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Advantages of Two-Dimensional Spectroscopy

Two-Dimensional Spectroscopy has two
main advantages over non-2D
spectroscopies

1. Deconvolution of congested and
complex spectra along two dimensions
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Advantages of Two-Dimensional Spectroscopy

Two-Dimensional Spectroscopy has two
main advantages over non-2D

spectroscopies

1 Deconvolution of congested and
complex spectra along two dimensions

2 Simultaneous detection of
homogeneous and inhomogeneous

linewidths
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Linewidth Measurement using 2D Spectroscopy Data

• Linewidth measurements are necessary
for quantitative analysis of spectra

• Qualitative analysis can determine if
spectrum is homogeneously or
inhomogeneously broadened

• In case of similar homogeneous and
inhomogeneous broadening,
homogeneous and inhomogeneous
linewidths are entangled A
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Linewidth Measurement using 2D Spectroscopy Data

• Linewidth measurements are necessary

for quantitative analysis of spectra

• Qualitative analysis can determine if

spectrum is homogeneously or

inhomogeneously broadened

• In case of similar homogeneous and

inhomogeneous broadening,
homogeneous and inhomogeneous
linewidths are entangled

• Analytic expressions were derived by

Siemens et al. for short pulses and

Smallwood et al. for finite pulses
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Machine Learning for Analysis of 2D Spectra

• Two main issues with manual fitting of
2D spectra

1. Operator time: Multi-parameter
nonlinear fitting requires tedious
adjustment of initial values

2. Computation time: Algorithm
training only needs to be done once,
while fitting routine needs to be run
for each spectrum

• Here use convolutional neural network
based machine learning algorithm

• Fully connected network in principle
better, but much more computation
intense
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Training the Machine Learning Algorithm

• To save experimental time, use
simulated data to train the network,
total 4096 spectra are simulated

• 3686 spectra are used to train the
network

• 410 spectra are set aside for later
testing of the trained network
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Training the Machine Learning Algorithm

• To save experimental time, use
simulated data to train the network,
total 4096 spectra are simulated

• To train the network, need a loss
function

• Here use RMS error of homogeneous
and inhomogeneous linewidth

• NN is adjusting weights of each node
by minimizing the loss function
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Network Architecture

• CNNs have been found to be
well-suited for analysis of image data

• 2D Spectroscopy data is a 2D map,
can be considered image data

• Our network consists of
1. 3 convolutional layers
2. 2 pooling layers
3. 1 flatten layer
4. 1 fully-connected dense layer
5. 1 output layer

• To evaluate the CNN, we use RMS
error and percent error on the output
results
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Testing the Machine Learning Algorithm
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Testing Against Real Data: Homogeneously Broadened

• Use K-Vapor D-lines,

homogeneously broadened
system

• Measure four peaks, only
investigate D1-line

• Use parameters found by ML
algorithm to simulate a
spectru m

• Compare overall shape and

linecuts
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Testing Against Real Data: lnhomogeneously Broadened

• GaAs Quantum Well,

intermediate inhomogeneously

broadend system

• Use parameters found by ML

algorithm to simulate a
spectrum

• Compare overall shape and

linecuts

5/4/20

N

-372

3
CT

EL
o

1.0
8 0.8

l) 0 6

8 0.4
.113 • 0 2
❑

0.0

-372.5

-373.5

374.5

373.6 374 6_

Emission frequency (THz)

372.5 373.0 373.5 374.0

Frequency (THz)

0.8

72 0.6
o

,{7? 0.4-
ch 0.2

,..,`6) 0.0
374.5 372.5 373.0 37.5 374.0

Frequency (THz)

• Exp.
—Sim.

S. Namuduri et al., JOSA B ????

374.5

1.0

0.8

0.6

0.4

0.2

Semi,
NatoW

9



Evaluating the ML Algorithm

• Improvement with higher pixel number
on training data

0.010

Array Size Samples Avg Error

32 x 32 1024 > 10%

32 x 32 2048 8.5% N
0.005

64 x 64 1024 6% o

128 x 128 1024 4% 0 000

128 x 128 4096 < 2% o

• ML algorithm drastically reduces
machine time, 3200 ms using manual

fit routine vs 80 ms using ML
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Conclusion

• High-speed algorithm for extracting linewidths from 2D spectroscopy data

• No operator input required, ideal for on-the-fly data analysis

• Good accuracy for intermediately broadened case, hard case for manual fitting

• Demonstrated capability of accurately measuring noisy real experimental data
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