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Metamaterials and Metasurfaces

Man-made “atoms” : Metamaterials Metasurfaces

Ref. : Neshev & Aharonovich, Light : Science & Applications 7
(58), 2018.

In metamaterials, optical properties are determined by configuration and properties of meta-atoms.

Metasurfaces are planar (2D) equivalents of metamaterials.



The All-Dielectric Approach: Mie modes

Dielectric particles much smaller than wavelength A
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For dielectric particles, the polarizabilities of the electric and 1
magnetic dipole resonances are comparable at optical
frequencies 0 . . . . .
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This is not the case for metallic resonators at optical A (nm)

frequencies because of metal losses Ref. : Optics Express 21, 26285 (2013)



Applications of Mie Modes in Dielectric Metasurfaces
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Advantages of Nonlinear Mie Metasurfaces : 1. Ultrathin ( relaxed phase matching) 2. Low loss and
high damage thresholds 3. Large mode volume ( enhanced light-matter interaction) 4. Ease of fabrication ,



Two Prominent Nonlinear Metasurface Approaches for Second
Harmonic Generation

1. Mie Based All Dielectric Metasurface
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Problem of Approach 1 : Low efficiency Problem of Approach 2 : Losses due to plasmonic structures
Our new approach : An All-Dielectric Polaritonic Metasuface that combines both approaches !

Ref. : A. Krasnok, M. Tymchenko, A. Alu, Materials Today 21, 8-21 (2018).



Polaritonic Metasurface : Light-Matter Coupling

Electric Field
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Resonant B using Intersubband Transitions
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Fabrication of the Polaritonic All-Dielectric Metasurface

Epi-Transfer
to Sapphlre

E-beam
lithography

v
—
10 - omows
<€
ICP/RIE etching -




Fabricated Structures and Linear Reflectance Spectra

Scanning Electron Micrographs Mie Resonance at 8 microns
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Experimental Second-Harmonic Spectra
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Maximum second harmonic power is observed at wavelengths smaller than 8 microns.



Interplay between Nonlinearity and Field Enhancement
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Experimentally Measured SHG Efficiencies
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Larger mode volumes compensate lower field enhancements ( compared to plasmonic resonators). It
increases saturation intensity and gives efficiency ~ 0.015 % (comparable to record highest 0.075 %) 12



Comparison of SHG Efficiencies using Different Approaches

Nonlinear Metasurface Approaches Maximum SHG Efficiency | Maximum Normalized
Psi/ Poump Conversion Efficiency
(mW/W?)
Optimized IST + Optimized Plasmonic 0.075 % ( ~ 15 kW/cm?) 16 ( Experimental)
Resonator + Metal Backplane + Etching of
QWs

GaAs/AlGaAs nonlinear Mie metasurfaces 0.001 % (~ 0.1 GW/cm?)  ~1x103 ( Experimental)
with optimized BIC resonator and optimized
input beam

IST + Mie Resonator (Not optimized!) 0.015 % ( ~ 20 kW/cm?) 0.5 (Experimental)
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Factor Limiting Measured Efficiency : Collection Optics
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V,\)I\/ﬂ( Only partial SH signal is collected due to finite NA (0.8) of the objective ( shown
by dashed lines). 14



Summary

* We demonstrate giant second-order nonlinearities in polaritonic all-dielectric
metasurfaces.

* QOur results are proof-of-concept and the efficiencies can be improved by optimizing
the heterostructure, field overlaps, and interplay between field enhancement and
nonlinearity.

* QOur approach although demonstrated for a particular wavelength, in principle, can
be scaled to other wavelengths from visible to near-IR.
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