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Metamaterials and Metasurfaces

Man-made "atoms" : Metamaterials Metasurfaces
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Ref. : Neshev & Aharonovich, Light : Science & Applications 7

(58), 2018.

I n metamaterials, optical properties are determined by configuration and properties of meta-atoms.

Metasurfaces are planar (2D) equivalents of metamaterials.



The All-Dielectric Approach: Mie modes

Dielectric particles much smaller than wavelength X

Rayleigh << X,

Wikipedia

For dielectric particles, the polarizabilities of the electric and
magnetic dipole resonances are comparable at optical 
frequencies 

This is not the case for metallic resonators at optical
frequencies because of metal losses
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Ref. : Optics Express 21, 26285 (2013)



Applications of Mie Modes in Dielectric Metasurfaces

Magnetic Response
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Tailoring Linear Transmission
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Advantages of Nonlinear Mie Metasurfaces 1. Ultrathin ( relaxed phase matching) 2. Low loss and

high damage thresholds 3. Large mode volume ( enhanced light-matter interaction) 4. Ease of fabrication 4



Two Prominent Nonlinear Metasurface Approaches for Second
Harmonic Generation

1. Mie Based All Dielectric Metasurface 
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2. IST-Plasmonic Metasurface 
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Problem of Approach 1 : Low efficiency Problem of Approach 2 : Losses due to plasmonic structures
Our new approach : An All-Dielectric Polaritonic Metasuface that combines both approaches !

Ref. : A. Krasnok, M. Tymchenko, A. Alu, Materials Today 21, 8-21 (2018).
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Polaritonic Metasurface : Light-Matter Coupling

• Light-matter coupling between a MD Mie mode and
intersubband electronic excitations.

• MD mode has strong z electric field components, allows
for normal incidence, and smallest size of the resonator.
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Resonant 02) using Intersubband Transitions
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Fabrication of the Polaritonic All-Dielectric Metasurface
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Fabricated Structures and Linear Reflectance Spectra

Scanning Electron Micrographs
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Experimental Second-Harmonic Spectra
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Maximum second harmonic power is observed at wavelengths smaller than 8 microns. 10



Interplay between Nonlinearity and Field Enhancement
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Experimentally Measured SHG Efficiencies
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Larger mode volumes compensate lower field enhancements ( compared to plasmonic resonators). It
increases saturation intensity and gives efficiency — 0.015 % (comparable to record highest 0.075 %)



Comparison of SHG Efficiencies using DifferentApproaches

Nonlinear Metasurface Approaches Maximum SHG Efficiency

PaPpump

Maximum Normalized

Conversion Efficiency

(mW/W2)

Optimized IST + Optimized Plasmonic

Resonator + Metal Backplane + Etching of

QWs

0.075 % ( — 15 kW/cm2) 16 ( Experimental)

GaAs/AIGaAs nonlinear Mie metasurfaces 0.001 % ( — 0.1 GW/cm2) — 1x10-3 ( Experimental)

with optimized BIC resonator and optimized

input beam

IST + Mie Resonator (Not optimized 0 0.015 % ( - 20 kW/cm2) 0.5 (Experimental)



Factor Limiting Measured Efficiency : Collection Optics
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Only partial SH signal is collected due to finite NA (0.8) of the objective ( shown
by dashed lines).



Summary

• We demonstrate giant second-order nonlinearities in polaritonic all-dielectric
metasurfaces.

• Our results are proof-of-concept and the efficiencies can be improved by optimizing
the heterostructure, field overlaps, and interplay between field enhancement and
nonlinearity.

• Our approach although demonstrated for a particular wavelength, in principle, can
be scaled to other wavelengths from visible to near-IR.


