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Abstract

Many scientific experiments such as those found in astronomy, geology, microbiology,

and X-ray radiography require the use of high-energy instruments to capture images.

Due to the imaging system, blur and added noise are inevitably present. Oftentimes

the captured images must be deblurred to extract valuable information. In the pres-

ence of noise, image deblurring is an ill-posed inverse problem in which regularization

is required to obtain useful reconstructions. Choosing the appropriate strength of the

regularization, however, is difficult. Moreover, many images contain some mixture of

smooth features and edges which requires the use of multi-regularization, i.e., the type

of regularization (total variation or Tikhonov) varies across the image. We address

these two issues by formulating the image deblurring problem within a hierarchical

Bayesian framework, varying both the strength of the regularization, as well as the

regularization type across the image. In this way, both the image and the strength

of the regularization, which varies across the image, are described by a hierarchical

posterior distribution which we can sample by Markov chain Monte Carlo (MCMC),

in particular Gibbs samplers that make use of conditional distributions for efficient

sampling. We compute the means of the image and parameter samples for simulated

test images, and we compare our results with existing non-spatially-varying Bayesian

methods to show that our new method both increases the quality and decreases the

error of the image reconstruction.

14



Chapter 1

Introduction

Deblurring images is necessary in many applications, including astronomy [14], ge-

ology [31, 36], microscopy [49], and X-ray radiography [20, 21]. Depending on the

application, blurred images can result from atmospheric turbulence, radiation, the

object of interest being in motion, or the imaging system itself [4, 10, 19, 29]. In this

work, we are interested in deblurring as it applies to images captured by high-energy

X-ray systems, such as Cygnus, located at the Nevada National Security Site (NNSS)

[35]. Cygnus is used to observe dynamic subcritical experiments in support of the

Stockpile Stewardship program, which is in place to ensure the nation’s remaining

nuclear weapons stockpile remains safe, secure, and effective. Cygnus produces high

resolution (4,096×4,096) images that experience the effects of blur and added noise

from the system. Deblurring images can be challenging, as typical reconstruction

methods require the user to tune parameters to obtain useful reconstructions. Fur-

ther, deblurring Cygnus images is computationally challenging due to the images’

large size. In this work, we develop a new method using a Bayesian framework

with spatially varying hyperparameters to better deblur X-ray images. The Bayesian

paradigm allows us to eliminate the hand-tuning procedure of the parameters in the

traditional reconstruction methods.

15



CHAPTER 1. INTRODUCTION 16

Image blurring is formulated as the convolution B = a ∗ X, where X is the

original image, a is the blurring kernel, and ‘∗’ is the convolution operator. The act

of retrieving X given B and a is called deconvolution. Additional noise is inevitably

present in captured images, due to small errors in the imaging system [29]. It is,

perhaps, more appropriate to write the forward problem of blurring an image as

B = a ∗X + ε, where ε is added noise. The inverse problem of interest is to estimate

the true image X given the corrupted image B, the blurring kernel a, and assumptions

about the statistics of the noise. Deconvolution is an ill-posed inverse problem in the

sense that small perturbations to the data can produce drastically different solutions

[18, 26, 45].

A common starting point in linear models is to obtain the least squares solution.

The least squares solution X∗ minimizes the error between the data B and the convo-

lution a ∗X as measured by the 2-norm. Due to added noise, least squares solutions

to the deblurring problem are highly unstable, producing large and oscillatory recon-

structions. To combat this instability, we regularize the problem by bounding the size

of the least squares solution and making use of prior information. For example, in the

context of image deblurring we may know the scene has smooth features. We would

then solve the deconvolution problem with an additional requirement that solutions

be smooth and bounded. This is a common technique called Tikhonov regularization

[3, 19, 22, 45]. If, on the other hand, we know that the scene has sharp edges and

constant features, we would use Total Variation (TV) regularization, which is known

to preserve edges in signal and image reconstructions [20, 38, 45].

In either case, the main challenge in applying regularization to the deconvolution

problem is determining how much regularization is required. Let R (X) represent

regularization on the unknown image of interest. The deconvolution problem with

regularization amounts to finding the minimizer X∗ of the function

J (X) := ||a ∗X−B||22 + αR (X) ,
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where ||·||2 is the 2-norm, and α is a regularization parameter. The regularization pa-

rameter is a non-negative weight attached to the added constraint of R (X). Notice

that choosing α = 0 eliminates the regularization term, and the minimizer of J (X) is

the least squares solution. Selecting appropriate values for the regularization param-

eter is a delicate process, as it determines a trade-off between the solution’s fidelity to

the data and the desired features set by the choice of regularization. If the parameter

value is too large then more weight is placed on regularization, and solutions will de-

viate from the true image. On the other hand, if the parameter value is too small then

not enough regularization is present, and the added noise will once again affect the

solution, causing unwanted artifacts. Recently work has been done to reformulate the

deconvolution problem under a Bayesian framework, where the unknown parameters

can be treated as random variables [3].

The Bayesian approach to deblurring requires a prior distribution on the unknown

true image and a likelihood function. The prior distribution encodes prior information

one might know about the true image, while the likelihood function measures how

well a given sample fits the associated inverse model. The product of the likelihood

function and prior distribution yields the posterior distribution, a distribution of the

unknown true image conditioned on known measurements. Under this model, the best

approximation of the data is the sample that maximizes the posterior distribution,

called the maximum a posteriori (MAP) estimator. For more information on the

theory of the Bayesian approach to inverse problems, we reference [22, 26, 27, 42].

In the case of reconstructing a blurred and noisy image B with regularization, we

define a prior that incorporates assumptions about the true image X (e.g. smooth-

ness, presence of edges, etc.). Referring back to the function J (X), the prior typically

includes the added regularization term αR (X) in the classical optimization problem,

while the likelihood function involves the least-squares difference ||a ∗X−B||22. As-

suming the added noise is Gaussian, it is appropriate to define the likelihood as a
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Gaussian function and the prior as the exponentiated regularization term. The MAP

estimator is then the best approximation of X under this model for a given regular-

ization parameter value.

In the Bayesian paradigm, any unknown quantities should be treated as random

variables. Therefore, we can include the unknown regularization parameter, α, in the

Bayesian deconvolution model. Along with the prior on X, we now must define a prior

for α. Since α is a parameter of the prior distribution, we call it a hyperparameter and

its distribution a hyperprior. This produces a hierarchical model, and the posterior

distribution is now the product of the likelihood, prior, and hyperprior(s). Computing

the MAP estimator is much more difficult with a hierarchical model; however, we can

still obtain approximations of X by sampling the posterior. If the likelihood and

prior are both Gaussian, and the hyperprior(s) is conjugate to a Gaussian, then a

hierarchical Gibbs sampler can be used to obtain samples from the posterior. The

“best” approximation of X in this case is the mean of the samples. We put “best”

in quotations, because the mean of the samples better approximates the mean of the

posterior as the number of samples increases.

Hierarchical sampling of Bayesian models has been applied to applications in X-

ray imaging [3, 20, 21]. In [20], for example, the authors use a hierarchical Bayesian

framework on another linear inverse problem, Abel inversion. The authors apply

Abel inversion with TV regularization to an X-ray image of a radially symmetric

object in order to measure the object’s density. Samples are drawn from the con-

structed posterior using a hierarchical Gibbs sampler, and estimations are given by

the mean of the samples. In simulations where the true density profile is known,

the approximated density profile exhibits “staircasing” artifacts and intervals of over-

regularization common with TV regularization.

Extending on the existing hierarchical Bayesian framework for deblurring, we pro-

pose that hyperpriors should vary pixel-wise over the image. The authors in [6] have
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a similar construction where they assume a conditional Gaussian prior for the im-

age with a spatially varying variance. However, the authors employ iterative solvers

instead of hierarchical sampling. Hierarchical sampling can be a more expensive

process; however, it allows us to quantify uncertainties, which can be valuable infor-

mation for real-life applications. Our model also incorporates a predetermined spatial

partitioning of Tikhonov and TV regularization. Images of interest often include both

smooth and solid features with edges, making this incorporation of the two techniques

necessary.

In Chapter 2, we present more detailed background information necessary to un-

derstand the deblurring problem. We first formulate the problem in the simpler 1D

case, and we then extend to 2D. We also provide information on Tikhonov and TV

regularization before formulating the problem in the Bayesian framework. We define

the prior distribution, hyperprior distributions, and likelihood function that make

up the desired posterior distribution. We then introduce the basic theory of Markov

chain Monte Carlo (MCMC) methods, which are commonly employed to sample from

posterior distributions. In particular, we focus on hierarchical Gibbs sampling, a spe-

cial kind of MCMC method. In Chapter 3, we present the hierarchical Bayesian

model that includes spatially varying hyperparameters. In Chapter 4, we extend on

the work in Chapter 3 to include an effective switching between Tikhonov and TV

regularization. We present numerical results in Chapter 5, applying our method to

simulated blurred and noisy images, as well as a section of a test image captured by

Cygnus. We conclude in Chapter 6, summarizing our method and results.



Chapter 2

Background

In this chapter, we provide background on discrete convolution, regularization, the

Bayesian formulation of the deblurring problem, and numerical methods to obtain

solutions. Discrete convolution is introduced in both the 1D and 2D case. We then

discuss the need for regularization and how the regularized problem lends itself to

a Bayesian formulation. Finally, we present Markov Chain Monte Carlo (MCMC)

methods.

2.1 Discrete Convolution

The blurring process can be modeled by convolution. We start by formulating the

simpler case of 1D convolution and then extend to 2D, providing the discretized

version of both operators. We follow the notation used in [3].

2.1.1 Discrete Convolution in 1D

In the continuous case, the convolution of a function x with kernel a can be written

as

b(s) =

∫ ∞
−∞

a(s− t)x(t) dt. (2.1.1)

20
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(a) Blurred Signal (b) Blurring Kernel

Figure 2.1.1: The left figure shows a signal (dotted orange line) that has been blurred
and corrupted by added noise (solid green line). The blurred signal is the result of
convolving the true signal with Gaussian kernel shown in the right figure.

As an example, assume the dashed signal shown in Figure 2.1.1a is convolved with

the Gaussian kernel in Figure 2.1.1b. The convolution of the true signal with the

Gaussian kernel results in the blurred signal in Figure 2.1.1a. Following our notation,

the original signal is denoted by x(s) and the Gaussian kernel is denoted by a(s), where

s ∈ R . As equation (2.1.1) suggests, the convolution of x(s) with the kernel a(s)

amounts to “sweeping” the kernel from left to right across the signal, and averaging

the areas underneath both curves. Within the interval [0.1, 0.9], the convolution

results in a signal b(s) that is similar to x(s), but with damped edges. However,

during the “sweeping” process, the kernel extends outside of the signal’s boundary.

We, therefore, must make assumptions about the behavior of x(s) outside our field of

view, the interval [0, 1]. Since x(s) is already zero at the boundaries, it is reasonable

to assume zero boundary conditions, i.e., x(s) = 0 for all s /∈ [0, 1]. If our field of

view were restricted to the interval [0.2, 0.8], then zero boundary conditions would

be less appropriate. The most common choices in the literature are zero, periodic,

or reflecting boundary conditions. The leftmost subfigure in Figure 2.1.2 shows the

original signal with two vertical dashed lines. The dashed lines indicate a restriction
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(a) Original Signal (b) Zero BC (c) Periodic BC (d) Reflecting BC

Figure 2.1.2: Three examples of imposed boundary conditions on the signal in Sub-
figure (a). The vertical dashed lines represent a restriction of our field of view, i.e., in
our application we are only able to see the piece of the signal in between the vertical
dashed line. The extension of the signal in Subfigure (a) beyond the dashed lines is
the true behavior of the signal. Subfigure (b) shows the signal if we were to impose
zero boundary conditions, i.e., the signal’s value is zero beyond the vertical dashed
lines. Subfigure (c) shows the signal if we were to assume periodic behavior beyond
the dashed lines, and Subfigure (d) shows a reflection of the signal in our field of view
across the dashed lines.

on our field of view, i.e., we only see the piece of the signal in between the two

vertical dashed lines. The remaining three subfigures show the observed signal along

with zero, periodic, and reflecting boundary conditions, in that order. Of course,

none of the three assumptions on the boundaries match what we know to be the

true behavior of the signal outside our field of view. Choosing the correct boundary

conditions can be difficult and should be done with care. Side-stepping this difficulty,

we generate simulated examples that have value zero at the boundaries, so that we

may assume zero boundary conditions. We refer the reader to [3, 19, 45] for more

information on constructing the discretized convolution problem under periodic and

reflecting boundary conditions.

Returning to our example, we assume our field of view is [0, 1] and x has zero

boundary conditions. Therefore, (2.1.1) becomes

b(s) =

∫ 1

0

a(s− t)x(t) dt (2.1.2)
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To numerically apply convolution, we must discretize the continuous convolution

equation using midpoint quadrature. Let n be the number of equidistant points in

[0, 1] and h = 1/n be the step size. Let s = (i − 1/2)h and t = (j − 1/2)h, for

i, j = 1, . . . , n. Then (2.1.2) can be written as

b((i− 1/2)h) = h

n∑
j=1

a((i− j)h)x((j − 1/2)h). (2.1.3)

For simplicity, let bi = b((i− 1/2)h); ai−j = a((i− j)h); and xj = x((j − 1/2)h).

Then in matrix-vector form, (2.1.3) becomes



b1

b2

b3

...

bn−1

bn


= h



a0 a−1 a−2 · · · a−n+1

a1 a0 a−1 · · · a−n+2

a2 a1 a0 · · · a−n+3

...
...

. . . . . .
...

an−1 an−2 an−3 · · · a0





x1

x2

x3

...

xn−1

xn


. (2.1.4)

Notice that the blurring matrix has constant diagonals. Matrices with constant diag-

onals are called Toeplitz matrices [3, 45], and all blurring matrices for the 1D blurring

problem with zero boundary conditions are of this form. Let A be the Toeplitz matrix

in (2.1.4) multiplied by the step size h. Let b and x be the vectors of bi and xi values,

respectively. Then the forward problem of blurring a signal simply becomes

b = Ax. (2.1.5)

Of course, in applications there are inevitably errors in the measured data. There-

fore, the forward problem (2.1.5) is more realistically written as

b = Ax + ε, (2.1.6)

where ε is an n× 1 vector such that ||ε||2 � 1, representing small unknown measure-
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(a) Original Image (b) Zero BC (c) Periodic BC (d) Reflecting BC

Figure 2.1.3: Three examples of imposed boundary conditions on the image in Sub-
figure (a). The red box is a restriction of our field of view. Subfigure (b) shows the
image if we were to impose zero boundary conditions; Subfigure (c) shows the image
if we assume periodic behavior; and Subfigure (d) shows a reflection of the image on
the outside of the box.

ment errors.

2.1.2 Discrete Convolution in 2D

The construction of the discrete convolution problem in 2D is similar to that in 1D,

just with more indices to account for. In 2D, the convolution of x with kernel a can

be written as

b(s, u) =

∫ ∞
−∞

∫ ∞
−∞

a(s− t, u− v)x(t, v) dt dv. (2.1.7)

Again, assumptions on the boundary conditions are essential in constructing the

convolution problem because the kernel extends beyond the field of view. As in 1D,

the most common assumptions are zero, periodic, and reflecting boundary conditions.

Figure 2.1.3 shows an image in the leftmost subfigure, with a red box indicating our

restricted field of view. The following three subfigures shows the image’s restricted

field of view along with zero, periodic, and reflecting boundary conditions. We once

again avoid the challenge of choosing boundary conditions by using examples where

zero boundary conditions are the appropriate choice.

Now, assuming x(s, u) = 0 for all s, u /∈ [0, 1]×[0, 1], the 2D continuous convolution
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equation in (2.1.7) becomes

b(s, u) =

∫ 1

0

∫ 1

0

a(s− t, u− v)x(t, v) dt dv. (2.1.8)

For consistency, we keep the same discretization scheme on the interval [0, 1]

as in the 1D case. Our region of interest is [0, 1] × [0, 1], so let s = (i − 1/2)h;

u = (` − 1/2)h; t = (j − 1/2)h; and v = (m − 1/2)h for i, j, `,m = 1, . . . , n. Define

bi,` = b((i − 1/2)h, (` − 1/2)h); ai−j,`−m = a((i − j)h, (` −m)h); and xj,m = x((j −

1/2)h, (m− 1/2)h). Then we can write (2.1.8) as

bi,` = h2

n∑
j=1

n∑
m=1

ai−j,`−mxj,m. (2.1.9)

We say a function a(s, u) is separable if a(s, u) = a1(s)a2(u), where a1 and a2 are

single-variable functions. Assume the blurring kernel a is separable; and in the dis-

cretized case, let ai,` = a
(1)
i a

(2)
` . Let A1 and A2 be n×n Toeplitz matrices resembling

the blurring matrix in (2.1.4), i.e.,

Ak =



a
(k)
0 a

(k)
−1 a

(k)
−2 · · · a

(k)
−n+1

a
(k)
1 a

(k)
0 a

(k)
−1 · · · a

(k)
−n+2

a
(k)
2 a

(k)
1 a

(k)
0 · · · a

(k)
−n+3

...
...

. . . . . .
...

a
(k)
n−1 a

(k)
n−2 a

(k)
n−3 · · · a

(k)
0


, (2.1.10)
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for k = 1, 2. Then continuing from (2.1.9),

bi,` = h2

n∑
j=1

n∑
m=1

ai−j,`−mxj,m,

= h
n∑
j=1

a
(1)
i−j

(
h

n∑
m=1

a
(2)
`−mxj,m

)
,

= h

n∑
j=1

a
(1)
i−j
[
A2X

T
]
`,j
,

= h

n∑
j=1

a
(1)
i−j
[
XAT

2

]
j,`
,

=
[
A1XAT

2

]
i,`
. (2.1.11)

Therefore, letting B be the matrix of values bi,` for i, ` = 1, . . . , n, we have that the

discrete forward problem of blurring an image is

B = A1XAT
2 . (2.1.12)

Taking into account the presence of added noise, (2.1.12) is more appropriately written

as

B = A1XAT
2 + E, (2.1.13)

where E is an n × n matrix representing noise. There is, however, a simpler way to

write (2.1.13) by vectorizing and using properties of Kronecker products.

We define the act of vectorizing a matrix by stacking the columns into one vector.

More formally, let C be an m× n matrix defined by

C =
[
c(1)

∣∣∣ c(2)
∣∣∣ · · · ∣∣∣ c(n)

]
, (2.1.14)
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where c(i) is the ith column vector. Define

vec(C) =



c(1)

c(2)

...

c(n)


. (2.1.15)

The operator vec(·) takes in a m × n matrix, stacks its column vectors, and returns

a vector of length mn.

For two m× n matrices A and B, we define the Kronecker product as follows:

A⊗B =



a1,1B a1,2B · · · · · · a1,nB

a2,1B a2,2B · · · · · · a2,nB

...
. . . . . . . . .

...

...
. . . . . . . . .

...

am,1B am,2B · · · · · · am,nB


mn×mn

. (2.1.16)

It is known (see [3, 19]) for C = AXB,

vec(C) = vec(AXB) =
(
BT ⊗A

)
vec(X). (2.1.17)

Using this property, we vectorize equation (2.1.13):

vec(B) = vec(A1XAT
2 + E) (2.1.18)

= vec(A1XAT
2 ) + vec(E) (2.1.19)

= (A2 ⊗A1) vec(X) + vec(E). (2.1.20)

Let b̃ = vec(B); x̃ = vec(X); ε̃ = vec(E); and Ã = A2 ⊗A1. Then (2.1.13) becomes

b̃ = Ãx̃ + ε̃, (2.1.21)

exactly the same form as in the 1D case.
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2.2 Deconvolution and Regularization

Deconvolution is an ill-posed inverse problem, in the sense that small perturbations

to the data can yield drastically different solutions [18, 26]. By adding an additional

term to the problem where we minimize the least squares difference between the

model and the observation, we obtain more stable solutions. This process is called

regularization, and the additional term we introduce is called a regularization term.

Therefore, we are interested in minimizing functions of the form

Jδ(x) =
1

2
||Ax− b||22 + δR(x), (2.2.1)

where x is a variable representing an N × 1 vectorized image, δ is a nonnegative

regularization parameter, and R : Rn → R is a penalty function based on prior

information. A common technique is called Tikhonov regularization, where the regu-

larization term is defined by the squared Euclidean norm of x or some function of x

[3, 45]. In this case, the functionR(x) = 1
2
||LTIKx||22, where LTIK is commonly chosen

to be the identity I or discrete gradient operators. Another popular technique is to let

the regularization term be the 1-norm of the gradient of the image. Minimizing this

term is equivalent to minimizing the total variation of the image; hence, this tech-

nique is called total variation or (TV) regularization (first introduced in [38]). With

TV regularization, R(x) = ||Dx||1, where in 1D the matrix D is the discrete first

derivative operator, and in the 2D (s, t)-coordinate space D = [Ds Dt]
T . The choice

of regularization depends on prior information about the image’s features. Tikhonov

regularization is ideal for producing smooth reconstructions, while TV regularization

is well-suited for preserving edges in the reconstructions.

No matter which regularization technique is used, the delicate process of assigning

a value to the parameter, δ, must be performed. The value determines the trade-

off between how well the reconstruction matches the forward model of the original

data and the extent to which the chosen regularization term is enforced. If the
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regularization parameter is too small, then the regularization is not enforced enough,

causing noise to affect the reconstruction. On the other hand, if the parameter is too

large then there is too much regularization, and the reconstruction loses fidelity to

the original data.

Examples of common parameter selection methods are generalized cross validation

(GCV) [16], the discrepancy principle (DP) [34], and the L-curve method [17, 30].

However, these methods are also flawed in that (1) they sometimes require information

about the added noise level which (as in our case) is not always available and (2) they

fail to converge when the noise level approaches zero [3, 19]. Each method has its

pros and cons, and the user must decide which selection method is most appropriate

for the given problem. Not only is choosing the regularization parameter a delicate

process, but so is choosing the parameter selection method. By using a Bayesian

framework, we can bypass this issue altogether by allowing the parameter to be a

random variable.

2.3 Bayesian Formulation

In this section, we rewrite the deblurring problem using a Bayesian framework. This

requires an assumption on the statistical properties of the added noise. For this work,

we assume the added noise is Gaussian with variance λ−1. We start by assuming λ

is known, along with the regularization parameter δ. We then assume the two pa-

rameters are unknown, and following the Bayesian paradigm, we let them be random

variables. This leads to the hierarchical Bayesian model that is the foundation of this

work.
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2.3.1 Fixed Parameters

Assume λ, δ > 0 are known. The Bayesian framework for inverse problems calls for

all unknowns to be random variables. Therefore, our unknown is the image x ∈ Rn.

In both 1D and 2D, our problem formulation is to estimate x ∈ Rn given b ∈ Rn and

A ∈ Rn×n where

b = Ax + ε. (2.3.1)

Assume ε ∼ N (0, λ−1In). Note that if x were given, then b ∼ N (Ax, λ−1In). We

define the likelihood, i.e., the function measures a given x’s goodness of fit to the

observation b, as

pLH(b|x) ∝ exp

(
−λ

2
||Ax− b||22

)
. (2.3.2)

The prior distribution contains prior information about the unknown image x.

Prior distributions are commonly of the form

p0(x) ∝ exp (−δR(x)) . (2.3.3)

The posterior distribution is constructed using Bayes’ theorem, and is made up

of the likelihood and prior in the following way:

p(x|b) ∝ pLH(b|x)p0(x) ∝ exp

(
−λ

2
||Ax− b||22 − δR(x)

)
. (2.3.4)

Notice that the maximum a posteriori (MAP) estimator is

xMAP = arg max
x

{p(x|b)} (2.3.5)

= arg min
x
{− ln(p(x|b))} (2.3.6)

= arg min
x

{
λ

2
||Ax− b||22 + δR(x)

}
. (2.3.7)

The advantage to using a Bayesian framework in the image deblurring problem is

that the solution is not one reconstruction, but a distribution of reconstructions. The

posterior distribution is a distribution of image reconstructions x, and to each x is
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attached a probability on how likely it is to be the optimal reconstruction based on

how well it matches the given data and prior information.

2.3.2 Hierarchical Formulation

Now assume λ and δ are unknown. Following [3], we assume the parameters have

Gamma prior distributions

pH1(λ) ∼ Gamma(αλ, βλ) ∝ λαλ−1 exp(−βλλ), (2.3.8)

pH2(δ) ∼ Gamma(αδ, βδ) ∝ δαδ−1 exp(−βδδ), (2.3.9)

where αλ, αδ and βλ, βδ are shape and scale parameters, respectively. In this work,

we choose αλ = αδ = 1 and βλ = βδ = 10−4, following [3]. The reasoning is that

for these shape and scale parameter values, the Gamma distribution behaves like a

uniform distribution. This formulation, therefore, gives us conjugate priors as well

as (approximately) uniform distributions from which to sample the unknown λ and

δ parameters.

The distributions pH1(λ) and pH2(δ) are called hyperpriors, as they are distribu-

tions for parameters included in the likelihood and prior distributions. Bayes’ theorem

allows us to incorporate the hyperpriors in the following way:

p(x,λ, δ|b) ∝ pLH(b|x, λ)p0(x|δ)pH1(λ)pH2(δ),

∝ λn/2+αλ−1δn/2+αδ−1 exp

(
−λ

2
||Ax− b||22 − δR(x)− βλλ− βδδ

)
. (2.3.10)

The posterior distribution not only contains possible reconstructions x, but also pos-

sible values for the parameters λ and δ.
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2.4 Numerical Methods

In the Bayesian framework, obtaining image reconstructions involves sampling from

the posterior distribution, which is not always an easy task. In this section, we

introduce Markov chain Monte Carlo (MCMC) methods, a class of algorithms that

allow us to sample from more complicated distributions. We highlight one MCMC

method in particular – Gibbs sampling.

2.4.1 MCMC and Gibbs Sampling

Suppose we want to sample from a general multivariate posterior distribution p (y). A

Markov chain Monte Carlo (MCMC) method constructs a Markov chain that, under

the right conditions [5, 39], will converge to the distribution of interest. A Markov

chain is a sequence of random variables
{
y(k)

}
that satisfies the Markov property:

p
(
y(k)|y(1),y(2), . . . ,y(k−1)

)
= p

(
y(k)|y(k−1)

)
, (2.4.1)

for k ≥ 2. The Markov property states that the current state y(k) depends only on

the previous state y(k−1).

In MCMC, the Markov chain is built with the convergence to the equilibrium

distribution in mind. However, it may take a variable amount of time (called a

burn-in period) for the chain to reach equilibrium. Samples taken before equilibrium

should be discarded, as they are not true samples of the posterior distribution. It

is also important to note that the samples generated from an MCMC method are

correlated due to the Markov property, which can affect the efficiency of the algorithm.

The integrated autocorrelation time (IACT), denoted by τint, is a useful measure of

efficiency. For a chain of MCMC samples y(1),y(2), . . . ,y(K), the IACT is computed
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by

τint = 1 + 2
K∑
k=1

Ck/C0, (2.4.2)

where Cj is the autocovariance function

Cj =
1

K

K−j∑
i=1

(
y(i) − µK

) (
y(i+j) − µK

)
, (2.4.3)

with µK as the estimated mean of the K samples. The function Cj/C0 is called the

autocorrelation function. It is shown in [39] that the correlation of samples causes

the statistical error to be a factor of τint larger than that of independent sampling.

This means the number of effectively independent samples is given by

Keff =
K

τint

. (2.4.4)

In other words, the closer τint is to 1, the more efficient the MCMC method.

Suppose we want to generate samples from a multivariate distribution p(y, z), but

the distribution is difficult to sample using standard methods. Assume the conditional

distributions p(y|z) and p(z|y) are easy to sample and are conjugate distributions, i.e.

they belong in the same probability distribution family. In the event that sampling

from p(y, z) is difficult, but sampling from the conditionals p(y|z) and p(z|y) is

easy, one might consider using a Gibbs sampler [37]. Gibbs sampling (first named in

[15]) is a popular MCMC method that constructs the Markov chain by sampling the

conditional distributions of the multivariate distribution. Algorithm 1 shows the basic

schematic of the sampler. Given an initial guess z(0), we sample y(1) ∼ p
(
y|z(0)

)
, and

then we sample z(1) from its conditional distribution conditioned on the sample we just

obtained, y(1). This continues for K iterations, i.e., for 1 ≤ k ≤ K, y(k) ∼ p
(
y|z(k−1)

)
and z(k) ∼ p

(
z|y(k)

)
. We note that for large K, the order in which we sample from the

conditionals does not matter [3, 39]. We could obtain similar results by initializing

y(0), first sampling z(k) ∼ p
(
z|y(k−1)

)
and then y(k) ∼ p

(
y|z(k)

)
. After a burn-in



CHAPTER 2. BACKGROUND 34

Algorithm 1: Gibbs Sampler

input: Initial approximation z(0); maximum number of iterations K; and
conditional distributions p(y|z) and p(z|y)

for k = 1, . . . , K do
y(k) ∼ p

(
y|z(k−1)

)
z(k) ∼ p

(
z|y(k)

)
end

period, the Gibbs sampler will converge to the equilibrium distribution p(y, z).

2.4.2 Gibbs Sampling for Hierarchical Inverse Problems

In order to use a Gibbs sampler to sample from the posterior distribution p (x, λ, δ|b)

in (2.3.10), the full conditional distributions p (λ|b,x, δ), p (δ|b,x, λ), p (x|b, λ, δ)

must exist and be easy to sample. We have

p (λ|b,x, δ) ∝ λn/2+αλ−1 exp

(
−λ
(

1

2
||Ax− b||22 + βλ

))
(2.4.5)

∼ Gamma

(
n/2 + αλ,

1

2
||Ax− b||22 + βλ

)
,

p (δ|b,x, λ) ∝ δn/2+αδ−1 exp (−δ (R(x) + βδ)) (2.4.6)

∼ Gamma (n/2 + αδ,R(x) + βδ) ,

which can easily be sampled. The final conditional distribution

p (x|b, λ, δ) ∝ exp

(
−λ

2
||Ax− b||22 − δR(x)

)
(2.4.7)
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can be easily sampled if R(x) = 1
2
||LTIKx||22. In this case, p (x|b, λ, δ) is Gaussian.

The mean can be determined by finding the minimum of − ln (p (x|b, λ, δ)). We have

d

dx
[− ln (p (x|b, λ, δ))] =

d

dx

[
λ

2
||Ax− b||22 +

δ

2
||LTIKx||22

]
, (2.4.8)

= λAT (Ax− b) + δLT
TIKLTIKx, (2.4.9)

=
(
λATA + δLT

TIKLTIK

)
x− λATb, (2.4.10)

which equals zero when x = λ
(
λATA + δLT

TIKLTIK

)−1
ATb. The precision matrix

can be obtained by the second derivative of the negative log-likelihood with respect

to x, which is λATA + δLT
TIKLTIK. Therefore, the conditional distribution is

p (x|b, λ, δ) ∼ N
(
(λATA + δLT

TIKLTIK)−1ATb, (λATA + δLT
TIKLTIK)−1

)
. (2.4.11)

If we were to instead choose R(x) = ||Dx||1, then p(x|b, λ, δ) in (2.4.7) would

not be Gaussian. However, we can approximate ||Dx||1 by the squared 2-norm of a

different operator applied to x, thereby making p(x|b, λ, δ) a Gaussian distribution.

For some small value η, notice

|x| ≈
√
x2 + η . (2.4.12)

Although the absolute value function is non-differentiable, we can approximate the

derivative by

d

dx
|x| ≈ x√

x2 + η
. (2.4.13)

We extend this to ||Dx||1. We have

||Dx||1 =
n∑
i=1

|(Dx)i| ≈
n∑
i=1

√
(Dx)2

i + η . (2.4.14)
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The approximated derivative is then

d

dx
||Dx||1 =

n∑
i=1

d

dx
|(Dx)i|

≈
n∑
i=1

d

dx

√
(Dx)2

i + η ,

=
n∑
i=1

(
DTDx

)
i√

(Dx)2
i + η

= DTΦ(x)Dx, (2.4.15)

where Φ(x) is an n×n diagonal matrix with entries
(
(Dx)2

i + η
)−1/2

for i = 1, . . . , n.

This motivates the definition of the operator

LTV(x) := Ψ(x)D, (2.4.16)

where Ψ(x) is the element-wise square root of Φ(x), i.e., Ψ(x) is an n × n diagonal

matrix with entries
(
(Dx)2

i + η
)−1/4

for i = 1, . . . , n. With this definition, we have

that (LTV(x))T LTV(x)x ≈ d
dx

[||Dx||1]. Notice the operator LTV depends on x. In

this work, we let LTV := LTV(xTV) where xTV is an approximated TV reconstruction

generated by an iterative solver called the Lagged Diffusivity Fixed Point Method

(Algorithm 2), as shown in [45]. The approximated solution xTV provides an initial

estimation of edge location, making it an appropriate fixed input for the LTV matrix.

From our experiments, we find that xTV needs to be “reasonably good,” in that it is

not too under-regularized (too many edges) or over-regularized (expected edges are

removed). This method of using xTV to fix the LTV matrix is also used in [20, 21].

Since LT
TVLTVx ≈ d

dx
[||Dx||1] and LT

TVLTVx = d
dx

[
1
2
||LTVx||22

]
, by transitivity

we can write the approximated conditional distribution as

p (x|b, λ, δ) ∝ exp

(
−λ

2
||Ax− b||22 −

δ

2
||LTVx||22

)
, (2.4.17)
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Algorithm 2: Lagged Diffusivity Fixed Point Method

input: Initial approximation x(0); regularization parameter α; maximum number of
iterations K; tolerance parameter c > 0

for k = 1, . . . , K do

L(k) =
(
LTV

(
x(k−1)

))T
LTV

(
x(k−1)

)
g(k) = AT

(
Ax(k−1) − b

)
+ αL(k)x(k−1)

H(k) = ATA + αL(k)

x(k) = x(k−1) −
(
H(k)

)−1
g(k)

if
∣∣∣∣x(k) − x(k−1)

∣∣∣∣
2
< c then

break
end

end

which follows the normal distribution

p (x|b, λ, δ) ∼ N
(
(λATA + δLT

TVLTV)−1ATb, (λATA + δLT
TVLTV)−1

)
. (2.4.18)

Hence, the prior for the Bayesian 1D deconvolution problem for both Tikhonov and

TV is a Gaussian of the form

p(x|δ) ∝ exp

(
−δ

2
||Rx||22

)
. (2.4.19)

For 2D deconvolution, we choose priors of the form

p(x|δ) ∝ exp

(
−δ

2

∣∣∣∣∣∣[Rs Rt]
T x
∣∣∣∣∣∣2

2

)
, (2.4.20)

= exp

(
−δ

2

[
||Rsx||22 + ||Rtx||22

])
, (2.4.21)

where x is an n2 × 1 vectorization of the n × n image, and both Rs and Rt are

n2 × n2 matrices that enforce regularization in the s and t direction. For Tikhonov

we let Rs = Ls
TIK := I ⊗ LTIK and Rt = Lt

TIK := LTIK ⊗ I; and for TV we let

Rs = Ls
TV := Ψ2DDs and Rt = Lt

TV := Ψ2DDt, where the matrix Ψ2D is an n2 × n2

diagonal matrix with entries
(
(Dsx)2

i + (Dtx)2
i + η

)−1/4
for i = 1, . . . , n2. As in the

1D case, the matrix Ψ2D depends on an approximated x. In application, we use
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Algorithm 3: Hierarchical Gibbs Sampler

input: Initial approximation x(0); maximum number of iterations K; and
conditional distributions p(x|b, λ, δ), p(λ|b,x), and p(δ|x)

for k = 1, . . . , K do
λ(k) ∼ p(λ|b,x(k−1))
δ(k) ∼ p(δ|x(k−1))
x(k) ∼ p(x|b, λ(k), δ(k))

end

Algorithm 2 with LT
TVLTV := (Ls

TV)T Ls
TV + (Lt

TV)
T

Lt
TV to generate an initial TV

reconstruction x2D
TV. We then fix Ψ2D = Ψ2D

(
x2D

TV

)
. This method of regularization

where rows and columns are treated separately is discussed in [19], and incorporating

this technique into the prior will be especially useful when implementing methods

where the parameter δ varies across the image.

Whether the deconvolution problem is 1D or 2D, uses Tikhonov or TV regular-

ization, the way we have constructed the posterior distribution allows us to easily

write the conditional distributions and sample using a Gibbs sampler. Algorithm 3

shows the hierarchical Gibbs sampler used to generate samples from the posterior

distribution.

2.5 Deconvolution Examples in 1D

We present two examples of deblurring signals of length n = 256 using the hierarchical

Gibbs sampler. The left images in Figures 2.5.1 and 2.5.2 show blurred, noisy signals

(solid green line) along with their respective true underlying signals (dotted orange

line). In both cases, the blurred signals are generated by convolving the true signals

with the kernel

a(s) =
1

γ
√

2π
exp

(
− s2

2γ2

)
, (2.5.1)
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with γ = 0.02. Assuming zero boundary conditions, we then create a 256 × 256

Toeplitz matrix by discretizing a(s) as in equation (2.1.4). The blurring matrix A

results by multiplying the Toeplitz matrix by the step size h = 1/256. The blurred,

noisy signals in Figures 2.5.1 and 2.5.2 are given by

b = Ax + ε, (2.5.2)

where x is the true signal, and ε ∼ N (0, σ2I256) is a 256 × 1 random vector with

variance σ2 chosen so that the signal-to-noise ratio (SNR), defined in [3] as

||Ax||2 /
√
nσ2, (2.5.3)

is 25. In other words, the standard deviation is 4% of the 2-norm of Ax. We run the

Gibbs sampler in Algorithm 3, initializing x(0) = b and setting the maximum number

of iterations to be K = 10,000.

Figure 2.5.1 shows a blurred, noisy signal in the top left image (solid green line)

where the appropriate regularization technique is Tikhonov. In this example, we let

LTIK = D2 :=



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


n×n

. (2.5.4)

Once again, the Tikhonov-regularized reconstruction is the solution of the optimiza-

tion problem

xλ,δ = arg min
x

(
λ

2
||Ax− b||22 +

δ

2
||LTIKx||22

)
, (2.5.5)

where λ and δ are nonnegative parameters that control the balance of regularization

strength versus fidelity to the data. Using the hierarchical Gibbs sampler, we obtain

the reconstruction shown in the top right subfigure in Figure 2.5.1 without having to
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Figure 2.5.1: The top left figure shows a smooth underlying signal (dotted orange
line) along with a blurred, noisy version of the signal (solid green line). The top right
figure shows a reconstruction (solid purple line) of the blurred signal using the Gibbs
sampler with Tikhonov regularization. The bottom row shows the chains of λ and δ
samples.

choose values for λ and δ. The sampled λ- and δ-chains are shown in the bottom row

of Figure 2.5.1.

Notice with both chains, it does not take too many samples for the chain to reach

equilibrium. However, out of an abundance of caution, we choose a burn-in of 1,000

samples. After burn-in, the mean values of the regularization parameters are λ ≈

3,362 and δ ≈ 18,881. We compute the integrated autocorrelation time (IACT) of

the λ- and δ-chains to assess the efficiency of the Gibbs sampler. The IACT’s for the
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λ-chain and δ-chain after burn-in are τλ ≈ 1.24 and τδ ≈ 17.62. Referring to (2.4.4),

the effective number of samples is the total number of samples (which after burn-in is

9,000) divided by the computed IACT. Hence, there are approximately 7,258 effective

samples for λ and 510 effective samples for δ.

The mean reconstruction from the Gibbs sampler with Tikhonov regularization

in Figure 2.5.1 seems to match the true underlying signal pretty well. Of course,

we cannot rely on visual inspection alone in order to determine the quality of a

reconstruction. To measure the differences between two signals or column-stacked

images u = (u1, . . . , uN) and v = (v1, . . . , vN), we use root mean square error (RMSE)

defined by

RMSE(u,v) =

√∑N
i=1 (ui − vi)2

N
. (2.5.6)

From the example in Figure 2.5.1, let x(1) be the true signal, b(1) be the blurred and

noisy signal, and x(1) be the mean Gibbs reconstruction. We have that RMSE(x(1),b(1)) =

0.0306 and RMSE(x(1),x(1)) = 0.017, an improvement of about 44%.

We now turn to the example in Figure 2.5.2, where we use the Gibbs sampler

with TV regularization. The top left subfigure shows the true signal (dashed orange

line) along with the blurred, noisy signal (solid green line), and the bottom right

figure shows the mean reconstruction resulting from running the hierarchical Gibbs

sampler for 10,000 samples with a burn-in of 1,000. Again, we choose a burn-in of

1,000 samples after plotting the λ- and δ-chains (bottom row in Figure 2.5.2) and

determining the length of time the chains take to reach equilibrium. A burn-in of

1,000 samples is perhaps too large, but we simply want to be especially sure we are

sampling from the equilibrium distribution. The mean λ and δ values after burn-in

are λ = 4,207 and δ = 6.76. The small sampled values of δ’s are expected, because

the matrix norm of the operator LTV can be very large. This is due to the definition

of the diagonal matrix Ψ, where the denominators of the entries can be close to zero.

The IACT’s for the λ-chain and δ-chain are τλ ≈ 1.16 and τδ ≈ 25.68, which means
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Figure 2.5.2: The top left figure shows a piecewise constant underlying signal (dotted
orange line) along with a blurred, noisy version of the signal (solid green line). The
top right figure shows a reconstruction (solid purple line) of the blurred signal using
the Gibbs sampler with TV regularization. The bottom row shows the chains of λ
and δ samples.

there were approximately 7,758 effective samples for λ and 350 effective samples for

δ.

The mean Gibbs reconstruction seems to match the underlying signal well; how-

ever, it does have “staircasing” artifacts in several areas. Staircasing artifacts are

common in TV-regularized reconstructions and are defined as regions where the re-

construction’s value changes sharply from one constant value to another. To compute

the RMSE, let x(2) be the true signal, b(2) be the blurred and noisy signal, and x(2)
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be the mean Gibbs reconstruction. We have that RMSE(x(2),b(2)) = 0.0851 and

RMSE(x(2),x(2)) = 0.0456. In this example, the mean Gibbs reconstruction cuts the

error between the given corrupted signal and the true signal by almost half.

The hierarchical Bayesian approach to the deblurring problem seems to produce

good reconstructions, both visually and quantitatively. However, we believe better

reconstructions can be obtained when the hyperparameters λ and δ vary across the

data. While the hierarchical Gibbs sampler yields an optimal ratio of δ to λ, it

is reasonable to assume that the regularization strength in one part of the image

may need to be greater than that of another part. The added noise ε affects the

underlying image in a non-uniform way; therefore, we should let the regularization

strength be non-uniform, as well. We investigate this in the next chapter by building

a hierarchical model with spatially varying parameters, and writing an algorithm for

a hierarchical Gibbs sampler that will effectively sample from the much more complex

posterior distribution.

2.6 Summary

We have provided necessary background material to understand this work, such as

discrete 1D and 2D convolution, regularization techniques, the Bayesian formulation

of inverse problems, and Gibbs sampling. Deblurring is an ill-posed inverse problem,

and requires regularization to obtain useful solutions. Traditional methods require

finding minimizers of functions involving the least squares difference between the data

and the model, with an additional weighted term called the regularization term. The

weight on the regularization term is the regularization parameter. It is challenging

to determine the value of the regularization parameter, as it represents a trade-off

between fidelity to the data and enforcing regularization. By using a Bayesian frame-

work and letting the parameters be random variables, we no longer have the challenge
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of hand-tuning the parameters. The resulting posterior distribution is difficult to sam-

ple; however, its conditional distributions are easy to sample. Therefore, a hierarchical

Gibbs sampler is used to obtain image reconstructions. We concluded the chapter by

deblurring 1D examples using the existing hierarchical Bayesian model from [3]. We

measure the efficiency of the sampler by computing the integrated autocorrelation

time.



Chapter 3

Hierarchical Gibbs Sampler with

Spatially Varying Parameters

In this chapter, we present a hierarchical Gibbs sampler that allows the parameters

λ and δ to vary across each pixel in the image. We call the sampler HGSV, for a

(h)ierarchical (G)ibbs sampler with (s)patially (v)arying parameters. The motivation

for the HGSV sampler is that the added noise affects the data unevenly; therefore, it

is unreasonable to fix the strength of the regularization for the entire image. A certain

strength may be appropriate for one section of the image, but not another. We adapt

the existing hierarchical model to include hyperparameters that vary pixel-to-pixel,

and present the HGSV sampler.

3.1 A Hierarchical Model with Spatially Varying

Parameters

We investigate if by letting the regularization parameter values vary from pixel-to-

pixel, better reconstructions can be obtained. Instead of having two hyperpriors, λ

and δ, we now have 2N hyperpriors, where N = n in 1D and N = n2 in 2D.

45
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3.1.1 1D Model

We adapt the hyperpriors in (2.3.8) and (2.3.9) to accommodate our spatially varying

formulation. For i = 1, . . . , N , assume λi and δi have Gamma distributions:

p(λi) ∼ Gamma(αλ, βλ) ∝ λαλ−1
i exp(−βλλi), (3.1.1)

p(δi) ∼ Gamma(αδ, βδ) ∝ δαδ−1
i exp(−βδδi), (3.1.2)

where αλ, αδ are Gamma shape parameters and βλ, βδ are Gamma rate parameters.

Let λ = (λ1, . . . , λN) and δ = (δ1, . . . , δN) be N -dimensional vectors containing the

parameter’s value at each pixel. We assume λ and δ are independent, i.e.,

p(λ) =
N∏
i=1

p(λi) , p(δ) =
N∏
i=1

p(δi) , p(λ, δ) = p(λ)p(δ) . (3.1.3)

The likelihood and prior densities are respectively defined as

p(b|x,λ) ∝

(
N∏
i=1

λi

)1/2

exp

(
−1

2

N∑
i=1

λi
[
(Ax)i − bi

]2)
, (3.1.4)

p(x|δ) ∝

(
N∏
i=1

δi

)1/2

exp

(
−1

2

N∑
i=1

δi (Lx)2
i

)
, (3.1.5)

where L is either LTIK or LTV, depending on which type of regularization is required.

Combining the likelihood (3.1.4), the prior (3.1.5), and the hyperpriors p(λi), p(δi),

we can write the posterior distribution

p(x,λ, δ|b) ∝ p(b|x,λ)p(x|δ)p(λ)p(δ),

∝
N∏
i=1

λ
αλ−1/2
i δ

αδ−1/2
i

× exp

(
−

N∑
i=1

λi

(
1

2

[
(Ax)i − bi

]2
+ βλ

)
−

N∑
i=1

δi

(
1

2
(Lx)2

i + βδ

))
. (3.1.6)

The conditional posterior distributions for the 2N hyperpriors are Gamma distri-
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butions:

λi|b,x ∼ Gamma

(
1

2
+ αλ,

1

2

[
(Ax)i − bi

]2
+ βλ

)
, (3.1.7)

δi|x ∼ Gamma

(
1

2
+ αδ,

1

2
(Lx)2

i + βδ

)
. (3.1.8)

The conditional distribution for x is given by

p(x|b,λ, δ) ∝ exp

(
−

N∑
i=1

λi
2

[
(Ax)i − bi

]2 − N∑
i=1

δi
2

(Lx)2
i

)
, (3.1.9)

= exp

(
−1

2

∣∣∣∣Λ1/2 (Ax− b)
∣∣∣∣2

2
− 1

2

∣∣∣∣∆1/2Lx
∣∣∣∣2

2

)
, (3.1.10)

where Λ1/2 = diag
(
λ1/2

)
and ∆1/2 = diag

(
δ1/2

)
with λ1/2 =

(
λ

1/2
1 , λ

1/2
2 , . . . , λ

1/2
N

)T
and δ1/2 =

(
δ

1/2
1 , δ

1/2
2 , . . . , δ

1/2
N

)T
. Therefore, the conditional distribution follows the

normal distribution

p(x|b,λ, δ) ∼ N
(
H−1ATΛb,H−1

)
, (3.1.11)

where H = ATΛA + LT∆L with Λ = diag(λ) and ∆ = diag(δ).

3.1.2 2D Model

Assuming ε ∼ N (0,Λ−1) where Λ = diag
(

(λ1, . . . , λN)T
)

with unknown parameter

values λ1, . . . , λN , the likelihood function is

pLH (b|x,Λ) ∝
∣∣Λ∣∣1/2 exp

(
−1

2

∣∣∣∣Λ1/2 (Ax− b)
∣∣∣∣2

2

)
, (3.1.12)

where | · | is the determinant operation. In the case of Tikhonov regularization with

spatially varying parameters represented by ∆ = diag
(

(δ1, . . . , δN)T
)

, we use the
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prior

pTIK (x|∆) ∝
∣∣∆∣∣1/2 exp

(
−1

2

∣∣∣∣∣∣∆1/2
[
Ls

TIK Lt
TIK

]T
x
∣∣∣∣∣∣2

2

)
, (3.1.13)

=
∣∣∆∣∣1/2 exp

(
−1

2

∣∣∣∣∆1/2Ls
TIKx

∣∣∣∣2
2
− 1

2

∣∣∣∣∆1/2Lt
TIKx

∣∣∣∣2
2

)
, (3.1.14)

where Ls
TIK = IN ⊗D2 and Lt

TIK = D2 ⊗ IN , with IN as the N ×N identity matrix

and

D2 :=



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


N×N

. (3.1.15)

We now compute HGSV reconstruction with a TV prior. We define the prior as

pTV (x|∆) ∝
∣∣∆∣∣1/2 exp

(
−1

2

∣∣∣∣∣∣∆1/2
[
Ls+

TV Lt+
TV Ls−

TV Lt−
TV

]T
x
∣∣∣∣∣∣2

2

)
, (3.1.16)

=
∣∣∆∣∣1/2 exp

(
−1

2

∣∣∣∣∆1/2Ls+
TVx

∣∣∣∣2
2
− 1

2

∣∣∣∣∆1/2Lt+
TVx

∣∣∣∣2
2

−1

2

∣∣∣∣∆1/2Ls−
TVx

∣∣∣∣2
2
− 1

2

∣∣∣∣∆1/2Lt−
TVx

∣∣∣∣2
2

)
, (3.1.17)

where Ls+
TV = Ψs+

2DDs; Lt+
TV = Ψt+

2DDt; Ls−
TV = Ψs−

2DDT
s ; and Lt−

TV = Ψt−
2DDT

t . We define

Ψs+
2D(x) = diag

([
(Dsx)� (Dsx) + η1

]−1/4
)
, (3.1.18)

Ψt+
2D(x) = diag

([
(Dtx)� (Dtx) + η1

]−1/4
)
, (3.1.19)

Ψs−
2D(x) = diag

([
(DT

s x)� (DT
s x) + η1

]−1/4
)
, (3.1.20)

Ψt−
2D(x) = diag

([
(DT

t x)� (DT
t x) + η1

]−1/4
)
, (3.1.21)

where � denotes pointwise multiplication. We also assume the power −1/4 is applied

pointwise.
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Recall that Ds = IN ⊗D1 and Dt = D1 ⊗ IN , where

D1 :=



1 −1 0 · · · 0

0 1 −1
. . .

...

0
. . . . . . . . . 0

...
. . . 0 1 −1

0 · · · 0 0 1


N×N

. (3.1.22)

Therefore, by the properties of Kronecker products, DT
s = IN ⊗ DT

1 and DT
t =

DT
1 ⊗ IN . The purpose of the four operators in the TV prior is so that each pixel

xi,j is regularized with respect to the pixels to the left, right, above, and below, i.e.,

xi−1,j,xi+1,j,xi,j+1, and xi,j−1.

3.2 The HGSV Sampler

Since the conditional distributions of the posterior are easy to sample, we use a hierar-

chical Gibbs sampler to sample the posterior with spatially varying hyperparameters.

We call this sampler the HGSV sampler, for a (h)ierarchical (G)ibbs sampler for

(s)patially (v)arying parameters. Algorithm 4 shows the sampler, where the spatially

varying parameters are sampled from their conditional distributions, conditioned on

the previous sample x(k−1). After all 2N samples have been collected, the new re-

construction x(k) is drawn from the conditional distribution (4.1.10). An easy way to

sample from this distribution is to sample ε1 ∼ N (0, IN), then compute

H−1/2
(
H−T/2ATΛb + ε1

)
. (3.2.1)

Notice the precision matrix H must be raised to the 1/2 power. Computing the

“square root” of H can be performed using Cholesky factorization. We continue sam-

pling until the desired number of samples K has been drawn. Since Gibbs samplers

take time to converge to the posterior, one should discard an initial number of samples
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Algorithm 4: HGSV Sampler

input: Initial approximation x(0); maximum number of iterations K; and
conditional distributions p(x|b,λ, δ), p(λi|b,x), and p(δi|x)

for k = 1, . . . , K do
for i = 1, . . . , N do

λ
(k)
i ∼ p(λi|b,x(k−1))

δ
(k)
i ∼ p(δi|x(k−1))

end

x(k) ∼ p(x|b,λ(k), δ(k))
end

Figure 3.3.1: Two reconstructions (solid purple line) of the previous corrupted sig-
nals using the HGSV sampler. The reconstruction in the left figure uses Tikhonov
regularization, and the reconstruction in the right figure uses TV regularization.

c. The optimal reconstruction is given by the mean of the K − c samples.

3.3 Deconvolution Examples in 1D

To illustrate the effectiveness of the new hierarchical model, we continue with the

same examples presented in Section 2.5. The blurring matrix A and the regularization

matrices LTIK and LTV are the same as in the previous example. The only change

is that the hyperparameters λ and δ are varying pixel-to-pixel. Figure 3.3.1 shows
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the two reconstructions using the HGSV sampler. In each case, 10,000 samples were

drawn. The first 1,000 samples were discarded to account for burn-in. The Tikhonov-

based reconstruction on the left slightly deviates from the true signal in several places,

but overall fits the data’s trend well. The average IACT for λ = (λ1, . . . , λN)T is

τλ ≈ 1.3224, and the average IACT for δ = (δ1, . . . , δN)T is τδ ≈ 1.4639. The TV-

based reconstruction on the right is almost indistinguishable from the true signal.

Here, the average IACT’s for λ and δ are τλ ≈ 1.0802 and τδ ≈ 1.0092. Past burn-

in, this means that almost every sample of the hyperparameters for the TV-based

reconstruction is independent.

Table 3.3.1 compares the RMSE values from the mean reconstructions in the

previous chapter and those obtained here using the HGSV sampler. (TIK/TV) refers

to the Tikhonov or TV reconstructions from the standard hierarchical model, and

HGSV (TIK/TV) refers to those from the hierarchical model with spatially varying

hyperparameters. There is not much difference in the RMSE’s of the Tikhonov-

based reconstruction from the standard model versus the spatially varying model.

However, the TV-based reconstruction under the spatially varying model reduces the

initial error due to blur and added noise by an astounding 97.3%.

Table 3.3.1: A comparison of errors between reconstructions from the two hierarchical
models. The reconstructions HG (TIK/TV) refers to those obtained from the stan-
dard hierarchical Gibbs sampler, and HGSV (TIK/TV) refers to the reconstructions
obtained from the HGSV sampler.

RMSE (x,b) RMSE (x,x) % Decrease in RMSE
HG (TIK) 0.0306 0.0119 61.1%
HGSV (TIK) 0.0306 0.0170 44.4%
HG (TV) 0.0851 0.0456 46.4%
HGSV (TV) 0.0851 0.0023 97.3%
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3.4 A Discussion on Uncertainty Quantification

A benefit of using a Bayesian model for deblurring is that one can compute credibility

intervals to quantify uncertainty in the reconstruction. Another way to compare the

HGSV method to the standard non-spatially-varying method would be to analyze the

widths of credibility intervals for the different reconstructions. However, we notice

the computed credibility intervals are sensitive to the choice of gamma parameters

αλ, αδ, βλ, βδ in (3.1.1) and (3.1.2). Recall that we choose the values of the parameters

in such a way that the gamma PDF behaves like that of a uniform distribution. We do

not wish to change αλ = αδ = 1, as this choice eliminates contribution from the factor

of λi in (3.1.1) and δi in (3.1.2). We do, however, have more freedom in choosing the

βλ and βδ parameters.

Figure 3.4.1 shows four different HGSV reconstructions (solid purple lines) of the

previous Tikhonov-based example along with their computed 95% credibility intervals

(shaded purple regions) with fixed αλ = αδ = 1 and varying βλ and βδ. We see that

the smaller the choice of βλ and βδ, the narrower the widths of the credibility intervals.

At the same time, we see the mean reconstructions are not significantly affected by

the choice of gamma parameters. This gives us confidence in our hierarchical model;

however, we cannot trust any computed credibility intervals until this sensitivity issue

is addressed. For this work, we will fix βλ = βδ = 10−4.



CHAPTER 3. HGSV 53

(a) αλ = αδ = 1 ; βλ = βδ = 10−5 (b) αλ = αδ = 1 ; βλ = βδ = 10−4

(c) αλ = αδ = 1 ; βλ = βδ = 10−3 (d) αλ = αδ = 1 ; βλ = βδ = 10−2

Figure 3.4.1: Four HGSV reconstructions (solid purple lines) with their respective
95% credibility intervals (shaded purple regions) with gamma shape parameters αλ =
αδ = 1 and varying rate parameters βλ and βδ.

3.5 Summary

In this chapter, we introduced the idea of letting the regularization parameters λ

and δ vary pixel-to-pixel. We adapted the existing hierarchical Bayesian model and

Gibbs sampler to include the spatially varying parameters. We named the new model

HGSV. We applied the HGSV model to two 1D deconvolution problems. One problem

required Tikhonov regularization, and the other problem required TV regularization.
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There is not much difference in RMSE’s between the standard model and HGSV

model with Tikhonov regularization. However, the HGSV model with TV regulariza-

tion does much better than the standard model both qualitatively and quantitatively.

We also discussed why we are unable to trust credibility intervals from reconstructions

due to sensitivity to the gamma rate parameters βλ and βδ.



Chapter 4

Hierarchical Gibbs Sampler with

Spatially Varying Parameters and

Mixed Regularization

In this chapter, we extend the HGSV algorithm to incorporate a spatial mixing of

Tikhonov and TV regularization. We call this extension the (h)ierarchical (G)ibbs

sampler with (s)patially (v)arying parameters and (m)ixed regularization, or the

HGSVM algorithm. We develop this algorithm because most images (especially

Cygnus images) include a combination of smooth and sharp features. Therefore,

effectively combining the two regularization techniques could result in better recon-

structions. For now, we assume there exists a partitioning based on needed regulariza-

tion. Under this assumption we incorporate spatially varying parameters, and build

the hierarchical model. We show an example of deblurring a signal using the HGSVM

sampler. In the last section, we include a discussion on possible ways to partition a

blurred, noisy signal or image into regions where Tikhonov or TV regularization is

most appropriate.

55
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4.1 A Hierarchical Model for Deconvolution with

Mixed Regularization

Assume an observation b is anN×1 blurred, noisy signal or vectorized image. Assume

it has been determined that certain regions should use Tikhonov regularization, while

the remaining regions should use TV. Let π = (π1, . . . , πN)T be an N×1 logical vector

that determines such a partitioning where for each i = 1, . . . , N , πi ∈ {0, 1}. Let the

Tikhonov regions correspond to πi = 0 and the TV regions correspond to πi = 1.

We assume π is known, and incorporate it into the hierarchical model with spatially

varying parameters. We discuss how one might construct π later in Section 4.4.

For i = 1, . . . , N , let λi be the inverse variance of the added Gaussian noise, and

δi be the strength of the imposed regularization. These parameters are unknown and

therefore, in the Bayesian paradigm, are treated as random variables. We assume λi

and δi, are independent for all i = 1, . . . , N ; and we assign Gamma distributions to

the two sets of parameters:

p(λi) ∼ Gamma(αλ, βλ) ∝ λαλ−1
i exp(−βλλi), (4.1.1)

p(δi) ∼ Gamma(αδ, βδ) ∝ δαδ−1
i exp(−βδδi), (4.1.2)

where αλ, αδ are Gamma shape parameters and βλ, βδ are Gamma rate parameters.

Let λ = (λ1, . . . , λN)T and δ = (δ1, . . . , δN)T . The prior density now depends on the

partitioning vector π. In 1D, the prior is

p1D(x|δ,π) ∝

(
N∏
i=1

δi

)1/2

exp

(
−δi

2

N∑
i=1

[
(1− πi) (LTIKx)2

i + πi (LTVx)2
i

])
.

(4.1.3)

The likelihood density does not depend on regularization terms and, therefore, does

not depend on π. Hence, the likelihood remains unchanged from the spatially varying
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parameters model in the previous chapter as

p(b|x,λ) ∝

(
N∏
i=1

λi

)1/2

exp

(
−1

2

N∑
i=1

λi [(Ax)i − bi]
2

)
. (4.1.4)

The posterior distribution from which we need to sample is

p(x,λ, δ|b,π) ∝ p(b|x,λ, δ,π)p1D(x|δ,π)p(λ)p(δ), (4.1.5)

∝

(
N∏
i=1

λi

)αλ−1/2( N∏
i=1

δi

)αδ−1/2

× exp

(
−

N∑
i=1

λi

(
1

2
[(Ax)i − bi]

2 + βλ

))

× exp

(
−

N∑
i=1

δi

(
(1− πi)

2
(LTIKx)2

i +
πi
2

(LTVx)2
i + βδ

))
. (4.1.6)

The posterior for 2D deconvolution is similar. We note that the conditional distribu-

tions on the individual hyperpriors are Gamma distributions:

λi|b,x ∼ Gamma

(
αλ +

1

2
,

1

2
[(Ax)i − bi]

2 + βλ

)
, (4.1.7)

δi|x, π ∼ Gamma

(
αδ +

1

2
,

(1− πi)
2

(LTIKx)2
i +

πi
2

(LTVx)2
i + βδ

)
. (4.1.8)

The conditional distribution p(x|b,λ, δ,π) is

p(x|b,λ, δ,π) ∝ exp

(
−1

2

∣∣∣∣Λ1/2 (Ax− b)
∣∣∣∣2

2

−1

2

∣∣∣∣∆1/2 (I−Π) LTIKx + ∆1/2ΠLTVx
∣∣∣∣2

2

)
(4.1.9)

where Λ1/2 = diag
(
λ1/2

)
, ∆1/2 = diag

(
δ1/2

)
, and Π = diag (π). Therefore, the

x|b,λ, δ,π follows a normal distribution:

p(x|b,λ, δ,π) ∼ N
(
H−1ATΛb,H−1

)
, (4.1.10)

where

H = ATΛA + LT
TIK (I−Π) ∆ (I−Π) LTIK + LT

TVΠ∆ΠLTV. (4.1.11)
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Since the conditional distributions are easy to sample, we can use a Gibbs sampler

to generate samples from the posterior.

4.2 The HGSVM Sampler

The Gibbs sampler presented in Algorithm 5 is called the HGSVM sampler, short for

the (h)ierarchical (G)ibbs sampler that uses (s)patially (v)arying parameters from

(m)ixed regularization techniques. Along with the conditional distributions, the al-

gorithm requires an initial approximation x(0) to the true signal, the desired number

of samples K, and the partitioning vector π. We first sample the vectors of hyper-

parameters λ and δ from the gamma distributions in (4.1.7)–(4.1.8). We note that

δi determines the strength of TV regularization whenever πi = 1 and Tikhonov reg-

ularization whenever πi = 0. We then use the sampled values of λ and δ to sample

from the conditional distribution p(x|b,λ, δ,π). Once K samples have been drawn

and the number c of initial samples to discard for burn-in has been determined, the

optimal reconstruction is the mean of the remaining K − c samples.
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Algorithm 5: HGSVM Sampler

input: Initial approximation x(0); desired number of samples K;
logical vector π; and conditional distributions p(x|b,λ, δ), p(λi|b,x), p(δi|x)

for k = 1, . . . , K do
for i = 1, . . . , N do

λ
(k)
i ∼ p

(
λi|b,x(k−1)

)
δ

(k)
i ∼ p

(
δi|x(k−1),π

)
end

x(k) ∼ p
(
x|b,λ(k), δ(k),π

)
end

4.3 Deconvolution Example in 1D

Here we show an example of a corrupted signal we wish to deblur using a combination

of Tikhonov and TV regularization. The true and corrupted signals are shown in

Figure 4.3.1. The true signal (dotted orange line) is composed of a piecewise constant

region on the left half of the signal, as well as a smooth region on the right half. If

we were to use only Tikhonov regularization, then the right half of the reconstructed

signal would match well with the true signal. However, the features in the right half

of the true signal would be lost due to enforced smoothing on the reconstruction.

Similarly, if we were to use only TV regularization, then we would recover a good

reconstruction of the left half of the signal. This would be at the expense of the

right side of the true signal, as the reconstruction would not be able to capture the

smooth bump. For a given logical vector π, we are able to effectively combine the

two regularization techniques in the hierarchical Gibbs sampler in Algorithm 5 for an

optimal reconstruction.

We generate the corrupted signal (solid green line in Figure 4.3.1) from the true

signal by first applying the blurring kernel

a(s) =
1

γ
√

2π
exp

(
− s2

2γ2

)
, (4.3.1)
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Figure 4.3.1: A true signal (dotted orange line) and its blurred signal with added
noise (solid green line). The true signal contains steps on the left half and a smooth
bump on the right half. Reconstructions must incorporate both Tikhonov and TV
regularization to capture the true image’s features.

with γ = 0.02 and assuming zero boundary conditions. After the true signal has been

blurred, we add random Gaussian noise with SNR = 25. Since this is a simulated

example, we are fortunate to know the true features of the underlying signal. This

leads us to construct π such that for all i = 1, . . . , 141, and i = 246, . . . , 256, the

entries πi = 1. The remaining entries are set to 0. Figure 4.3.2 illustrates the division

of the signal based on needed regularization, as well as the construction of the logical

vector π. One may wonder why we’ve chosen the last sliver of the signal (pixels 247 to

256) to use TV regularization, even though it seems to be a leveling off of the smooth

bump. We discovered that when Tikhonov regularization is used in this small region,

the reconstruction becomes oscillatory as the signal levels off to zero. Therefore, we

decided TV regularization in this last piece of the signal would give reconstructions

that better represented the true signal.

We run the HGSVM sampler with π, an initial approximation x(0) = b (the

blurred, noisy signal), and a maximum number of iterations K = 10,000. We discard

the first 1,000 samples to account for burn-in, and take the mean of the remaining
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Figure 4.3.2: An illustration of the logical vector π. The ith entry of π is either
0 or 1, depending on if the ith pixel is in an area where Tikhonov (0) or TV (1)
should be used. The image from Figure 4.3.1 is shown along with vertical dashed
lines indicating the transition from one regularization technique to the other. The
blue shaded regions require TV regularization, and the red shaded regions require
Tikhonov. The logical vector π is shown beneath the picture.

samples to obtain the HGSVM reconstruction. The mean IACT for all λi’s is τλ ≈

1.213; and the mean IACT for all δi’s is τ δ ≈ 2.038. Therefore, of the 9,000 samples

taken, on average 7,419 λ-samples and 4,416 δ-samples are effective.

Figure 4.3.3 shows the blurred, noisy signal (top left), the HGSVM reconstruction

(top right), the HGSV reconstruction with Tikhonov regularization (bottom left),

and the HGSV reconstruction with TV regularization (bottom right). We see that

the HGSVM reconstruction matches the true signal very well, capturing the steps on

the left half and the smooth bump on the right half. The only noticeable difference

between the two is that the second, smaller step is shorter than the true step. How-

ever, as seen in the top left subfigure the blurring process and noise heavily affected

this region, and it is amazing we see this step feature come through at all. Now, to

quantify the goodness of fit of this reconstruction we compare the RMSE between
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Figure 4.3.3: (Top left) The blurred, noisy signal. (Top right) The HGSVM recon-
struction. (Bottom left) The HGSV reconstruction with Tikhonov regularization.
(Bottom right) The HGSV reconstruction with TV regularization. The HGSVM re-
construction effectively combines the best parts of the two HGSV reconstructions,
and it matches the true underlying signal well.

the true signal and the corrupted signal with that of the true signal and mean recon-

struction. Let x be the true signal, b be the corrupted signal, and x be the mean

reconstruction. We have RMSE(x,b) = 0.0798 and RMSE(x,x) = 0.0274, a 65.66%

decrease in error.
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4.4 A Heuristic Approach to Constructing the Par-

titioning Vector

In our model, we have assumed the partitioning vector π is known. However, deter-

mining such a partitioning scheme can be difficult, as one must make assumptions on

the underlying features of a corrupted signal. The idea behind our heuristic approach

is to apply the HGSV sampler (Algorithm 4) with Tikhonov regularization and then

with TV regularization in order to search for indications within the reconstructions

that the regularization technique is ill-suited. We have determined such indications

after many experiments where we intentionally use the wrong regularization technique

for a signal. Our findings show when the HGSV sampler with Tikhonov regularization

is applied to corrupted piecewise constant signals, the reconstruction exhibits oscil-

latory behavior; and when the HGSV sampler with TV regularization is applied to

corrupted smooth signals, the reconstruction exhibits a “staircasing” behavior, where

the reconstruction attempts to fit the data by generating multiple irregular steps.

We use the HGSV sampler as opposed to the standard Gibbs sampler because of the

HGSV algorithm’s sensitivity to every piece of the signal. For instance, if a signal

were made up of a mix of smooth and piecewise constant regions, the reconstruction

generated by the HGSV algorithm will be more likely to show irregularities in the

pieces where the chosen regularization technique is inappropriate.

Figure 4.4.1 shows two blurred and noisy signals (left column) and their corre-

sponding HGSV reconstructions (right column) where the wrong regularization tech-

nique is implemented. The signal in the top left subfigure originates from a step

function (dotted orange line in the top right subfigure) and thus requires TV regular-

ization. However, if one were unsure and used the HGSV algorithm with Tikhonov

regularization, the resulting reconstruction would be oscillatory (solid purple line in

top right subfigure). Similarly, if we apply the HGSV algorithm with TV regulariza-
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Figure 4.4.1: The left column shows two blurred signals with added noise. The top
left signal requires TV regularization, and the bottom left signal requires Tikhonov
regularization. However, we intentionally apply the HGSV algorithm with the wrong
regularization technique in order to discover resulting artifacts. Tikhonov regulariza-
tion is applied to the top left signal, and the reconstruction on the top right (solid
purple line) is oscillatory. TV regularization is applied to the bottom left signal, and
the reconstruction on the bottom right exhibits the staircasing effect.

tion to the bottom left signal, the reconstruction would have a staircasing effect, as

shown in the bottom right subfigure.

Now consider the corrupted signal in Figure 4.4.2. We have no prior knowledge

of the true signal’s features; therefore, it is not clear whether to use Tikhonov or TV

regularization or a combination of the two. We start by using the HGSV sampler with
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Tikhonov and then TV regularization. Figure 4.4.3 shows the resulting reconstruc-

tions where the left subfigure used Tikhonov regularization, and the right subfigure

used TV. We begin our analysis by splitting the reconstructions into three sections

– A, B, and C. In section A, the Tikhonov-based reconstruction is oscillatory, while

the TV-based reconstruction is a simple step function, with no staircasing effects.

This comparison indicates that TV regularization is the appropriate technique in this

region. In section B, we note the irregular staircasing pattern in the TV HGSV re-

construction. While the Tikhonov reconstruction is wiggly in certain parts, it is not

oscillatory. Therefore, Tikhonov regularization is the appropriate technique in this

region. Finally, section C should use TV regularization, as the TV HGSV reconstruc-

tion is completely flat and the Tikhonov HGSV reconstruction is oscillatory. Hence,

we construct π such that its entries are 0’s in section B (for Tikhonov) and 1’s in

sections A and C (for TV). Figure 4.4.4 shows the mean reconstruction from using

the HGSVM sampler with our constructed π. Since this is a simulated example, we

do have access to the true signal and include it in the figure, as well (dotted orange

line). We see that our choice of π was an appropriate one, as the reconstruction

captures the true signal’s features.

We end by noting a similar heuristic method can be applied in 2D, with images

instead of signals. If we were given a corrupted image with no prior information

about the true image, we would run the HGSV sampler with Tikhonov and TV

regularization separately, then analyze the reconstructions to determine regions of

irregular behavior. Staircasing effects are more easily spotted in 2D, as sharp jumps

from one color to another within a small area is easier to detect with the naked eye.

Once a partition is determined, one would construct a logical matrix P ∈ N × N

of 0’s and 1’s and then vectorize (or column-stack) P. Therefore, we could run the

HGSVM sampler with π = vec(P).
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Figure 4.4.2: A blurred and noisy signal. We do not have prior knowledge of the
underlying signal and, therefore, cannot determine which regularization technique
(Tikhonov, TV, or a combination) is most appropriate.

Figure 4.4.3: Two mean reconstructions from the HGSV sampler with Tikhonov
(left) and TV (right) regularization. In both cases 10,000 samples were drawn with
a burn-in of 1,000 samples. Comparing the two reconstructions provides us a way
to construct the logical vector π by locating irregular behaviors. For the Tikhonov
reconstruction, irregular behavior means oscillations; and for TV, irregular behavior
means staircasing. Therefore, it can be seen that Tikhonov should be used in section
B, and TV should be used in sections A and C.
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Figure 4.4.4: The mean reconstruction (solid purple line) from the HGSVM sampler
with π such that πi = 0 in section B, and πi = 1 in sections A and C. We drew a
sample of 10,000 and discarded the first 1,000 samples for burn-in. The true signal
(dotted orange line) is included as well to justify our choice of partitioning for π.
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4.5 Summary

In this chapter, we adapted the HGSV model to include a partitioning vector π,

made up of 0’s and 1’s. If the ith entry of π is 1, then the ith pixel requires TV

regularization; and if the entry is 0, the ith pixel requires Tikhonov regularization. We

also discussed a heuristic method for determining the partition vector based on HGSV

reconstructions. By computing two HGSV reconstructions, one with a Tikhonov

prior and the other with a TV prior, one will likely see flaws in certain regions of

the reconstructions. If the Tikhonov HGSV reconstruction is oscillatory in a region

while the TV HGSV reconstruction is well-behaved (no stair-casing artifacts), then

we conclude TV regularization is the appropriate choice in that region. Likewise,

if the TV HGSV reconstruction exhibits stair-casing artifacts in a region while the

Tikhonov HGSV reconstruction is well-behaved, then Tikhonov regularization should

be used in the region.



Chapter 5

Numerical Results

In this chapter, we apply both HGSV and HGSVM models to two-dimensional test

problems. We first use two simulated test images, and we conclude by showing the

methods’ results on a test image from Cygnus.

5.1 Simulated Deconvolution Examples in 2D

Figures 5.1.1 and 5.1.2 show two 128× 128 test images that have been corrupted by

blur and added noise. The true images are on the left, and the blurred, noisy images

are on the right. The test image in Figure 5.1.1 shows a smooth sphere-like object in

the left center region of the scene and a solid rectangle in the top right. We will refer

to this image as the “sphere/rectangle image”. The test image in Figure 5.1.2 is a

cartoon picture of a satellite with stars and planets in the background. This image

is more complex, as the body of the satellite contains several interconnected pieces,

with a glaring effect on the top left and bottom right panels of the satellite. We will

refer to this image as the “satellite image.”

We blur both test images with the two-dimensional Gaussian kernel

a(s, t) =
1

2πγ2
exp

(
− s2

2γ2
− t2

2γ2

)
, (5.1.1)

69
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(a) True image (b) Blurred and noisy image

Figure 5.1.1: The sphere/rectangle test image. The left subfigure shows the true
image, and the right subfigure shows the blurred image with added noise.

(a) True image (b) Blurred and noisy image

Figure 5.1.2: The satellite test image. The left subfigure shows the true image, and
the right subfigure shows the blurred image with added noise.

assuming zero boundary conditions. Since the kernel separates into the product of two

equivalent one-dimensional Gaussian functions, we can write the 1282×1282 blurring

matrix as A = A1D ⊗A1D, where A1D is an n × n Toeplitz matrix representing the
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one-dimensional kernel

a(u) =
1

γ
√

2π
exp

(
− u2

2γ2

)
. (5.1.2)

Let X represent the original 128×128 image. We must vectorize X into a 1282×1

vector in order to apply the 1282×1282 blurring matrix A. We let x = vec(X), where

vec(·) turns an n × n matrix into an n2 × 1 vector by stacking the columns of the

matrix. Therefore, Ax is produces a blurred image that is column-stacked. We add

Gaussian noise with SNR equal to 25, represented by the 1282 × 1 vector ε. Hence,

the column-stacked blurred images are produced by the familiar linear equation

b = Ax + ε. (5.1.3)

5.1.1 Sphere/Rectangle Test Image

Figure 5.1.3 shows the true sphere/rectangle test image along with five reconstruc-

tions. The reconstructions labeled HG (TIK/TV) use the standard non-spatially-

varying parameters hierarchical Gibbs sampler found in the Background chapter.

The bottom row shows two HGSV reconstructions with each regularization technique

and the final image is the HGSVM reconstruction. In all cases, 1,000 samples were

drawn from the posteriors with the initial 100 samples discarded for burn-in. We note

that for the HG reconstructions, there is only one λ-chain and δ-chain for the entire

image; whereas for the HGSV and HGSVM reconstructions, there are 1282 λ-chains

and δ-chains. Table 5.1.1 shows the mean (in the HG case, single) IACT values for

the chains. Table 5.1.2 shows the RMSE values for the reconstructions.

The HG (TIK) and HG (TV) reconstructions are still experiencing the effects of

blur and noise. We see oscillations in the background of the HG (TIK) reconstruction

and blurred edges in the HG (TV) reconstruction. The IACT’s for the δ-parameters

are high, at 21.9359 for the HG (TIK) sampler and 56.4518 for the HG (TV) sampler.

This means for one sample of the δ hyperparameter, the HG (TIK) sampler would
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Figure 5.1.3: (Top row) The true sphere/rectangle test image; the mean reconstruc-
tion using the standard hierarchical Gibbs sampler with Tikhonov regularization; the
mean reconstruction using the standard hierarchical Gibbs sampler with TV regu-
larization. (Bottom row) HGSV reconstruction with Tikhonov regularization; HGSV
reconstruction with TV regularization; HGSVM reconstruction with Tikhonov regu-
larization applied to the sphere and TV regularization applied everywhere else.

need to generate approximately 22 more samples before obtaining an independent

sample. The HG (TV) sampler would need to generate about 57 samples before ob-

taining an independent sample. The IACT’s for the chains may improve for longer

run-times and a larger burn-in. The reconstructions, however, reduce the error be-

tween the true image and blurred image by 24.88% for HG (TIK) and 62.21% for HG

(TV).

The HGSV (TIK), HGSV (TV), and HGSVM samplers produce λ- and δ-chains

with an average IACT’s close to one, indicating that almost every sample is inde-
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pendent. The HGSV (TIK) reconstruction reduces the RMSE between the true and

blurred image about the same amount as the HG (TIK) reconstruction, at 24.88%.

The HGSV (TV) reconstruction successfully sharpens the edges of the solid rectangle;

however, it also forces the smooth bump to transform into concentric circles. Despite

this, the RMSE is still reduced by 45.85%. Finally, the HGSVM sampler produces a

reconstruction that is the closest qualitatively and quantitatively to the true image.

The sampler uses a partitioning scheme where Tikhonov regularization is used for

the sphere, and TV regularization is used everywhere else. The RMSE is reduced by

80.18%.

Table 5.1.1: A comparison of mean IACT’s for the parameter vectors λ and δ in the
sphere/rectangle reconstructions. The reconstructions HG (TIK/TV) refers to those
obtained from the standard hierarchical Gibbs sampler, and HGSV (TIK/TV) refers
to the reconstructions obtained from the HGSV sampler.

τλ τ δ
HG (TIK) 2.5946 21.9359
HGSV (TIK) 1.0191 1.1061
HG (TV) 2.1107 56.4518
HGSV (TV) 1.0100 1.9294
HGSVM 0.9967 1.1856

Table 5.1.2: A comparison of RMSE’s for the sphere/rectangle reconstructions.

RMSE (x,b) RMSE (x,x) % Decrease in RMSE
HG (TIK) 0.0434 0.0326 24.88%
HGSV (TIK) – 0.0330 23.96%
HG (TV) – 0.0164 62.21%
HGSV (TV) – 0.0235 45.85%
HGSVM – 0.0086 80.18%

5.1.2 Satellite Test Image

Figure 5.1.4 shows the true satellite image in the left subfigure on the top row, along

with HG (TIK/TV), HGSV (TIK/TV), and HGSVM reconstructions. For all sam-

plers, 1,000 samples were drawn with the initial 100 discarded for burn-in. Table
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Figure 5.1.4: (Top row) The true satellite test image; the mean reconstruction using
the standard hierarchical Gibbs sampler with Tikhonov regularization; the mean re-
construction using the standard hierarchical Gibbs sampler with TV regularization.
(Bottom row) HGSV reconstruction with Tikhonov regularization; HGSV reconstruc-
tion with TV regularization; HGSVM reconstruction with Tikhonov regularization
applied to the planets along with the top left and bottom right panels, and TV
regularization applied everywhere else.

5.1.3 shows the mean IACT values for the λ- and δ-chains. Table 5.1.4 compares the

errors of the reconstructions to that between the true and blurred images.

The HG (TIK) and HG (TV) reconstructions are still experiencing the effects of

blur and noise. In particular, the HG (TV) reconstruction is especially noisy and

fails to reduce the RMSE at all. The HG (TIK) sampler produces λ- and δ-chains

with IACT’s τλ = 3.1679 and τδ = 19.8757, and the reconstruction reduces the

RMSE by 26.67%, even though it is qualitatively poor. The HGSV (TIK), HGSV
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(TV), and HGSVM reconstructions again produce chains with IACT values close to

one, indicating that almost every sample is independent after burn-in. The HGSVM

reconstruction applies Tikhonov regularization to the planets in the background, as

well as the top left and bottom right satellite panels. TV regularization is applied

everywhere else. The HGSVM reconstruction qualitatively matches the true satellite

image well, and reduces the original RMSE value by approximately 77.93%.

Table 5.1.3: A comparison of mean IACT’s for the parameter vectors λ and δ in the
satellite reconstructions. The reconstructions HG (TIK/TV) refers to those obtained
from the standard hierarchical Gibbs sampler, and HGSV (TIK/TV) refers to the
reconstructions obtained from the HGSV sampler.

τλ τ δ
HG (TIK) 3.1679 19.8757
HGSV (TIK) 1.0591 1.3457
HG (TV) 123.1706 40.0378
HGSV (TV) 1.0431 1.8841
HGSVM 1.0122 1.4138

Table 5.1.4: A comparison of RMSE’s for the satellite reconstructions.

RMSE (x,b) RMSE (x,x) % Decrease in RMSE
HG (TIK) 0.0870 0.0638 26.67%
HGSV (TIK) – 0.0674 22.53%
HG (TV) – 0.2054 -136.09%
HGSV (TV) – 0.0428 50.80%
HGSVM – 0.0192 77.93%

5.2 Deconvolution with Cygnus Test Data

The left subfigure in Figure 5.2.1 shows a scene captured by the Cygnus X-ray system

at the Nevada National Security Site. The objects in the scene are used for calibrating

the system. The step wedge is on the left, causing the stacked solid blocks. The

Abel cylinder is in the top middle of the scene, and the cylinder consists of concentric

cylinders of varying densities. The “Pacman” object on the right is made of tungsten,
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Figure 5.2.1: (Left) The 4K×4K Cygnus test image. The inner red box highlights a
400× 400 sub-image of interest, and the outer red box highlights a 512× 512 region
containing the sub-image of interest. (Right) The zoomed in 512 × 512 region with
the 400× 400 sub-image of interest within the inner red box. For our computations,
we use the larger region which will incur artifacts along its boundaries. We then crop
out the boundaries and take this as the reconstruction for the smaller sub-image.

which blocks all incoming X-rays. This is why the object is completely black in the

captured scene. This image is a 4K×4K resolution image, which is too large for our

current methods to handle. Therefore, we consider a smaller section to apply the

HGSV and HGSVM algorithms. The smaller red box in the left image is our region

of interest.

The box contains a 400× 400 sub-image, and is still too large for the algorithms.

While we may not be able to run the algorithms with the full 400 × 400 image, we

can downsample to a coarser version of the image and apply the algorithms to the

approximated sub-image. Another issue is the non-zero boundaries of the sub-image.

Our model assumes zero boundary conditions, so we expect there to be artifacts along

the boundaries as a result. However, we can get around this issue by taking a larger

window that contains the 400 × 400 sub-image, downsample, apply the algorithms

to get reconstructions, and then stripping the boundaries of the reconstruction. We



CHAPTER 5. NUMERICAL RESULTS 77

Figure 5.2.2: (Top row) The scaled-down original 100 × 100 Cygnus sub-image; the
mean reconstruction using the standard hierarchical Gibbs sampler with Tikhonov
regularization; the mean reconstruction using the standard hierarchical Gibbs sampler
with TV regularization. (Bottom row) HGSV reconstruction with Tikhonov regular-
ization; HGSV reconstruction with TV regularization; HGSVM reconstruction with
Tikhonov regularization applied to the Abel cylinder section and TV regularization
applied everywhere else.

expand the 400×400 window to a 512×512 window (outer red box in left subfigure),

and then we downsample the 512 × 512 image to a 128 × 128 image for which our

algorithm is better suited. When scaled down, the sub-image contained in the inner

red box (right subfigure in Figure 5.2.1) is 100× 100.

Figure 5.2.2 shows the original scaled-down sub-image of interest (top row, first

subfigure) along with HG (TIK/TV), HGSV (TIK/TV), and HGSVM reconstruc-

tions. The blurring matrix is built by estimating the point spread function using the
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methods in [25]. The HG (TIK/TV) samplers fail to produce useful reconstructions,

likely due to the non-zero boundary conditions. However, the HGSV (TIK/TV)

samplers are successful at producing quality reconstructions within the 100 × 100

sub-image. The HGSVM sampler uses Tikhonov in the region containing the Abel

cylinder and TV everywhere else. This choice is based on prior knowledge about the

calibration objects. The Abel cylinder is made up of concentric cylinders; therefore

when X-rayed, the image should show smooth transitions. Table 5.2.1 shows the

mean IACT’s for the λ- and δ-chains. The HGSV (TIK/TV) and HGSVM samplers

produce chains that are on average close to one, with the exception of the δ-chains for

the HGSV (TV) sampler. The mean IACT for the δ-chains are approximately 2.15,

but this is due to the sampler struggling within the Abel cylinder region.

Table 5.2.1: A comparison of mean IACT’s for the parameter vectors λ and δ in the
Cygnus reconstructions. The reconstructions HG (TIK/TV) refers to those obtained
from the standard hierarchical Gibbs sampler, and HGSV (TIK/TV) refers to the
reconstructions obtained from the HGSV sampler.

τλ τ δ
HG (TIK) 3.8247 6.2562
HGSV (TIK) 1.2673 1.5303
HG (TV) 8.1138 3.6519
HGSV (TV) 1.0759 2.1510
HGSVM 1.0817 1.5276

5.3 Summary

In this chapter we applied the HGSVM model to effectively deblur two simulated im-

ages and a sub-image captured by Cygnus. We determined the partitioning scheme for

the images based on prior knowledge along with the inspection of artifacts in HGSV

reconstructions with Tikhonov or TV priors. For all three images, we generated 1,000

samples and discarded the first 100 for burn-in. The HGSVM reconstructions for the

sphere/rectangle and satellite test images proved to be the most successful, both
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qualitatively and quantitatively. For the Cygnus sub-image, the HGSVM reconstruc-

tion seems to be the most successful qualitatively, given our prior knowledge of the

calibration objects.



Chapter 6

Conclusion

In this work, we have introduced a new method (the HGSVM method) that allows not

only the strength, but the type of regularization to vary across an image. We do this

by formulating the deblurring problem in a hierarchical Bayesian framework. Using

the Bayesian paradigm, we are able to let the unknown regularization parameters be

random variables, thus eliminating the need to hand-tune the parameters or choose an

appropriate parameter selection method. The spatially varying parameters, especially

in the case of TV regularization, produces successful reconstructions because the

added noise forces certain regions of the image to require stronger regularization than

others. Having the parameters vary also allows us to effectively mix regularization

methods, which is necessary in the common case of deblurring an image with both

smooth features and edges. The mixing of Tikhonov and TV regularization in an

image is done by creating a logical partitioning vector of 1’s and 0’s. The partitioning

vector is built based on a combination of prior knowledge and heuristics, but we aim

to automate this process in the future.

We were able to successfully implement the HGSVM model on a 400 × 400 sub-

image (scaled down to a 100× 100 matrix) of a 4K×4K image captured by Cygnus.

We generated 1,000 samples and discarded the initial 100 samples for burn-in. The

80
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computed IACT for the spatially varying parameters were, on average, between 1

and 2. This means about every other sample generated from the HGSVM sampler is

independent.

The HGSVM method has proven to be useful in deblurring Cygnus sub-images.

Future work includes fixing the sensitivity of the computed credibility intervals to

the choice of gamma rate parameters from the hyperprior distributions. It would

be incredibly useful to quantify uncertainties in our deblurred images. We also are

interested in adjusting the HGSVM method so it can work on larger scales. To

clarify, we are confident our method can successfully deblur high-resolution images

when given a large storage capacity, as with a supercomputer. We would, however,

like the sampler to work for larger images using a standard laptop. Currently, due

to limited storage capacity, the HGSVM sampler cannot handle images larger than

approximately 200× 200 on a 2017 Macbook Pro.

We are confident the HGSVM method can be useful in other applications, as well.

The method was built with deblurring Cygnus images in mind; however, it can be

used to solve any linear inverse problem that requires a Tikhonov-type regularization

method, i.e. minimizing the least squares difference between the model and the

data plus a squared 2-norm regularization term. The HGSVM method can provide

meaningful solutions to these types of inverse problems.
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