
bias, we made our geolocation estimation worse, not better. 

Note that in spite of essentially “perfect” measurements (within the limits of double-precision 
arithmetic) the results in Eq. (64) contain significant errors.  Even reducing the true range bias to 
zero, but still allowing for its estimation nonetheless, will generate similarly large estimation 
errors. 

Had the true target position been exactly at the center of the orbit, then the rank of matrix A 

would have been only 3, rendering   TA A  as singular, and impossible to invert at all, and hence 

impossible with which to calculate a geolocation solution. 

We may gain further insight into the reason for poor performance by calculating the DOP 
numbers for our example to be 

7 61489 992 1.45 10 4.96 10
T

DOP
       d . (65) 

The first three entries are associated with ŝ , and the fourth describes b̂iasr .  We observe from this 

that we might expect even very small errors, perhaps even mere quantization errors, to be greatly 
amplified in the calculation of a solution, especially for height estimation and range bias 
estimation. 

We may illustrate sensitivity to measurement noise by adding a small amount of random noise to 

all measurements ,s ir .  We will presume to again add independent zero-mean Gaussian 

distributed noise with a standard deviation of 0.1 m.  Unfortunately, the errors are so amplified 
that the iterative technique used to calculate x̂ , and hence ŝ  and b̂iasr , won’t even converge to a 

solution. 

The net effect is that by adding another degree of freedom to our problem so that we might 
estimate b̂iasr , in fact increases our DOP values so that we become super sensitive to even small 

errors, and makes our estimates so much worse as to become meaningless and unusable. 

So, more isn’t always better. 

We summarize by restating that if we are estimating range biases in addition to scatterer 
geolocation, then collecting range data with a constant altitude and constant range circular orbit 
is a poor choice.** 

 

** We remind the reader that this is for range-only data, without any other independent data. 
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3.2.2 Spiral Arc 

Now consider a group of SAR images collected along a constant-altitude spiral arc illustrated in 
Figure 5.  Both range and grazing angle vary with each image. 

As before, we are observing a scatterer at a true location with respect to a universal SRP, but 
now also with a fixed true range bias, of 

  3 2 1 T s  m, and 

biasr  =   m. (66) 

For this geometry, matrix A is full rank, and exhibits a condition number of about 194.  With no 
measurement errors, we may use Eq. (56) and Eq. (58) to calculate a solution that yields the 
perfect estimates†† 

  ˆ 3.0000 2.0000 1.0000 T s  m, and 

b̂iasr  = 3 m. (67) 

This is a substantially improved result from the previous constant-radius circular orbiting arc. 

 
Figure 5.  Spiral Arc collection geometry.  All numerical values in meters. 

 

†† Calcluations using Matlab double-precision arithmetic. 
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We calculate the DOP numbers to be 

  12.9143 4.5254 45.2824 28.3273 T
DOP  d , (68) 

which is also much improved from the previous example.  We recall that the first three entries 
are associated with ŝ , and the fourth describes b̂iasr .   

We may illustrate sensitivity to measurement noise by adding a small amount of random noise to 

all measurements ,s ir , again presuming to add independent zero-mean Gaussian distributed 

noise with a standard deviation of 0.1 m.  Sample results are given in Table 2.  Note that as the 
DOP values suggest, small errors in range measurements are multiplied to larger errors in 
estimated scatterer geolocation.  Nevertheless, this is much improved from the previous example. 
 

Table 2.  Sample results from a set of independent experimental simulations where noise 
with a standard deviation of 0.1 m was added to the range measurements.  Scatterer true 

location is at   3 2 1 T s  with a constant range bias of 3 m. 

Simulation Estimated Scatterer 
Geolocation (m) 

Estimated Range 
Bias (m) 

1 [3.1842    1.9528    1.7831] T 3.4266 

2 [3.6305    2.3184    3.1353] T 4.4048 

3 [2.5120    2.1401   -0.7543] T 1.9692 

4 [5.4104    2.4614    9.4918] T 8.1420 

5 [2.9815    1.7387    0.5437] T 2.5614 

 

We observe from all this that for range-only measurements, the constant-altitude spiral arc is a 
superior geometry over the constant-range circular orbit arc. 

We also observe that the estimated range bias in the simulation examples of Table 2 vary over a 
span of about 6 m; from about 2 m to about 8 m.  We opine that for a well-calibrated radar, and 
with even a rudimentary correction for atmospheric propagation, that such a large span is highly 
unlikely.  This begs the question “Can we incorporate some additional information that might 
constrain the range bias estimate, and thereby improve geolocation of the scatterer as well?”  The 
answer is “yes.” 
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“Sometimes the road less traveled is less traveled for a reason.” 
-- Jerry Seinfeld 
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4 Multilateration with a Tethered Range Bias 

In the previous section we examined estimating a scatterer’s geolocation in the presence of a 
range measurement bias error common to all range measurements.  It became clear that attempts 
to estimate the range bias in addition to scatterer geolocation encountered some difficulties, and 
further limited suitable data collection geometries, often increasing sensitivities to ranging errors 
and increasing DOPs to unusable conditions.   

The treatment in previous section allowed for an unconstrained floating of range bias to 
ultimately minimize overall squared error.  However, this is somewhat unrealistic in many 
situations where we can reasonably bound range bias due to factors such as atmospheric 
propagation.  Consequently, it makes sense to incorporate this additional information into the 
geolocation estimation process. 

As in the previous section, we will continue with the definitions of Eq. (45) through Eq. (50), 

and also continue to assume a single range bias common to all range measurements , ,s meas ir , 

where 

,bias i biasr r  = constant, albeit unknown. (69) 

In this section, however, we will presume to incorporate an initial guess at the range bias in the 
form of a tether value, and introduce 

, ,bias tether ir  = presumed best guess of the residual bias in , ,s meas ir . (70) 

The intent is to substantially restrain, but still allow some elasticity, to the final range bias 
estimate.  We will assume a single common tether value for all range measures, that is 

, , ,bias tether i bias tetherr r  = constant. (71) 

We continue to structure our matrix equation as 

 Ax b , (72) 

where, as before, we wish to solve for  

biasr

  
   
  

s
x  = 4×1 column vector. (73) 

However, we now add to matrix A and vector b an additional condition, so that they now 
become 
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 = (M+1)×1 column vector. (74) 

This construct will attempt to calculate ,bias bias tetherr r  in the least-squares sense.  

Consequently, we are tethering our estimate for biasr  to a presumed value ,bias tetherr .  The fact 

that we are allowing some departure from this value due to minimizing the overall squared error 
calculation for x provides some elasticity to matching ,bias tetherr  precisely. 

A question remains “How much elasticity should we give to force ,bias bias tetherr r ?”  We can 

address this with a weighted least-squares solution, placing greater weight onto this relationship.  
The question then becomes “How do we choose a weighting?” 

 

Comments 

While in this section we are tethering range bias, there is no overt reason that the same concept 
of tethering can’t be applied to other parameters, say, any of the geolocation parameters.  Any 
information about any of our parameters, from any other source, might be incorporated in some 
fashion into the matrix equation, to help calculate a hopefully improved geolocation solution. 
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4.1 Weighted Least Squares Solution 

Following the development in Section 2.2, we may calculate the covariance matrix for this new b 
to be 

2 2 22 2 2 2
,1 ,1 ,2 ,2 , , ,diagb s s s s s M s M bias tether                                   

Σ r r r , (75) 

where the new variance entry is 

2
,bias tether  = variance we allow in matching biasr  to ,bias tetherr . (76) 

We may again write the covariance matrix bΣ  as 

2 2
,b s ref ref  Σ r K , (77) 

where now the K matrix becomes 

2 2 22 2 2 2
,1 ,1 ,2 ,2 , , ,

2 2 2 22 2 2 2
, , , ,

diag
s s s s s M s M bias tether

s ref ref s ref ref s ref ref s ref ref

    

    

            
                                                 

r r r
K

r r r r
 .

 (78) 

Consequently, we may choose a weighting matrix for a weighted least-squares solution to be 

1  W K . (79) 

Using this we may calculate the weighted least-squares solution to be 

  1
ˆ T T 
 x A WA A W b . (80) 

We expect that typically the variance in the bias is substantially less than the range-scaled 
variance of the range measurements, that is 

22 2
, , ,bias tether s i s i     r . (81) 

Because its magnitude is constrained in Eq. (81), the contribution of 2
,bias tether  in Eq. (78) is 

substantially subdued.  Consequently, the weighting matrix selected in Eq. (79) must amplify its 
effect in the final solution.  This implies that we may expect that a substantially enhanced 
weighting will be applied towards encouraging ,bias bias tetherr r .   

We note that this is related to constrained least-squares techniques which can be found in various 
references, for example in a text by Van Trees.11 
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4.2 Dilution of Precision (DOP) 

The DOP calculations are essentially the same as in previous sections, namely they are derived 
from the diagonal of a normalized covariance matrix 

2
,2

Ts
s ref

ref 
 

Σ
r C K C , (82) 

where in the general sense 

  1T T 
 C A WA A W , (83) 

and, repeating Eq. (78), we have 

2 2 22 2 2 2
,1 ,1 ,2 ,2 , , ,

2 2 2 22 2 2 2
, , , ,

diag
s s s s s M s M bias tether

s ref ref s ref ref s ref ref s ref ref

    

    

            
                                                 

r r r
K

r r r r
 .

 (84) 

Specifically, the DOP values are 

1 2

2
diag s

DOP
ref 

  
   
  
  

Σ
d , (85) 

understanding that the square-root operation is on elements of the diagonal.  We observe that 

DOPd  is still a 4-element vector, that includes the DOP for geolocation estimate s, and also the 

DOP for the bias estimate biasr . 

Comments 

Augmenting and contrasting with the comments at the end of Section 2.3, we still have a K 

matrix for which the range measurement biases 2
,s i  might still be assumed to be essentially 

equal.  However, the K matrix in Eq. (84) now also explicitly contains the variance of the tether 

bias itself, 2
,bias tether .  Since we ultimately expect any range bias variance due to the tether, to 

also be a constituent of the overall ranging error variance, it is reasonable to assume  

2 2
, ,bias tether s i   . (86) 

This means that 2
ref  may reasonably describe both of these. 
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4.3 Multilateration Examples 

We now exemplify the previous discussion with some examples. 

4.3.1 Circular Orbit Arc 

We again revisit the example of a constant-radius (from the SRP) circular orbiting arc that was 
examined in Section 2.4.2 and Section 3.2.1.   The geometry is again illustrated in Figure 6.  As 
before, we are observing a scatterer at a true location with respect to a universal SRP, and a fixed 
true range bias, of 

  3 2 1 T s  m, and 

biasr  =   m. (87) 

In addition, we will tether the range bias to 

,bias tetherr  = 3 m. (88) 

For this geometry, matrix A is full rank, and exhibits a condition number of about 105.  With no 
measurement errors, we may use a weighted least-squares calculation that yields perfect 
estimates of scatterer geolocation and range bias.   

  ˆ 3 2 1 T s  m, and 

b̂iasr  =   m. (89) 

 
Figure 6.   Circular Orbit Arc collection geometry.  All numerical values in meters. 
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The weight matrix W was chosen using Eq. (78), with a somewhat arbitrary 

2 2 2
, ,bias tether s i ref     . (90) 

This substantially emphasizes the influence of our tether value ,bias tetherr . 

We calculate the corresponding DOP numbers to be a fairly reasonable 

  0.8326 3.5800 9.0948 1.0000 T
DOP  d . (91) 

We may illustrate sensitivity to measurement noise by adding a small amount of random noise to 

all measurements ,s ir , again presuming to add independent zero-mean Gaussian distributed 

noise with a standard deviation of 0.1 m.  In addition, we may assume some randomness to the 
true range bias, assumed to be Gaussian distributed around a mean of 3 m with a standard 
deviation of about 0.4 m.  This is a reasonable approximation for atmospheric propagation 
variations.  Sample simulation results are given in Table 3.   

Note that as the DOP values suggest, small errors in range measurements net small errors in 
estimated scatterer geolocation.  Nevertheless, this is much improved from the previous example. 
 

Table 3.  Sample results from a set of independent experimental simulations where noise 
with a standard deviation of 0.1 m was added to the range measurements, and range bias 

truth varied with a standard deviation of 0.4 m.  Scatterer true location is at   3 2 1 T s  

with tethered range bias of 3 m. 

Simulation True Range 
Bias (m) 

Estimated Scatterer Geolocation (m) Estimated Range 
Bias (m) 

1 3.2868 [2.9786    1.1625    2.0155] T 3 

2 2.6763 [2.8998    1.9155    2.2069] T 3 

3 2.4035 [3.0561    2.0140    2.5716] T 3 

4 3.1952 [2.8832    1.5743    1.5600] T 3 

5 3.0863 [2.9811    1.8712    0.9480] T 3 

 

The bottom line is that by tethering the range bias we overcome the otherwise extreme sensitivity 
to ranging errors so that this circular orbit collection geometry becomes useful again and in fact 
leads to fairly accurate geolocation performance.   

 



- 41 - 

4.3.2 Spiral Arc 

We return now to the collection geometry of Section 3.2.2, where a group of SAR images was 
collected along a constant-altitude spiral arc, illustrated again in Figure 7.  Recall that both range 
and grazing angle vary with each image. 

As before, we are observing a scatterer at a true location with respect to a universal SRP, but 
with a fixed true range bias, of 

  3 2 1 T s  m, and 

biasr  =   m. (92) 

In addition, we will tether the range bias to 

,bias tetherr  = 3 m. (93) 

For this geometry, matrix A is full rank, and exhibits a condition number of about 194.  With no 
measurement errors, we may use Eq. (56) and Eq. (58) to calculate a solution that yields the 
perfect estimates 

  ˆ 3.0000 2.0000 1.0000 T s  m, and 

b̂iasr  = 3 m. (94) 

 
Figure 7.   Spiral Arc collection geometry.  All numerical values in meters. 
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We calculate the DOP numbers to be 

  1.2149 1.9909 2.7724 0.9993 T
DOP  d , (95) 

which is much improved from the example of Section 3.2.2.  We recall that the first three entries 
are associated with ŝ , and the fourth describes b̂iasr .   

We may illustrate sensitivity to measurement noise by adding a small amount of random noise to 

all measurements ,s ir , again presuming to add independent zero-mean Gaussian distributed 

noise with a standard deviation of 0.1 m.  In addition, we may assume some randomness to the 
true range bias, assumed to be Gaussian distributed around a mean of 3 m with a standard 
deviation of about 0.4 m.  This is a reasonable approximation for atmospheric propagation 
variations.  Sample results are given in Table 4.  Note that as the DOP values suggest, small 
errors in range measurements are multiplied to not-too-much-larger errors in estimated scatterer 
geolocation.   
 

Table 4.  Sample results from a set of independent experimental simulations where noise 
with a standard deviation of 0.1 m was added to the range measurements, and range bias 

truth varied with a standard deviation of 0.4 m.  Scatterer true location is at   3 2 1 T s  

with a constant range bias of 3 m. 

Simulation True Range 
Bias (m) 

Estimated Scatterer Geolocation (m) Estimated Range 
Bias (m) 

1 2.8981 [2.9376    2.0010    1.2490] T 3 

2 2.4319 [3.3032    1.9752    2.0475] T 2.9983 

3 3.1176 [3.1542    1.6169    1.2694] T 3.0109 

4 3.3917 [2.6680    2.1849    0.1949] T 2.9934 

5 3.1571 [3.0925    1.7626    0.9484] T 3.0019 

 

We observe from all this that for range-only measurements, augmented by a tethered range bias, 
the constant-altitude spiral arc is still an excellent data collection geometry. 
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5 Differential Geolocation 

Heretofore, in the previous sections, we have calculated an absolute geolocation for the scatterer 
of interest.  In this section we deal with a relative location between two scatterers in the SAR 
images.  For example, this might be useful for geolocating a point with respect to a fiducial 
reference point. 

We investigate this problem by defining two scattering locations of interest, with vectors 

1s  = location of scatterer 1S , and 

2s  = location of scatterer 2S . (96) 

We will ignore any biases, and note that for each, the matrix equation is still 

1 1 A s b , and 

2 2 A s b , (97) 

where 
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Taking the difference between the equations in Eq. (97) yields 

    2 1 2 1   A s s b b . (99) 

We can write this more succinctly as 

   A s b , (100) 

where 

2 1   s s s , and 

2 1   b b b . (101) 

The vector  b  may be expanded to 

2 1

2 1

2 1
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. (102) 

We note that we may expand 

2 2 2
2 1 12      s s s s s . (103) 

This allows us to write 

2 1

2 1

2 1
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r r s s s

r r s s s
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r r s s s

 

. (104) 

We then desire the solution which can be calculated as 

  1
ˆ T T 
   s A A A b . (105) 
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Some Comments on Calculating a Solution 

Several points are worth noting. 

  If  s  is small compared to the radar ranges 
1,s ir  and 

2,s ir , then we would expect any 

range biases to be nearly identical, and hence irrelevant to the difference  s . 

  The presumption is that 1s  is known.  It is the reference or fiducial location to which 

other points are measured. 

  We observe that  s  also appears in our vector b.  It is of course the thing we are trying to 

calculate.  This suggests that we may wish to consider any of the techniques discussed in 
the comments after Eq. (10), including perhaps an iterative technique, for its calculation. 

  We note that if 1 0 s , then we expect 
1, ,s i c i r r , and  b  in Eq. (104) looks very 

much like 2b  in Eq. (98), and our solution becomes 2  s s .  One might wonder how 

this then differs from the algorithm discussed in Section 2.1. 
 

The subtle but very important distinction is that in Section 2.1 the value ,c ir  in the b 

vector is derived from the radar’s navigation subsystem, whereas in this section, 
1,s ir  is 

derived from a radar’s ranging measurement.  While in a perfect world they should be 
equal, in the decidedly imperfect world we have they are not, with one containing motion 
measurement errors, and the other containing biases and errors due to propagation; 

essentially the same errors as 
2,s ir , as discussed above. 

  A 3-D solution to Eq. (105) requires at least 3 SAR images. 
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“The New England Journal of Medicine reports that 9 out of 10 doctors agree  
that 1 out of 10 doctors is an idiot.” 

-- Jay Leno 
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6 Differential Ranging 

In earlier developments we examined an  Ax b  matrix equation construct where the b vector 
contained elements of the x vector.  This required us to consider options like an iterative 
technique to solve for the x vector.  We now examine an alternative the overcomes this 
characteristic. 

Consider Eq. (50) which we now repeat here as 

  22 2 2
, , , , , ,

1

2
T

c i s meas i bias c i s meas i biasr r         
  

r s r r r s , (106) 

Having also assumed a constant range bias, or  

,bias i biasr r  = constant, albeit unknown. (107) 

Let us now consider two such measurements from two independent SAR images, that is 

  22 2 2
,1 , ,1 ,1 , ,1

1

2
T

c s meas bias c s meas biasr r         
  

r s r r r s , and 

  22 2 2
,2 , ,2 ,2 , ,2

1

2
T

c s meas bias c s meas biasr r         
  

r s r r r s . (108) 

Taking the difference between these two equations yields the vector equation 

    
    

2 2
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,2 ,1 , ,2 , ,1 2 2
, ,2 , ,1

1

2

c cT T
c c s meas s meas

bias
s meas s meas

r

                             

r rs
r r r r

r r
.

 (109) 

Note that the right-hand side of this equation no longer contains location vector s, or the range 
bias biasr . 

We now assemble several such pairs into a matrix equation 

 Ax b , (110) 

where again 

biasr

  
   
  

s
x  = 4×1 column vector, (111) 

but now 
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 (112) 

If data is collected so that A has full rank, we may calculate a least-squares solution as 

  1
ˆ T T 
 x A A A b . (113) 

The x̂  vector then contains estimates of its constituents 

ˆ
ˆ

b̂iasr

  
   
  

s
x . (114) 

We have constructed this the A matrix and b vector combination so that each row contains data 
from a unique pair of SAR images.  That is, no rows share any data.  To solve for four 
unknowns, this requires 

8M  , and M even. (115) 

The attractiveness of this is that there is no correlation between measurements in any of the 
elements of the b vector.  This simplifies DOP calculations. 

There is no overt reason for constructing the A matrix and b vector using adjacent images in 
each row.  Any particular pairings would seem to provide the same result. 

In fact, we might also have constructed the A matrix and b vector to use a common reference for 
subtraction, as  
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 =   1 1M    column vector. 

 (116) 

To solve for four unknowns, this then requires fewer SAR images; in fact only 

5M  . (117) 

The unattractiveness of this is that there is now correlation between measurements of the various 
elements of the b vector.  This complicates DOP calculations somewhat, but does not prohibit it. 

A similar technique is presented by Manolakis.9 
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“For a successful technology, reality must take precedence over public relations,  
for Nature cannot be fooled.” 

-- Richard P. Feynman 
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7 Factors Influencing Accurate Radar Ranging 

A fundamental tenet of the subject of this report is that we can accurately ‘measure’ the range 
between the radar and a scatterer of interest; that we wish to geolocate.  This measure is actually 
a calculation originating in an echo time-delay measurement, more actually a count of clock 
cycles of an underlying time base. 

There are a number of mechanisms that can affect the accuracy and precision of a radar’s ranging 
ability. Several are discussed in an earlier report.5  We repeat and expand somewhat on the 
previous discussion here.  Note that we limit our discussion to a monostatic radar architecture. 

Motion measurement of the antenna phase center 

When we consider a “range” from the radar to a scatterer location, at some point we need to 
decide “range from what?”  That is, “Just how do we define the position of the radar?” 

The natural point to define the radar location is the Antenna Phase Center (APC).  This point 
location is mechanically related to the antenna structure, but not always obvious.10  Nevertheless, 
it is fundamental to the geometry of radar ranging.  It is the location of the APC that figures into 
any ranging measurements. 

Any motion measurement of the radar, due to its navigation subsystem, needs to be translated to 
the APC by appropriate lever-arm calculations.  This includes any GPS measurements, and any 
measurements by the Inertial Navigation System (INS).  We opine that any lever-arms should be 
measurable to within a few cm. 

Of course, even with perfect lever-arms, the accuracy and precision of the APC is limited by the 
accuracy and precision of the GPS-aided INS.5  Anecdotal measurements suggest that a 
navigation subsystem should be able to achieve an overall RMS error of about 1 m.  Over a short 
term a navigator error will look more like a position bias, becoming less correlated over time.  
Note that a position bias is not exactly the same as a range bias, especially when the angular 
perspective changes substantially. 

Range/delay calibration to the antenna phase center  

The gross delay that a radar measures includes not only the 2-way propagation delay between the 
radar APC and the scatterer location of interest, but also includes other system delays in the 
components of the electronic circuitry of the radar hardware.  If left uncompensated, or otherwise 
unaccounted for, then this extra delay will manifest as a range bias or error, because it adds to the 
echo delay time between APC and scatterer. 

This extra delay is typically measured via a calibration operation, and then subtracted from or 
otherwise compensated to the gross delay, so that the final “adjusted” delay is strictly between 
APC and scatterer. 

It is critical that the range/delay calibration include the total signal propagation path (both 
transmit and receive) up to the APC, and not fall short to some other more convenient point in 
the signal path, such as to the antenna port, or feed structure, etc.  It needs to be to the APC.  It 
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also needs to include any latencies in command timing and control.  We opine that any 
range/delay calibration can probably be made to equivalently within a few cm. 

Target correspondence in the images 

When multilateration is used involving multiple SAR images, the tacit assumption is that the 
same scatterer location can be accurately identified in all the images.  This is the 
“correspondence” issue.  Even a readily identifiable isotropic point scatterer may straddle pixels 
differently in different images.   

We opine that using a simple “maximum pixel” selection for a point scatterer, or equivalent such 
as a trihedral corner reflector, can locate such a scatterer to within half a pixel spacing.  The 
standard deviation for any error will then be about 30% of the pixel spacing, based on a uniform 
distribution.  For a pixel spacing of 10 cm, this amounts to a standard deviation of about 3 cm. 

Atmospheric propagation effects 

Propagation of a radar signal through the Earth’s atmosphere will be somewhat slower than in 
free space, and will depend on specific atmospheric conditions.  This is discussed in some detail 
in an earlier report,3 and is summarized in Appendix C. 

We observe that for a typical atmosphere, and a radar height above the ground of about 3000 m, 
the range bias will be about 260 ppm, with a standard deviation of about 22 ppm.  Note that this 
standard deviation is in regard to the bias, and is expected to exhibit a high degree of correlation 
between SAR images collected from the same overall flightpath.  Note further that this scales 
with range.  For example, at a 20 km slant range, this amounts to a 5.2 m bias with respect to free 
space, with a standard deviation of about 44 cm.   

Other errors 

A number of other factors can also influence the accuracy and precision of a range measurement.  
These might include 

  SAR image focus issues can impact pixel selection accuracy for scatterer feature location. 

  Clock errors, in the basic system time base, can affect the accuracy of the measure of 
time.  We note that clock stability will depend on temperature and aging, among other 
things.  Stability in a high-quality oscillator might typically be limited to 10 ppm. 

  SAR image geometric distortions may impact ranging calculations. 

  Glint and scintillation may impact pixel selection from one SAR image to the next. 

  SAR, like most radar systems, employs the Born approximation,12 where echoes are 
generally assumed to be direct.  Multipath effects can influence pixel selection accuracy. 

There are probably other sources of errors, too. 
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Combined Ranging Errors 

The errors discussed above are generally independent of each other.  Therefore, we may examine 
their combined effects statistically by a Root Sum Squared (RSS) analysis.  

Except for navigation errors and atmospheric propagation velocity errors, everything else tends 
to exhibit standard deviations in the few centimeter range.  Consequently, with the typical 
standard deviations previously discussed, even at 20 km range we might expect a net combined 
standard deviation of perhaps 1.1 m or so around the nominal atmospheric propagation bias 
level.  Even much of this error will manifest as principally a residual range bias, rather than 
uncorrelated “measurement noise.”  Of course, these are statistical numbers.  Assuming a net 
Gaussian distribution, then about 68% of the time we should be below this.  Figure 8 shows how 
the standard deviation in range error might vary with range.  Actual range “noise” for temporally 
close SAR images is probably in the several centimeter range. 

So, if our range/delay calibration is off by 20 cm or so (maybe calibrating just to the feed and not 
the APC), and radar navigation is off by 10-20 cm by measuring to something other than the 
APC, then these errors become very significant very quickly. 

 

We emphasize that geolocation accuracy without truth data can at best be described statistically.  
Confidence in the statistics, however, requires a statistically significant number of experiments, 
where ranging is in fact evaluated against truth data. 

 

 
Figure 8.  RMS range error as a function of range.  Radar is assumed at 3000 m altitude. 
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“There is a great satisfaction in building good tools for other people to use.” 
-- Freeman Dyson 
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8 Conclusions 

We offer and repeat some key points.  

  Radar is first and foremost a ranging operation. 

  Range measurements from multiple aspects can be combined to calculate a 3-D location 
for a scatterer.  This is called multilateration. 

  If multiple range measurements over-constrain the solution, then a least-squares solution 
can be calculated.  If measurement error statistics vary widely, then a weighted least-
squares solution might be calculated. 

  Some data collections geometries are not suitable for multilateration, like colinear or 
coplanar ranging measurements. 

  Range biases due to atmospheric propagation characteristics are particularly problematic.  
Everything works best if resulting range biases can be largely compensated before any 
geolocation calculations. 

  Range biases might also be estimated from the data, but doing so adds yet additional 
constraints on data collection geometries.  For example, constant range orbiting 
flightpaths become problematic. 

  Extra constraints can be built into the calculations to effectively “tether” some parameters 
so that solutions don’t blow up. 

  A useful measure for the goodness of a collection geometry is “Dilution of Precision.” 

 

We additionally observe that more independent information can significantly aid the precision 
and accuracy with which we might geolocate a scatterer.  An obvious candidate for this is the 
range-rate information within a synthetic aperture for each SAR image, manifesting as the 
azimuth offset of a scatterer from the SRP.  This will be the topic of a subsequent report.13 
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Figure 9.  Campsite in the mountains (courtesy Miss Taylor Spaulding, 7 ½). 
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Appendix A – Basic Linear Algebra 

We present here some basic linear algebra concepts.  Ample texts and publications exist that 
cover these concepts in detail.14,15,16,17 

We begin with the conventional linear system of equations given in matrix form as 

 Ax b , (A1) 

where 

A = M×N matrix, 
x = N×1 column vector, and 
b = M×1 column vector. (A2) 

Matrix A and vector b are known.  We wish to solve for unknown vector x. 

If A is square and full rank, we can solve 

1  x A b . (A3) 

If the system is over-constrained, but still has full rank, we can solve 

  1T T 
 x A A A b . (A4) 

We note that Eq. (A4) reduces to Eq. (A3) for a square matrix A.  The entity   1T T 
A A A  is 

sometimes called the pseudo-inverse of A, or the Moore–Penrose pseudoinverse matrix of A.   

Some additional useful matrix identities include for generic matrices G and H, 

  T T T GH H G , 

  1 1 1    GH H G , if individual inverses exist, 

    1 1 TT    G G .  (A5) 

A weighted least squares solution to Eq. (A1) may be found by solving 

 W A x W b , (A6) 

where the weight matrix is 

W  = diagonal matrix of weights for uncorrelated errors in b. (A7) 

Note that because it is diagonal, W is the same as its transpose, that is 



- 58 - 

T  W W . (A8) 

The solution to Eq. (A6) becomes 

  1T T 
 x A W A A W b , (A9) 

This is then the weighted least squares solution to Eq. (A1). 

Weighting is used to essentially favor more accurate observations at the expense of less accurate 
observations.  Weights are often proportional to the inverse of the variance of respective 
observations. 
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Appendix B – Dilution of Precision (DOP) 

The concept of Dilution of Precision (DOP) is essentially a figure of merit that is an error 
sensitivity estimation or calculation.  It is common for the Global Positioning System (GPS).18 

We continue with the definitions of Appendix A.  We recall the conventional linear system of 
equations given in matrix form as 

 Ax b . (B1) 

Recall that if A is full rank, we can solve 

  1T T 
 x A A A b , (B2) 

which works even whether or not A is square.  For convenience we will rewrite Eq. (B2) as 

 x C b , (B3) 

where  

  1T T   
   
  

C A A A . (B4) 

We note that for a weighted least squares solution 

  1T T   
   
  

C A W A A W . (B5) 

Now, an error in vector b will yield an error in the solution to vector x.  That is 

    x b   x ε C b ε ,  (B6) 

where the individual error vectors are defined as 

bε  = column vector of errors in b, and 

xε = column vector of errors in x, (B7) 

which of course means that the errors are related as 

x b ε Cε . (B8) 

Covariances can be calculated as 



- 60 - 

    T T T
x x b bE E ε ε C ε ε C , (B9) 

where the expected value function is defined as 

  E z  = expected value of z. (B10) 

We may write Eq. (B9) somewhat more succinctly as 

T
x b Σ C Σ C , (B11) 

where 

  T
x x xE Σ ε ε  = covariance matrix for xε , and 

  T
b b bE Σ ε ε  = covariance matrix for bε . (B12) 

Now for some special cases. 

 

Case 1.   

In this case, we stipulate equal independent variances in the b vector, so that 

2
b ref  Σ I , (B13) 

where 

2
ref  = variance of the individual entries in b, common to all elements. (B14) 

In this case, and assuming an unweighted solution where  W I ,  

    12 2T T
x ref ref  

 
  Σ C C A A . (B15) 

Normalizing to 2  yields 

  1

2
Tx

ref 

 
 

Σ
A A . (B16) 

The diagonal elements of 2
x ref Σ  are ratios of variances.  The square-root of these 

ratios are relative standard deviations.  So, the square-root of the diagonal elements of 
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2
x ref Σ  represent a scaling of standard deviations, that is, a scaling of precision due to 

errors in b.  These are the DOP values. 

Case 2. 

In this case, we stipulate independent unequal variances in the b vector, so that 

2
b ref  Σ K , (B17) 

where 

2
ref  = reference variance of the individual entries in b, and 

K = diagonal matrix of weights meant to scale 2
ref . (B18) 

Since 2
ref  is a somewhat arbitrary reference value, elements of K may generally be 

more or less than one.  In this case, the covariance matrix for xε  becomes 

  2 T
x ref  Σ C KC . (B19) 

Normalizing to 2
ref  yields 

2
Tx

ref 
 

Σ
C KC . (B20) 

When the variances in bΣ  are not equal,‡‡ then it is common to use a weighted least 

squares solution where the weights are the reciprocal of the variance of the observations.  
This essentially favors more accurate observations at the expense of less accurate 
observations, providing overall minimum variances in the output covariance matrix xΣ .  

This means 

1  W K , (B21) 

in which case Eq. (B20) reduces to 

  1

2
Tx

ref 

 
 

Σ
A W A . (B22) 

 

‡‡ A diagonal bΣ  with unequal elements is termed heteroscedasticity. 
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The diagonal elements of 2
x ref Σ  are still ratios of variances.  So, the square-root of the 

diagonal elements of 2
x ref Σ  are still the DOP values, with the constraint that they are 

relative to a reference error in b. 

 

 

Some DOP values, or combinations of DOP values, have been given specific nomenclature. 

If elements of vector x represent position, with x and y coordinates representing horizontal 
positions, and z representing a vertical position coordinate, and the diagonal elements of xΣ  are 

  2 2 2diag
T

x x y z        Σ , (B23) 

then  

HDOP = Horizontal DOP =   2 2 2
x y ref    , 

VDOP = Vertical DOP = 2 2
z ref  , 

PDOP = Position DOP =   2 2 2 2
x y z ref       (B24) 

Other DOP values are also employed.  For example, GPS figure of merits also include Time 
DOP (TDOP) and Geometric DOP (GDOP).  
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Appendix C – Range Bias Due to Atmosphere 

A principal source for a radar ranging error is the range bias introduced by propagation of the 
radar signal in the atmosphere.  This is discussed in some detail in an earlier report.3  The 
propagation velocity of the radar waveform depends on the refractivity of the atmosphere, which 
depends on atmospheric constituents and conditions (mainly humidity), and generally decreases 
exponentially with altitude. 

In this appendix, we summarize some key points from the aforementioned report, and illustrate a 
reasonable model for estimating range bias due to atmospheric propagation.§§   

From the earlier report, we will assume an exponential decay of refractivity with altitude, namely 
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where 

sN  = reference surface refractivity in N-units, 

h = altitude of interest, 

sh  = altitude of reference surface., and 

bH  = decay factor. (C2) 

The actual proper index of refraction is calculated as 

    61 10n h N h   . (C3) 

The decay factor is itself a function, 
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We will presume that our interest is principally over an altitude range of 0 to 50 kft (15240 m), 
so we might choose fit coefficients to be 

m 12192 kft 40   bh , and 

65.66 bN  N-units. (C5) 

 

§§ We’re talking the Earth’s atmosphere here. 
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We shall presume that an average propagation velocity between airborne radar and ground 
surface is reasonably inversely proportional to an average index of refraction, namely 
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where 

0 299792458c   m/s = free-space velocity of propagation. (C7) 

This means that a radar range that is calculated using free-space velocity of propagation, will 
exhibit a range bias  
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where 

,s measr  = the range calculated using free-space velocity. (C9) 

This bias is positive, yielding a true range that is shorter than the “measured” range ,s measr . 

In anticipation of subsequent plots, we define a normalized range bias factor as 
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 = range bias factor. (C10) 

Variation in Surface Refractivity 

The surface refractivity sN  will depend on atmospheric constituents and conditions, including 

temperature, pressure, and humidity.   

An average value for sN  for the continental US is given by Bean19 as 313 N-units, whereas  

Altshuler20 reports that his data shows that “the average global surface refractivity is 324.8 N-
units and that the standard deviation of [his] sample is 30.1 N-units.”  A report by Robertshaw21 
in support of the Joint STARS program shows mean values for surface refractivity are in the 
range of 330 with a standard deviation in the range of 20 or so.   
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We might expect values for sN  to range from 250 N-units at higher altitudes and cooler 

temperatures, to perhaps 400 N-units at sea level on a warm day. 

 

Variation in Range Bias 

The variations in surface refractivity may be combined with Eq. (C10) to allow us to examine 
expected variations in range bias factor, and ultimately range bias itself. 

Figure 10 shows how the range bias factor changes with radar altitude, for a span of surface 
refractivity sN .  Note how the range bias factors decrease with radar altitude. 

Figure 11 shows how a standard deviation in range bias factor also decreases with altitude. 

Example 

From these plots, we may estimate for an altitude of 10 kft (3048 m), for a typical 
atmosphere with 313 N-units of surface refractivity, the range bias factor is about 260 
ppm, with a standard deviation of about 22 N-units.  At a slant-range of 20 km, this 
translates to a range bias of about 5.2 m, with a standard deviation of about 0.44 m.   

 

Comments 

We offer several comments on this model. 

  The coefficients chosen in Eq. (C5) fit well to the altitude range of 0 to 50 kft (15240 m).  
We allow that they may be optimized to different values for other altitude ranges. 

  We also allow that other, perhaps no less accurate models, may exist that might amply 
serve the purpose herein. 

  The model summarized here (developed in an earlier report3) is based on a rather simple, 
though often reasonably adequate, model for refractivity with altitude, given in Eq. (C1).  
In this sense, the atmosphere is rarely if ever what we might refer to as “typical.”  We 
acknowledge that this model ignores many complexities of the atmosphere that might 
affect propagation, such as ducting or boundary layer effects.22 

  We opine that SAR images should record in their metadata any atmospheric propagation 
corrections made in their formation, sufficient for their removal or modification if better 
atmospheric propagation information becomes available. 
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Figure 10.  Relationship of range bias factor with altitude for various surface refractivities. 

 
Figure 11.  Estimated standard deviation of range bias factor as a function of altitude. 
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“A child of five would understand this. Send someone to fetch a child of five.” 
-- Groucho Marx 
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