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Tensors Come From Many Applications @‘a""’a‘“’“

= Chemometrics: Emission x Excitation x Samples % - \
(Fluorescence Spectroscopy) Chemometrics

= Neuroscience: Neuron x Time x Trial | 1

= Criminology: Day x Hour x Location x Crime
(Chicago Crime Reports)

= Symmetric Higher-order Empirical Moments: . _
Multivariate Gaussian Distributions in Machine 5o, e*c"‘a{\o‘\/ %
Learning J\} l—=—

* Transportation: Plck‘up' x Dropoff x Time (Taxis) [Criminology\ \ time /

= Sports: Player x Statistic x Season (Basketball) L a /- R

Wt ( I I

= Cyber-Traffic: IP x IP x Port x Time T Machine tearning

= Social Network: Person x Person x Time x P N ity
Interaction-Type f—%ﬁfgg

= Symmetric Higher-order Derivatives: From Jﬁz
Optimization \
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Data CP Model Sum of r Outer Product Tensors Factor Matrices

/Z L L
X <rz1> M = T Rai <definedb¥> A Ay - [ Ag

CP Tensor Decomposition Identifies Factors

X € Rm1XneX - Xna M =[A}, Ay, ..., Ay] € RUXn2XXna Ay € RMXT
r d
Myiyig..iqg = Z H ak ik, J)
J=1k=1 Model Rank
~N

Optimization Formulation

ni nd
min H:x — MH2 = Z e Z (:Cilig...id - milig...id)2

A, A
! d =1  ig=1

G _/
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CP First Invented in 1927

Frank Lauren Hitchcock
MIT Professor
(1875-1957)

THE EXPRESSION OF A TENSOR OR A POLYADIC AS
A SUM OF PRODUCTS

By Fraxx L. Hitcroock

1. Addition and Multiplication.

Tensors are added by adding corresponding components. The
product of a covariant tensor Air‘ip of order # inio a covariant
tensor By ,,..4, ,, of order g is defined by writing
A B i =Ci iy (1
where the product C;..5 . is a covariant tensor of order p+g.
When no conifusion results indices may be omitted giving

AB=C . (1a)

equivalent to the #° ™ equations (1). Boldface type is convenient
for indicating that the letters do not denote merely numbers or
scalars. Products of contravariant and of mixed tensors may be
similarly defined.

A partial statement of the problem to be considercd is as follows:
to find under what conditions a given tensor can be expressed as
a sum of products of assigned form. A more general statement
of the problemn will be given below,

2. Polyadic form of a tensor.

Any covariant tensor Aj ..y, can be expressed as the sum of
a finite number of tensors each of which is the produet of p covari-
ant vectors,

i=h
‘”fptjgu a4, 4, 32,4, * Apj,ip (2)
where a,5, 4, cte., are a set of hp covariant vectors. When the in-
dices 11 * - 4, can be omitted this may be written
i=h

A.:;Ela‘jazj ‘o Bpj (2.)

The right member is now identical in appearance with a Gibbs

Sandia
National |
Laboratories

F. L. Hitchcock, The Expression of a Tensor or
a Polyadic as a Sum of Products, Journal of
Mathematics and Physics, 1927

2. Polyadic form of a tenser.
Any covariant tensor A; ..,
a finite number of tensors each of which is the product of ¢ covari-

ant wvectors,

can be expressed as the sum of

i=h
Aj i, = -31 agj, 4z, 4, * * Apj, iy (2)
a= .
where a;;, 5, etc,, are a set of hp covariant vectors. When the in-

dices 175 - - 7,, can be omittzd this may be written
i=h v
A= T ajay - ap;. (2.)
;=1

J=

5/6/2020
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CP Independently Reinvented (twice) in 1970 aboratones

PSYCHOMETRIKA—VOL. 35, No. 3 NOTE: This ipt was originally published in 1970 and 1s reproduced here to make it
serraaues, 1970 more accessible to interested scholars. The original reference is

Harshman. R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for
an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics. 16, 1-
84. (University Microfilms, Ann Arbor, Michigan. No. 10.085).

ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMEN-
SIONAL SCALING VIA AN N-WAY GENERALIZATION OF
“ECKART-YOUNG" DECOMPOSITION

J. Dovaras CarroLL AND Jin-Jie CHANG

FOUNDATIONS OF THE PARAFAC PROCEDURE: MODELS AND CONDITIONS
BELL TELEPHONE LABORATORIES

MURRAY HILL, NEW JERSEY FOR AN "EXPLANATORY" MULTIMODAL FACTOR ANALYSIS

An mdwidunl drﬂcmmu model for mulhdlmmonnl scaling is out-
dxﬂ to weight the several

o .d.- mon “peychological space”. A’ woerespondin oo
dnhu
Eehn—Younxuul lodacompnuuon of thrao-wn (or h@u—un)
Lbsptuonty::-ihudeeom mnnlppludy derived dn'eyo-
products betwee: nunnh for md:ﬂdu.h ‘This analysis
yw{d-usﬁmulubydmnmmordmsmmnuk and a subjects by dimen-

Hom e of bt Thl el el wi ot o0 s J. Douglas Carroll Jih-Jie Chang Richard A. Harshman
There b been an nteret. for some tme i the queston o dosling Bell Labs Bell Labs Univ. Ontario

with diff among in

lined in

by
wi tidim of stim 1
T i e (1939-2011) (1927-2007) (1943-2008) Rihrd A Haasn
individual differences into their scaling procedures. Tucker and Messick o

[1963] proposed an approach, which they called “Points of view analysis,”

which is probably the most mdely used method for dealing with such individ-

e e y 4
FEtieot (St o8 o S o el N e e et deiiee . In 2000, Henk Kiers propose
e i e e e CP: CANDECOMP/PARAFAC [Kinstelibiiniitte
proeeedsmonewayor h todeﬁna“‘ lized” th|5 Compromlse name

to cl (The “idealized subject” forlgwenclusbermybedoﬁned fot

example, by finding the 2 of s g to a

hypothetical subject at the cluster centroid, by chooung the actual subject
closest to that centroid, or, most simply, by averaging the similarity judg-
ments for subjects in the given cluster.) The similarities for these “idealized
subjects” are then, individually and independently, subjected to multi-

2010: Pierre Comon, Lieven DelLathauwer, o

Working Papers in Phonetics

"““"m"‘““"“"‘("‘é‘,mm WP S CP: Canonical P‘Olyadlc and others reverse-engineered CP, .

bylelDﬂﬁ] Cllﬂ',1968 forn ly to Ross’s criticism and a furth 5 % 3 3

fon of the “idea 1" interpretation of “Poiate of view revising some of Hitchcock’s terminology Decmber, 1970
2583

Many thanks to the following persons for helping me learn about Jih-Jie Chang: Fan Chung, Ron Graham, Shen Lin (husband), May Chang (niece), Lili Bruer (daughter).
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Tenser Decomposiiion in
Nevrosciecnce

= A. H. Williams et al. Unsupervised Discovery of Demixed,
Low-dimensional Neural Dynamics across Multiple
Timescales through Tensor Components Analysis.
Neuron, 2018

= D.Hong,T. G. Kolda, J. A. Duersch. Generalized Canonical
Polyadic Tensor Decomposition. SIAM Review, 2020

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Activity of Single Neuron Measured Over @ﬁgt'}gﬁa,_ (i
Time Produces Vector Data momnes TR

Thanks to Schnitzer Group @ Stanford
Mark Schnitzer, Fori Wang, Tony Kim

Inscopix

S
mouse neural activity via

in maze calcium imaging

Williams et al., Neuron, 2018
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Activity of Single Neuron Measured Over @ﬁgt'}gﬁa,_ (i
Time Produces Vector Data momnes TR

Thanks to Schnitzer Group @ Stanford
Mark Schnitzer, Fori Wang, Tony Kim

Inscopix

S
ﬁl I ]
mouse neural activity via

in maze calcium imaging

Williams et al., Neuron, 2018
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Multiple Neurons Measured Over Time @ﬁgt'}g‘:a._
Produces Matrix aboratores

Thanks to Schnitzer Group @ Stanford
Mark Schnitzer, Fori Wang, Tony Kim

Inscopix -

282 neurons X 111 time bins

Williams et al., Neuron, 2018
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Multiple Trials Produces 3-way Tensor @“"“’a‘“""s Q

#3004 rials over 5 Days
tarWest

e TurniSeuth
E W

o Turn‘No‘r'th
** Turn South

282 neurons X 111 time bins X 300 trials
Williams et al., Neuron, 2018
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Example Neuron Activity Laboratories

Neuron 62

Neuron 26

|

Neuron 82

0.5 | 057 057

. 5 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Thin lines

show 300
individual
trials

Thick line is
average

Neuron 249
LI d

0.5

O o B % .
20 40 60 80 100 20 40 60 80 100
Hong, Kolda, Duersch, SIAM Review, 2020
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CP Tensor for Neuron Activity Data

Data CP Model  Sum of r Outer Product Tensors Factor Matrices
[l L L =IsI=
x l << | x — + ot _ defined by -
¢ R282x111x300 M = [A, B, C] € R282x111x300

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL
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Neuron Factor Vector Visualized as Bar Chart RS S

neuron

Hong, Kolda, Duersch, SIAM Review, 2020
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Neuron Factor Vector Visualized as Bar Chart URNREIIES S

Neuron Modes Plotted as a Bar Chart
(Red Lines Correspond to Examples in Prior Slide)

neuron
=

time -

Hong, Kolda, Duersch, SIAM Review, 2020

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Sandia
National ~ {|
Time Factor Vector Visualized as Line @"“""'““""s

¢ Time (within trial) Plotted as a Line
(Dashed Line is Zero)

neuron

time -

Hong, Kolda, Duersch, SIAM Review, 2020

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Trial Factor Vector Visualized as
Color-Coded Scatter Plot

™
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Rule 'T‘ Trial Plotted as Scatter Graph Rule
Change Right turn = Green Change
Left turn = Orange
Filled = Reward
& / / /
(| P
< 2 == +---1 B
§ X
time - N -

Hong, Kolda, Duersch, SIAM Review, 2020
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Visualization of CP Tensor Decomposition @ e, ]
Shows the Factors (Vectors) Laboratories V-

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille

1 /’- o ¢
! . | | awe ' A Dbi| Cig . l '

Q
_|_
T
+

3

neuron
=
Q
[y
Qo
\v}
~
S

Hong, Kolda, Duersch, SIAM Review, 2020
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CP Decomposition of Mouse Data aboratores

euron (scaie ime ria reen range = urn 19 t Le ewar
1 MM&WML«MMLMMM o] D g SR """"""'1
2| " TN I P b’ﬂ“w *'MNW % wﬂw

Lodl L el g UL
LA R A L I L AR S B B L ‘I‘I' L D Dt R

/_\ M}(I .W w
AL, Al AR X
3 I ""l"l[q Ll 1 Tll | sz i

1 1 | 1 1 I

T T T T T T T T T T
~\ w T T‘M 1
wwwmm . N
1 1 1 1 1
T T T T
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CP Tensor Decomposition “Sees” Reward

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille
Wfﬁi‘@j@f TN gy i ¥ e i)
1 MMMMMMWM&MMM —\// ¥
. —— "’MW *'W.N.w' e :woo‘wd
2 Ll il L L .JJ 1 |l| IHH ol P K
[TP i B i O G e ” L B II‘I' 'I'l ]T' L Bl kL
- bﬂl .» . I..\ - l Ml‘ I .ml
‘L[‘ LAk [LI-I*'L-‘- Lk ‘I : S :

: Q-i;).(:-)&‘z-........(:)

0. .........J:L..ED............. A Rt o o P i

Reward!

y A NP ” - l...lrl‘[lll
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CP Tensor Decomposition “Sees” Turn @ Natoral
Direction e

euron (scaie ime ria reen/orange = iurn rig t/iLe , Reward = rilie
L-l-l-l-.ﬂﬂﬂmmmmgqp-QUQ--y-'p--
1 WMMMM@WLMMMMM —\// y
T T T T b T , vl,"v‘j}_‘"‘.:.jl. T w T T 1]
2 I1ITl|1IJﬁI]..”rIWI|lI I‘TL%I ,Fll.rll.I l'lw._r‘l ||,]I| M o \ P& o gpl o OO I N o S ® o ,"0‘:_? “0, DX

- lI"l]'Il".lll
T l|‘|' L Rl R

1 1 1 1 1 1 I
T T T T T T T T T T T
M o« ® e e VTS w
3 Al TS 2 | Bl o QI ) ;
l‘l!"”[q L 11| s
1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T 1)
] - :
{{ > )
{ ( | i
3

Turn Direction

0 50 100 150 200 250 0 50 100 O 50 100 150 200 250 300
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CP Tensor Decomposition Yields @ nda,
Interpretation of a Complex Dataset Laboratores

euron (scaie ime ria reen/orange = iurn rig t/Le , Rewara = riie
. . ' ' ' L“""""\""f«nzmm . ]
1 MMMMMM&W e T o
l | bm — o
2 b IJJI.. Lot h Sl |||I| Ll = N b e ""' """"l""s‘ faa svwm

o LU Lol
)L B e £ e ” T ‘I"‘ 1! LB i

T T T T T
3 L it . %WMTL‘W /_\ QW Reward!
i VT L e !

N—

5 Hidie ittt bt ol il b ek /\\_ tm——— ] Turn left
i : i : / W’*i%v};\gi“' i i W

6 Wlmmmwwm /\— I a———— Turn right

| | | | Wawlp‘ W q‘"" S00urcAos J'
7 s L T L J g s \ - . IR, @ §

" ) |n ey |
Bl ¢ I |||‘| ]r’T] |'| o "1]] i | r'IW" mrr I]] g

8 MWMW il .. gryeer Turn

0 50 100 150 200 250 0 50 100 O 50 100 150 200 250 300
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Sam Sherman Tammy Kolda
Notre Dame Sandia

Symmefiric CP Tensor Factorizaiion
for (Symmeiric) Mement Tensers
= S.Sherman, T. G. Kolda. Estimating Higher-Order

Moments Using Symmetric Tensor Decomposition,
revised April 2020, http://arxiv.org/abs/1911.03813

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Symmetric Tensor Entries Invariant Under @ e, (R
Permutation of Indices Laboratories L

A tensor is symmetric if its entries are invariant under permutation of the indices

P —
/*‘ / Example 1.2 from Nie (2014) \
3 X 3 X 3 symmetric tensor (10 distinct entries)
7 -3 9| -3 13 201 9 20 19
3 X = -3 13 20| 13 =27 620 6 6
9 20 19| 20 6 619 6 45
' z(1,1,1)= 7 x(1,3,3)= 19
x(1,1,2) = -3 x(2,2,2) = =27
For d-way tensor, of dimension n, ¢(1,1,3)= 9  x(2,2,3)= 6
number of unique entries is: w(1:2:2) — 13 33(2:3:3) _ 6
(n+d—1> o \_ d023)=2 G3y= 5

d

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Symmetric CP Tensor Decomposition Has @ Notoual |
Single Factor Matrix aboratones

Symmetric Symmetric Sum of r Symmetric Single
Data CP Model Quter Product Tensors Factor Matrix
z _Z o £ |

x <Z> N _ + 44 <defined by> A A

) ) AeR"

x c R?’LX’I’(I;I.)(E(;I?'(ZXTL M = R’I’LX’H,X"'XTL A_ c Rnx,’,.
r d
Miiio...54 — Z )\j H a(ikaj) Model Rank
3=l =1

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL
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Symmetric Outer Product

Given a vector:

acR"

The outer product is

_..®d nXnX-+Xn
P=a""€R nxXmnxn

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Model Expressed as Sum of Symmetric Outer @ oo

Laboratories

Products
Symmetric Symmetric Sum of r Symmetric Single
Data CP Model Outer Product Tensors Factor Matrix
. WZ_—J |
’ - - AcR"
- RXd nXnX---Xn A € R™™
M = )\j a;" € R
j=1
Model Rank

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Symmetric Tensor Rank & Decomposition

-

Example 1.2 from Nie (2014)
3 X 3 X 3 symmetric tensor (10 distinct entries)

=3 O —3 13 201 9 20 19
X=| -3 13 20| 13 —-27 6|20 6 6
9 20 19| 20 6 619 6 45

o

|

~

/

[rank(?C) min{r | X =a®?+... +a%¢)} J

/ Rank decomposition \
B 1 ®3 —1- ®3 5 1- ®3
X=2--2| +5-|1]| =] 2
_—1 _2_ _—2_
- 4

Sandia o
National (1=
Laboratories '

= Symmetric tensor rank

= For any given tensor, NP-hard to compute
its rank (Hillar & Lim, 2013)

= Typical rank known over C (Comon, Golub,
Lim, Mourraine, 2008)

" |n practice, trial and error!

= Symmetric tensor decomposition

= Waring decomposition (Landsberg, 2012;
Oeding & Ottaviani, 2013)

= Grobner bases algebraic methods or
numerical root-finding method (Nie, 2014)

= Direct optimization formulation
(Kolda, 2015)

= Subspace power method
(Kileel & Pereira, 2019)

5/6/2020
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Moment Tensors Arise in Inference of Sada
- e Laboratories
Gaussian Mixture Models (GMMs)
For ease of illustration, we focus on n = 2 dimensions.
Generally interested in much higher dimensions, i.e, n = 500!
5 Samples from Mixture of 3 Gaussians . PDF for Mixture of 3 Gaussians
I ' ' ' ' ' ' ' 10.06
| O Samples ‘ _>PDF
6 6 - @® Means| |
10.05
41 Given just the ar 1
1 samples )| | | Ho.04
(point cloud),
ol can we recover 0Ff i 0.03
the means? '
2t i 4
0.02
-4 + 4t g
6F 6l | 0.01
-8 ' ' ' ' ' ' -8 - ' : ' : ' :
8 6 -4 -2 4 6 8 8 6 4 2 0 2 4 6 8

5/6/2020
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Machine Learning Motivation: Observations @ﬁgt'}g‘:a,_ (i
from Unknown Mixture of Gaussians momnes TR

We observe p random vectors of length n coming from a mixture of r Gaussian distributions.
Can we recover the means of the Gaussians?

Easy: Means Well Separated Hard: Means Close Together

For these pictures: p = 1000, n = 3,r = 3. Means shown as filled in larger circles. Samples as open circles.
We care about larger values of n!

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Moment Structure for Spherical GMMs
Corresponds to CP Model

Data Model: V ~ ./\/'(p,g, 021), ¢ ~ MuLti(wy, ..., w,)

Multivariate Normal J| Probability to select jth center is w; at

National ||
Laboratories

Samples from Mixture of 3 Gaussians

r Example: n =128, d = 4 = storage = 2 GB
; ®3 2 D3
3-order Moment:  [E[V="]+ O(c”) Z Wik Example: n =512, d = 3 = storage = 1 GB

Can also do higher - Jj=1

order moments Calculate

empirically from
data

M = Z )\j a?g’g
j=1

Bottlenecks:
O(pnd) to compute,
0(n?) to store

Hsu and Kakade, 2013

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL

CP-like Model N

0 2 < 6 8

-

4 Simplifying assumptions )

leejlle = 1V5 € [r]

&)

for this work

1
= — Vj € [r]
"




Our Focus Today: Accelerating Computation @ e, (M
for Special Case of Moment Tensors kirsones

1 p
w1y
pﬁzl

Given Observations

L ®© T T - RS
L g . = + + + <def|ned b\4> VeR
UE>{ Want to Find C t
ant to Find Compac
C J Z Z Representation
= O -
20 _ defined by
= M - + SRR < 1> .
Ean AeR
)
T
_ ®d
M = Z Aj r<p

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Optimization Approach for Symmetric CP of @ e, ]
Symmetric Tensor Requires TTSV Laboratores

Optimization minF(IXI M) —
Problem AA ’

||3C M||? where M = Z Aj 61‘7 Plug function and

J=1 gradient into favorite
optimization method.

Gradi OF r My favorite: L-BFGS.
radients _ d—1 . ‘ d—1
viell oa FdN; ) nlag, )’ ay

k=1

oF 4 " P Bottleneck is TTSV
N —Xaj + Z A (ay, ap) which costs 0(n?)
J

k=1

DN [ =

a

Key Kernel: n d b S
T(.ansor Times (:xad—l)il — Z Z (ﬂiilz‘z...id H az-k) Vip € [n] H X

Single Vector — r
(TTSV) )

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL
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Key Result: Implicit Computation of TTSV

/
a | TTSV Definition: Z Z (xzm i H azk> Viy € [n]
:x to—1 ta=1
Lemma. Let X = Zv?d and V=[vi vy - vp|, then
E 1
— Entry-wise Power

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Minimal Change in Function/Gradient @ﬁgt'}gﬁa,_ 2
Calculation Replaces Expensive TTSV aboraones T

1: function FG_EXPLICIT(X, A, A, «) 1: function FG_IMPLICIT(V, A, A, «)
2 forj=1,...,r,doy; = I)Ca?_l, end B ¥ = %V[VTA]d_1

3 forjzl,...,r,dowj:afyj,end 3 forjzl,...,r,dowj:afyj,end
1 B=ATA 1 B=ATA

5 C=[B]¢! 5 C=[B]¢!

6 u=(BxC)A 6 u=(BxC)A

7 f=a+ATu—2wTA 7 f=a+AXTu-—2wTA

8 gy = —2(w—u) 8 gy = —2(w—u)

9: Ga = —Qd(Y — AD,\C)DA 9: Ga = —Qd(Y = ADAC)DA
10: return f,.g,,Ga 10: return f,g,,Ga

11: end function 11: end function

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



Experimental Difference in Per-Iteration Cost @ﬁgggi;a,_ ‘
of Implicit versus Explicit Laboratories

Rank-r Symmetric CP Tensor Factorization

for d-way tensor of size n
Average cost per iteration for r = 5 over 10 runs

r<n<p
Explicit 0(n%) 0(rn?) I
Implicit O(pn) O(pnr)

Implicit cheaper if p < 0(n%™1)

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



GMM Example with =5 (mixtures), n=500 @ o)
(dimension) and p=750 (observations) aboatores

Random 2D Projection
Ford = 3, I £ e & By o
explicit method I . ‘. g B we L I
requires 1 GB . e T e e S L .
. ° e ° .oo, o O . ® o ...‘ e o
storage i e te eee Wl T : .
g . o . ® b °, ..:. .‘..ﬂft . .:.; :? K] ...ﬁ .. .. ... . o
° . . b o © 0’...: & ......:;(...3 P L4 T & ° .
RS ) o..o\ .o‘o.o..: ; .. "ﬁ °:&.“ .:....".:::.' * ° ’ ° « *
° . ) o ® . oo © < :.coo:t.*"..... ..ﬁ\ ‘:. :.. f: L O S....O.. . : .
.o * :’o ..'. ’:1: Q.‘. te ... :O. . ‘o :... ' :'. .o ee * )
L oo %o . ¢ ::.o:'°.":‘.o 0~.0.".'o:°..o s 'J:.". W a' . ** e
Ford =4 . . N e *ege .t % o . ""000 e o %o ¢
’ %’ . ot: P '..‘. S.L..o‘f.‘ :f.o “’£:°2 ’.‘o T ° 0 o
explicit method BRI T A ek A s T A
. e R AR AN LR RS- AT
requires 500 GB EETRCRRU L I b ¥ R SR e v, " "
storage CwT T . 3'.:’5? e, ..t:”-.‘ . N *
.. ° ® o ° .‘ .’ ° :...... ° ° o ° * *
% s B '.Q o o0 o‘.l'.:..' . * °
. ° % o ° . ° F ° e ©
. L ° ) . b . .
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=500

n

’

=5 (mixtures)

ith r
(dimension) and p=750 (observations)

GMM Example w

R‘andlom' 2D‘ Proljec”cion‘, Collor—rCoc‘ied by Component
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GMM Example with =5 (mixtures), n=500 @ e,
(dimension) and p=750 (observations) oo

Random 2D Projection, Color-Coded by Component, With Means Denoted
500 " e .
I'IJJ G R ® e ® .o *. ®
° . @ ... ° ) . @ * .. . . Qe ® |
¢ e ¢ ﬁ’). [ ] @ JO =
||“.7 ||2 — 1 ° ’ ¢ s« 7 ) ...u o % g > 9 'q““ kS .p“” .° ) @
) .. L) oq @ .Qo “_;’: .‘.Zﬁ.. o © " ;"3...(, . i D |
4 ° . o 2 ®e “e¢ .’.J. & . ®0 R o0, o8 . @
\VI] E [T] * ° ¢ é o o ° ’o.: & ..‘!..3' ?"y o ° “o ° N °
° ¢ o°~..‘...."’= .. ....;: c@Q..:é.:..°:3.(;.:®f? ° L4 o o i
e v o* - B ° e I n@o:‘. 'Q.oc: gte, & "\t ;‘? Qe 2% o ‘e ® o - .
¢ 0. ¢ :‘o. ‘S '?% ..*% .0.: ?&%r .‘“;:8 .G .::..")o. o oo e
T i :. ¢ ... .O Q’. ‘:‘. ﬁ“q '0.‘\...K .~G>‘.*‘»}Q’¢... 2 .0“(:“ z‘ .(3’ 8"@© ° .i ° -
i py, = 0.5 RS See % PRI S e
.7 k: ° & ° ') c.sl.i..;. “‘. . [ X ® 0o j‘ ..4; ° - .
® ~ (X4 e © %9 ®qe o £ ". °¢ e Tk . "
. i Py ® % . ":o R ° ".{’. Se ;: ® .‘:c .‘ .gr/‘.my (:. e ® %, o ° n N B
vj # k ° ‘. % o ~o: ."..; P 0,: ...:. . 'S oc.g.o .. . ° ° o
C ettt R el e :
. e ST " 1 A PR N « o °
% e ‘0‘.. ..4\ o P o ® o, . ° %
Shown here: . . 2, . s ‘4'. e s 7T
U:O.l o .o.oo ® .: ... .Q. ° @
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Choosing Starting Guess Within Range of @ e, (RS
Observations is Key! labortoies 55y

Randomized Range Finder (RRF):  Ag =V, Q ~ N (0, 1)p><f
Random: Ay ~ N(0, 1)n><”'q

[with columns normalized in both cases]

y - : JORRF (pgtol=le4]
. & = & = F (pgtol=le-4)
Results of computing § 100 oL o = © ! 1 Random (pgtol=le-4)
A “ - i = — =h :
7 = 3 approximation for = B ] b U0Random (pgtol=1le-6)
moment tensor of order d = 3, =
. =
with = .
r = 3 components, § ¥ 3
n = 500 dimensions, and g : .
. = e o - w o=
p = 750 observations : . 5 ~ 8 <
0 e _ Jhl - C NN .
le-4 le-3 le-2 le-1
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Minimum Generally Achieved at “True” Rank

r=3,p= 700 r=25,p=1,250 r=10,p = 2,500
= T4 107 fo—g 10" fg__ "4
n 5 1 L 1072} : 1 L 1072 : g
[~ £ 1 2107 - 1 8 103t , g
s 2 ,> 5 1 % 1074} : 1 8 1074} : -
7 .
5 C > o 1 10—5; E : 1 3 10—2 E : 5
S u l . - - |

= 107° 107°
g CILJ 10 5 l E 10 . : =
o c 10~ 10~

= 3 4 5 6 T
= o .
= 107! 1074 | 107!
o = L 1072} . 1072 . 1072 )
S > % £ 1077 2 1073 | g 107% |
== Y S 10| S 10t} ° 107t
06 O < 107 | 3 107 5 107 |
.2 75} 10—'() 10—() 10—(} )
+ C — - -7
52 10 10 10 |

= 10°° 10°°% 10-8
o & 8§ 9 10 11 12
o approx. rank (7) approx. rank (7) approx. rank (7)

o0 =10%4m0c=103e-0cg=10"2——0c =101 -e-truer

00t e e e e P e A —
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Identifies “True” Solution @ e, (D
Even When Relative Error Poor Laboratories =

r=3,p="T50 r=>5,p=1,250 r=10,p = 2,500
Lo
S ! ! ﬂ L=
v O 1 1
2 & : : 5 : E
S & A Y % 0.9 ' % 0.9 '
— : ; 1 ; 1
55 O = E : E :
hy f W w i wm ]
2 O : !
w 0 0.8 0.8 : 0.8 !
T = 3.4 5 6 7 8 9 10 11 12
X 5 1 1 73':!:!:!’ 1 rg———8—8
% > : : = "
cqﬁ’ = ® : w : ® :
5 2 > 8 - : . S -
“= o 7 2 0.9 ! 2 0.9 : 2 0.9 !
v 9 o . : : : ; ;
§ -g 7 : i ! 5 !
Zo : : :
o 0.8 ! 0.8 ! 0.8 !
S 1 2 3 4 5] 3 4 5> 6 7 8 9 10 11 12
el approx. rank (7) approx. rank () approx. rank ()
wv a

—— g = 10_4+g =10°-eo-0c=102—%—g=10"1-e-truer
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Identified Factors for 1°=5 @ e,
with r = 5,p = 750")’1 — 500’ o=0.1 Laboratories '~

Random 2D Projection, Color-Coded by Component, With Means Denoted

/f’/?“k = 0.5
Vi £k

Shown here:

oc=0.1
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Identified Factors for =3
withr =5,p =750,n = 500,06 = 0.1

5/6/2020

Random 2D Projection, Color-Coded by Component, With Means Denoted
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Identified Factors for =4

withr = 5,p = 750,n = 500,0 = 0.1

Random 2D Projection, Color-Coded by Component, With Means Denoted

i e
o
©
- [ ] . o ‘\
® . " @
® ®
[ ] ° ..
e, " e® d ®e
: ° Ce ® .o
- [} °® .‘ 9
e e e N ceqy
° ° ... :.’.. .a@
| :oo °.o .. 3. ‘3‘.
® ’..‘ o.@’. ;...
. 5 IR ALY
° ®
L .. ® " .. ¢ .:'::. - ® ‘.’:Cﬁ.o:. s
. o ® o0 e® o ‘ .’.'i@.. 2 :o .
. 5.. o - o:.. O. ‘0:€?3 ’ ...{:‘\
® Iy 8 9° e '..
° ..o ] ® :‘. ® o Lo ° ° °
N ®e 4 : ® °® "DJ..’ .
B L4 ° ®
® o e .o ) - ...
é o, o o ° °
L °
" °
- °
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Identified Factors for =6 I
with r = 5,p — 750")’1 — 500’ o=0.1 Laboratories V=

Random 2D Projection, Color-Coded by Component, With Means Denoted
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Identified Factors for =7 wda,
with r = 7,p — 750")’1 — 500’ o=0.1 Laboratories V=

Random 2D Projection, Color-Coded by Component, With Means Denoted
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Total Time is Very Modest and Oftentimes
Less for Higher Order!

Sandia S
National | .
Laboratories =N

5/6/2020

r=3,p="750 r=>5,p=1,250 r=10,p = 2,500
e 15
c
0
g W g 10 )
£ A £
e 2
3
I @ 0
e O 8 9 10 11 12
= 15 T T T
O Q 1 1 1
o S | . |
<O : 60 ! 400 |
-} b‘ ]_U 1 1 1
o ?:D y & 1 ” 1 = !
o 3 Y = ! 2 40 : & !
T S s - = : = 200 .
L = ‘ : 20 Vo :
()] 1 1
£ 4&% i}o—dé: P — G —p—u
= 0 ' 0 0
— 1 2 3 4 H 3 4 5) 6 7 8§ 9 10 11 12
LOU approx. rank (7) approx. rank (7) approx. rank (7)
l_

o 0c=10%m =102 0c=10"2——0g =101 -+- truer
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For Massive Numbers of Observations, Use @ e
Stochastic Variants Laboratores |

1L
V e R"*P fx:—ZV?d
P Y.d—1 d—1
—>  E[Xa’ "] =Xa®"
S
Sample columns = T i _ 1 &d
with replacement AR S KZ—; £

Example Results

# =r =10,n = 500, standard . . 2166.70

o O Adam, s=10 —0.2209 0.9225 3.03
' Adam, s=100 —0.2427 0.9929 10.48
Adam, s=1000 —0.2464 0.9990 41.00

5/6/2020 Kolda - VIRTUAL Applied Math Seminar - UC Berkeley & LBNL



oy (R
Speed Advantage for Stochastic Methods @&""”“"‘% TR

Best Runs (of 10)
#=r=10,n=500,06 =0.1,d = 3,p = 100,000

—0.05 —0.05
—o— Adam s = 10

—0.10 —m— Adam s = 100 —0.10 Zoomed
:5“ —e— Adam s = 1000
&£ —0.15 ; —+— Standard —0.15
«, —0.20 —0.20

—0.25 —0.25 mte—o_, ,

0 a0 100 150 200 () 1 2 3 4
time (s) time (s)
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| lboraores
e aboratories —;
1 @ j ; N

el sy ‘ Conclusions and
Future Work

In data analysis, dth-order moment is expensive to compute — instead
work with implicit moment

= Reduces storage from 0(n%) to 0(np)
= Reduces computation per iteration from O(Tnd) to O(rnp)
= Shows promise for fitting spherical GMMs

= Example with n = 500 (dimension), r € {3,5,10} (components), p = 250r,
r€{r—2,..,vr+2},andd = 3,4 (orders)

= Future work W|II incorporate lower-order terms, different o for each
component, multiple values for d simultaneously, etc.

= Many extensions possible, e.g., for subspace power method

= Reference: S. Sherman, T. G. Kolda. Estimating Higher-Order Moments

Using Symmetric Tensor Decomposition, submitted for publication,
2019, arXiv:1911.03813
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Backup Slicles
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Backup Slide: Similarity Score = Average @ e, (]
Cosine of Best Matching laboratories V.5

Assumes columns are first normalized

max E u, a. if » <r, and
mell(7,r) ’I" ‘ m(3)= ‘
ScCore = <

oS Z yan) 72

\
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Spherical GMMs and Symmetric Tensors

v~ N(pe,0’T), P(E=j)=1/r

E[v®] = Zu®d+0

Hsu and Kakade (2013)

I T ———— e e
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GMM Example with =5 (mixtures), n=500 Notoal (1
(dimension) and p=750 (observations) laboratories Y5

( . . B \ Exam ‘ le: =7‘50‘ oints in nQSOIO dimehsional space (random 2D projection
Given p points i PIERTTP . . p. ( e . )
in n-dimensional space £ Te w S, es 7
from a spherical GMM A T S N
with 7 components, P T LR PPN .

° ° °0 4 o o 0 o o o . & ° o o
| can we recover the means? | | PO sy . e AR T e P . .
\51?;\ ° * a7 e %o :.... L4 :0.‘ ::.o:... ¢ 'O'aO’.o e o
= » ° - o o "'o. & o o:' o 0 ° ° o °
® ) o..\..‘...::..' :?}. « > .oofﬁ.’.:..".:s.:.‘. ° * ° L4
D e T R TSN R OR T ey e ]
Distribution of Points I .o s '.-.33:‘.:3 PR Bty ;:-f-.'--.’:}'-,'a N T,
: SR AR S A e
\% N./\/'(ug,a I), P&=3)=1/r | + .°. e '.’i.":'-:*--.d:'...},'.:?,.-‘::‘f.f e e e
° ° (] ., .:.‘ :.: .’o:.. :.‘ .’:o.:.:‘ J...: ..' .f.° . ° . & »
) . S'. . * ‘0'. :. H ..oi:‘ ® 'y ':.o oo .‘:' .. * .
Want to Recover . A N . ML LI T « o °
o ‘o" . ® o° o« P o ® o o O
. ®e % o. o® o‘. .l.. L . °
{I'Ll’"","l'T} ‘e ...,0 " ‘...00. .'0 . )
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Motivating Application: Recovering Means in @ﬁgggﬁa,_ =
Spherical Gaussian Mixture Model (GMM) RIS S5

Given p points N Example: p=750 points in n=500 dimensional spéce (random 2D projection)
in n-dimensional space _ ) S L
from a spherical GMM i R LT R
With 7 cCOMm ponents’ ° " . ° '... : . o s ;)Q ? .. :' 00:“
can we recover the means? - Y gl g gt TONEL_w RE e s C
° . e o @ 00 5 ° '.... o .. -aO,.‘ .:Jo'. ) f.:w« . - . T
o ° . ® Ve " .\.. :‘. ) 6:0:?.:0?*& Q..:D .‘.K:f% » é’: 0?? e 3,00 . e & o
et ; - * T MR PR S 1+ P :O;o I T . ‘
Distribution of Points i soe % 3-.'-33. ,33“:. e d :::;,;..;~:.:.°.. S M LA
X RNk A S AON Pty TIPS LR J Lo
2 ) * . 3 °e OC. ® Som e “"S“ “’o. ©°lep & e ® ° °
v~ N(“&’ g I)’ P(g — J) — 1/7‘ - ° & o o ..:V' ° '. :,”.. ‘..CC’»;°{£Q‘3 o wﬂo;.:f‘n’. >% * o’ ®
2 . L . ':. *o ‘.3‘ ' °s % F L “‘.9.60 oo’ s . .
. moe TN e ® ::-':-,(‘. e P
° ° s O.. . H 0..@‘»*. > fb.o L] . ..:. ' ¢
Want to Recover e Ty -~ Iy LA T LA P
- g T ‘.‘ o .:L’J.." :'.. e o °
{l'Ll’"'?I'l'T} = ....0 " ® i ¥ J.‘o . o
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Motivating Application: Recovering Means in @ﬁgggﬁa,_ =
Spherical Gaussian Mixture Model (GMM) RIS S5

. . ) Exam ‘ le: =7‘50‘ oilnts in nESdO di‘me‘nsional‘ spéce (random 2D projectio‘n)
Given p points i DI P=oT P ¢« . o e .
in n-dimensional space ) F R e T
from a spherical GMM i R LT R L
with 7 components, I T e L1 P
can we recover the means? L ° ’ T T o i R

\ / . % 5 @ ®o o0 Lol 02,0 2000 & pef, S i W
e ° . .. o o "'o.... ® geo” .:'rf. “e° \..o’qo °
N an L] ‘ L ) '0 0.9: O. . (J X .\... ..o .7:_‘. ® .&» . ° ® .
o . ® Ve ° o\.. oo ° c.-/.my..’t.a& ,)..:. ‘ .’3" &:tcf;\ "? 2o %..og : o ©
. . . . * 0. © N .o"v .:~ . ..‘J’. .0 3 .’w.j?“v‘ ] ‘r:o .. .o‘\’o. ® * ¢
Distribution of Points I s W5 N .'3;..3@'.‘,'. FETCRY .f‘- 2"?.,, Si e,
. G .o T. .v o T ."h' ..‘0.:‘ o::: s P &‘. 9..‘@0 ..:. Soos ® - :
2 : e et el €oe WA o Do R oY
v~ N(""&-’ g I)’ P(g — J) — 1/7‘ - o o' o ..:V' ° '. :’..o.@.o.c’: .\i 3‘%‘02:/“: ¢ . . o° o %
° ° [ 'y o.. ° ‘.: 22 3 °s .’ '.’;.0 ° og.g.{;o o° o e ° W
. .0.0.55. g% %0 ’:.0.:. 2 8 oede .
° «° ° ‘ °.. . ;.’.im ] "(:*’3:’. L .. ..o. ’ ’
Want to Recover . PR L%, Pete, MU0 s . o ®
- " ®e ‘.\ o: .:o‘.l’( :3:' ., ° °
{l'l'].7"'7l'l'7“} i ....0 h ‘.. i J.‘o ° )
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Data from 3D GMM with Separated Means

What if we observe a collection of points from an unknown mixture of Gaussians?
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Points colored by which Gaussian they belong to — pretty easy to separate

Recovery is Easy if Means Separated
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Data from 3D GMM with Nearby Means @“""“’“‘““es

What if we observe a collection of points from an unknown mixture of Gaussians?
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Recovery More Difficult if Means Nearby .

Points colored by which Gaussian they belong to — more difficult to separate
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