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Energy Transfer Drives Chemistry
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Energy Transfer Drives Chemistry

• What happens when you add energy to a system?

• Where is energy absorbed?

— Electronic excitation

— Vibrational excitation

• Where does the energy flow?

— ground electronic state

— vibrational modes of particular moieties

• What are the dynamics that get you there?

— Coupled electron-nuclear motions

— Anharmonic vibrational coupling

• How do these dynamics change with chemical structure?

Use lasers to study structural dynamics on the natural,
ultrafast timescale of nuclear motion.

electronic excitation (UV) of combustion relevant chemicals
vibrational/phonon excitation (IR/THz) of energetic materials
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Energy Transfer in EM

• Use of solid, secondary EM as detonators
for decades

— Requires accurate timing of explosion

• Most understanding is empirical/heuristic

— Very little chemical dynamics
information, particularly for lifetime
and aging processes

• Important to probe detailed chemical
dynamics mechanisms

— Improve performance/meet specific
needs

• Ultimately, we need to understand existing,
in use components

• How can we (at Sandia) better understand detonation processes?

• What tools do we need to develop?

• What can we, as spectroscopists, bring to the table?

4 Eason, Ph.D. Thesis, University of Missouri-Columbia, 2016.
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Energy Transfer in EM

• How do we go from a shockwave to chemical reaction (and detonation)?
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• Use IR to probe population changes following phonon excitation

• ... or following vibrational excitation (vibrational cooling)
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Adapted from Tokmakoff, J. Phys. Chem. 97, 1901 (1993).
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Ultrafast Transient Absorption Spectroscopy

broadband probe

At
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• For this talk, pump and probe will be mid-infrared

(molecular vibrations)

• Energy units:

- E (cm-1) = 107 ± X (nm)

- 1 eV = 8065 cm-1

- 1 kJ/mol = 83.6 cm-1

- 1 THz = 33 cm-1

- 6 Lim = 1667 cm-1 (approx. C=0 stretch vibration)

- 35 000 cm-1 rz covalent bond energy
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Vibrational Cooling in EM
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• Transient absorption to monitor NO2
asymmetric stretch

• Lifetime independent of temperature
and solvent

— lntramolecular process

• VET is rapid in EM

8 Aubuchon, Chem. Phys. Lett. 299, 84 (1999).

CHEMISTRY, COMBUSTION, AND MATERIALS CENTER 8300 0 Sandia National Laboratoriel



Vibrational Cooling in EM

• Few ultrafast studies of bulk EM

02NO

02NO ONO2

ONO2

• Using time-resolved 2DIR to look at
coupling between two specific NO2
modes of PETN

• Can directly monitor cross peak growth
to measure VET lifetime

• Only looking in a small spectroscopic and
temporal window

— What about all the other PETN

modes?
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Ostrander, J. Phys. Chem. B 121, 1352 (2017).
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Ti:Sapphire ultrafast

laser system

3.2 mJ, 55 fs, 785 nm

Experimental Setup: Laser
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rilliiiimumwExperimental Setup: Laser
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• Theory collaboration with

Mitch Wood (1444)

• Calculate PETN vibrational

and phonon modes using

DFT

• Calculate decay pathways

from a "pumped" mode

J (q,

• NO2 talks to every other

PETN mode

• Every time we move

energy, we pump a non-

thermal phonon bath

PETN: What To Expect?
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The Pumped Mode
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• Similar to previous experiments, pump
NO2 asym. stretch and see what
happens

• Loss of ground state signal

• Appearance of excited state
absorption

• See expected, few ps decay

• Long lived offset is new, though
resembles a thermal spectrum

• What about the other modes?
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The Other Vibrational Modes
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• < 200 fs response across the spectrum • Fits return 4 important lifetimes: 500 fs,

• Some modes decay, others grow o(1 ps), 0(10 ps), and o(100 ps)

— Vibrational cascade • By 150 ps, still haven't reached thermal
equilibrium!
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Phonon Bath Perturbations

• Phonon pop. changes affect vibrational
frequencies
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• Clear evolution towards thermal difference
spectrum

— Doesn't quite reach by 150 ps

• Observed signal changes could be VET,

phonon bath evolution, or both
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Challenges, assumption,of "in  tant
thermalization in models '

a.

800

750

700

650

600

550

500

450

400

350

300  
0

/
' phonon

Latticc phonons\s,...............________,
Vibrations

RDX
PH = 8.0 GPa

................

2 3 4

Time (ps)

Hooper, J. Chem. Phys. 132, 14507 (2010).
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Conclusions and Future Work

• First, broadband study of VET in EM

(and maybe molecular crystals)

• Ultrafast coupling of the initially

pumped state to (apparently) every

other PETN vibration

• Long time (100 ps) evolution of modes:

- Could be long lived vibrational

excitation

- Could be long lived phonon bath

excitation

• Both support up-pumping model

• Either way, we need to change EM

theory, can't assume "instantaneous"

thermalization

• Calculated IR spectra of PETN with

non-thermal phonon bath

• Calculated VET dynamics

• Photoexcite other PETN modes

- distinguish excited state

absorption from perturbed

ground state absorption

• Other systems: RDX, TATB
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Who Am I?

• First research projects were
synthetic chemistry, including the
synthesis and hydrolysis kinetics
of isoprene hydroxyepoxides

• PhD at UC Berkeley studying
primary gas-phase
photochemistry of
atmospherically relevant radicals,
looking at product branching

ratios

aH2

20

. Postdoc at Univ. Warwick (UK)
doing ultrafast photodissociation
on model biochromophores
— Also looking at primary

photodynamics of sunscreen
chemical filters

NH
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Energy Transfer in EM

Looks good so far, but...

• Thermalization is expected to be fast

• Large energy difference between phonons (ca. 33 cm-1) and bond energy (ca. 33 000 cm-1)

• Most studies done in dilute solutions with few to hundreds of ps time resolution

— Bulk studies done with narrow spectroscopic view

— No investigations of direct coupling between phonon and intramolecular vibrations

What happens in real-world, bulk EM samples?

• Vibrational cooling

— Mid-IR pump, watch energy couple to lower lying modes

• Phonon up-pumping

— THz pump, watch phonons "ladder climb" to higher energy modes

22 Hooper, J. Chem. Phys. 132, 14507 (2010).
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800

• Pump an IR dye in NM solution

— Rapid, localized heating

• Used CARS to probe population
changes following excitation

• Saw a delayed onset for higher
energy vibrations

— Sequential population of
higher energy modes

918 cm-1

•

Chen, J. Phys. Chem. 98, 7759 (1994).
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The Pumped State?
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