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Abstract.5

This study develops a novel uncertainty quantification (UQ) method for6

cloud microphysical property retrievals using variance-based decomposition7

and global sensitivity index. In this UQ framework, empirical orthogonal func-8

tion (EOF) analysis is applied to the U.S. Department of Energy Atmospheric9

Radiation Measurement (ARM) ground-based observations, which are the10

inputs for the cloud retrieval studied here. The principal components (PCs)11

in the EOF expansion are parameterized as random input variables, and hence12

the input dimension is greatly reduced (up to a factor of 50), allowing large13

ensemble of random samplings. The EOF expansion improves the accuracy14

of the uncertainty estimation by taking into account the cross correlations15

in the input data profiles. This method enables a probabilistic representa-16

tion of a retrieval process by adding normally distributed perturbations into17

PCs of sample-means of input data profiles within a time window. There-18

fore, it e↵ectively facilitates objective validation of climate models against19

cloud retrievals under a probabilistic framework for rigorous statistical in-20

ferences. Moreover, the variance-based global sensitivity index analysis, part21

of this method, attributes the output uncertainties to each individual source,22

thus providing directions for improving retrieval algorithms and observation23

strategies. For demonstration, we apply this method to quantify the uncer-24

tainties of the ARM program’s baseline cloud retrieval algorithm for an ice25

cloud case observed at the Southern Great Plains site on March 9, 2000.26
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1. Introduction

Cloud microphysical properties such as liquid and ice water contents retrieved from27

ground-based measurements are important geophysical quantities that are often used in28

developing and evaluating cloud parameterizations in climate models. However, studies29

have shown that large di↵erences and uncertainties exist in ground-based cloud retrievals30

[Comstock et al., 2007; Turner et al., 2007; Zhao et al., 2012; Huang et al., 2012]. The31

retrieval uncertainties are primarily caused by uncertainties in the retrieval theoretical32

bases, assumptions, input data, and constraint parameters as indicated in these studies.33

Quantitative knowledge about the retrieval uncertainties has thus been long desired by34

the climate modeling community to better constrain model-produced cloud properties35

[Xie et al., 2005; Xu et al., 2005; Xie et al., 2011].36

A traditional way to estimate uncertainty is to randomly perturb input data profiles and37

several key retrieval parameters used in a single cloud retrieval technique. The standard38

deviation from the ensemble mean of the perturbed retrieval is considered as a proxy of39

the uncertainty [Zhao et al., 2014]. The other way to estimate uncertainty is to calculate40

the mean and standard deviation from multiple unperturbed cloud retrievals based on41

di↵erent retrieval techniques and ground-based remote sensors [Comstock et al., 2007]. In42

recent years, several studies estimate retrieval uncertainties through a radiative transfer43

model and apply Bayesian calibration to statistically compare the surface and top-of-44

atmosphere (TOA) radiative fluxes and other properties to observations [Posselt et al.,45

2008; Comstock et al., 2013]. One can further apply multi-model Bayesian model selection,46
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and model discrepancy techniques to mitigate the uncertainty estimated by multi-retrieval47

algorithm [Määttä et al., 2014].48

The above methods su↵er from but are not restricted to the following limitations: (1)49

the cross correlations in the input data profiles are often not considered; (2) parame-50

terizing input data profiles with appropriate cross correlations is not an obvious task;51

(3) sampling random variables amongst vertical layers, which could be on the order of52

hundreds depending on the vertical resolution, requires an enormous, infeasible sampling53

size; (4) characterizing probability density functions (PDFs) of the random variables of-54

ten require unrealistic statistical hypotheses; (5) attributing the variability in the retrieval55

output to that in each individual uncertainty source (i.e., global sensitivity analysis) is56

not permitted in general; and (6) di↵erences between measurements and the truth (i.e.,57

bias analysis) are usually not considered.58

To address these issues, we propose an uncertainty quantification (UQ) and sensitivity59

analysis methodology based on Karhunen-Loéve expansion (KLE), Central-Limit Theo-60

rem (CLT), and Sobol’ indices. The KLE [Kuhunen, 1947; Loéve, 1945] is a principal61

component analysis (PCA) [Wilks, 2011], which transforms a number of possibly corre-62

lated variables into a smaller number of uncorrelated variables called principal components63

(PCs) through the empirical orthogonal function (EOF) expansion. For the first issue,64

the application of the EOF expansion to ground-based cloud measurements such as those65

from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM)66

program allows us to obtain the cross correlations of input data profiles within a given67

time window. In this study, we use a 0.5-hour time window, comparable to the typical68

climate model temporal resolution.69
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For the second issue, a stochastic representation of input data profiles is constructed70

by using the PCs of the EOF expansion as input random variables, associated with the71

extracted observational covariance matrix within the 0.5-hour time window. Hence the72

uncertainty is automatically embedded in the EOF expansion by adding appropriate per-73

turbations into the PCs. Since random perturbations are added into the PCs instead74

of into each vertical layer of the input data profiles, the dimensionality of the stochastic75

space (issue (3)) is significantly reduced so that it reduces the sampling size required to76

stabilize the statistics of the cloud retrieval.77

Since the target of this study is the 0.5-hour sample-mean of the stochastic data profile,78

the CLT [Cramér , 1946; Gnedenko et al., 1954; Storch and Zwiers , 2002] can be leveraged79

to solve the issue (4). Based on the CLT, the normally distributed perturbations are thus80

added on the extracted input random variables (proof is provided in Appendices A and81

B). To address the issue (5), we apply the variance-based global sensitivity index analysis82

[Sobol , 1993] to the retrieval algorithm and attribute the uncertainties of vertically resolved83

retrieval output to the input random variables as well as retrieval parameters. These84

sensitivity indices can provide insights for improving retrieval algorithms and observation85

strategies.86

In summary, we employ the probabilistic PCA to enable the stochastic cloud retrieval by87

adding observation-based perturbations to the PCs of the EOF expansion of the sample-88

mean of input data profiles following normal distributions per CLT. The variance-based89

sensitivity analysis attributes the vertically resolved retrieval output uncertainties to each90

individual source. This variance-based UQ method e↵ectively facilitates objective valida-91

tion of climate models against cloud retrievals under a probabilistic framework for rigorous92
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statistical inferences. It should be noted that the retrieval model structural uncertainty93

and the bias are not addressed in the current work.94

The structure of the paper is as follows. In Section 2, details of the probabilistic PCA95

based uncertainty analysis in cloud microphysical property retrievals are given. In Sec-96

tion 3, the capability of the UQ method is illustrated with an ice cloud case using the97

ARM baseline cloud microphysical algorithm (MICROBASE). Results from our uncer-98

tainty analysis and sensitivity study are shown in Section 4, followed by conclusions and99

discussions in Section 5.100

2. Methodology

The EOF analysis is a variance-based statistical technique designed for decomposition101

of time series in terms of orthogonal basis functions that are determined from the empir-102

ical data. The orthogonal basis functions are chosen to account for as much as variance103

of the empirical data as possible. In this paper, the EOF analysis is applied to the104

ARM measurements required as the MICROBASE inputs with 0.5-hour interval. The105

realizations of the random variables in the EOF expansion are computed by projecting106

empirical ARM measurements on the orthogonal basis functions. In general, the proba-107

bilistic distributions of the random variables cannot be determined by these realizations.108

According to the CLT, however, the sample-means of these random variables are normally109

distributed when the number of measurements is large enough (a sampling size greater110

than 30 is generally considered as large enough) within the time window. Therefore, it en-111

ables the probabilistic representation of a stochastic retrieval process by adding normally112

distributed perturbations to the PCs of the EOF representation of the sample-means of113

the input data profiles (see Appendix B).114
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To demonstrate the probabilistic PCA based method, we start with a temporal-spatial115

stochastic process denoted as Y (x, t, ✓) to represent stochastic input data profiles for the116

retrieval algorithm, where x denotes the height, t the time, and ✓ a random event. For117

example, Y (x, t, ✓) can be referred as the radar reflectivity profile that will be described118

in Section 3. Accordingly, an ensemble of snapshots of the stochastic process Y (x, t, ✓)119

observed in the time window [0, T ] can be recorded as120

{y1, y2, . . . , yn} , (1)

where yi (x) = y (x, ti), i = 1, . . . , n, n is the number of snapshots; and the ensemble121

average of the snapshots can be defined as ȳ (x) = 1
n

Pn
i=1 yi.122

With measurement noises added to the stochastic process Y (x, t, ✓), we have a per-123

turbed input data profile denoted as Y 0 (x, t, ✓) and it can be written as124

Y 0 (x, t, ✓) = Y (x, t, ✓) + noise. (2)

The stochastic process Y (x, t, ✓) can be decomposed into the ensemble average ȳ (x),125

and an intrinsic unknown random estimation error ✏ (x, t, ✓), such that126

Y (x, t, ✓) = ȳ (x) + ✏ (x, t, ✓) . (3)

Therefore, the perturbed stochastic process Y 0 (x, t, ✓) can be decomposed as127

Y 0 (x, t, ✓)) = ȳ (x) + ✏ (x, t, ✓) + noise. (4)

One goal of this paper is to quantify the cloud retrieval uncertainties for climate model128

evaluation. The typical climate model temporal resolution is currently about 0.5 hour.129
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Thus, the perturbed input data profile Y 0 (x, t, ✓) is transformed to a smoother statistic130

Y 0 (x, t, ✓), which is the sample-mean of Y 0 (x, t, ✓) within the 0.5-hour time window. Given131

a time window, the statistic Y 0 (x, t, ✓) is also a random variable and it approximately132

follows a normal distribution when the sampling size within the time window is large133

enough (large number law) [Storch and Zwiers , 2002].134

Due to the high dimensionality of the stochastic space for Y 0 (x, t, ✓) (e.g., 512 vertical135

layers in the ARM radar reflectivity profiles), it is computationally infeasible to sample all136

the vertical layers individually. To reduce the dimensionality, we apply the EOF expansion137

to represent the perturbed stochastic process Y 0 (x, t, ✓) in terms of eigenfunctions of its138

correlation kernel assuming that it is piece-wise constant within the 0.5-hour time window.139

The detailed derivations can be found in Appendices A and B.140

By applying the CLT to the ARM ground-based observations, in Appendix B we show141

that random variables appeared in the EOF expansion of Y 0 (x, t, ✓) approximately follow142

normal distribution when the sampling size is large enough. By truncating EOF expansion143

of Y 0 (x, t, ✓) to the order of M , we finally arrive at Y 0 (x, t, ✓) that is the sample-mean of144

the perturbed data profile with white noises added and it can be written explicitly as145

Y 0 (x, t, ✓) = ȳ +
MX

i=1

 i

r
�i
n

vuuut1 +

0

@ �0q
�i
n

1

A
2

zip
n
+ error (x, t, ✓) , (5)

where z = [z1, z2, . . . , zM ]T follows a standard multivariate normal distribution, i.e., z ⇠146

N (0, IM) and IM is aM⇥M identity matrix; (�i, i) are corresponding pairs of eigenvalues147

and eigenfunctions; �0 denotes the standard deviation of normally distributed random148

measurement noises; error (x, t, ✓) is the truncation error. The detailed proof is given in149
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the Appendix B. To simplify, other than observation-based input data profiles, uniform150

distributions are applied to perturb the retrieval parameters.151

We apply Sobol’s method to derive the global sensitivity analysis of microphysi-152

cal properties retrieved by MICROBASE. Sobol’s method is a variance-based sensi-153

tivity analysis method, which divides the variance Var
�
Y 0

�
into fractions attributed154

to each input Xi (first-order sensitivity or main e↵ect indices Si =
Vi

Var
�
Y 0

� where155

Vi = VarXi

�
EX⇠i

�
Y 0 | Xi

��
defined as average over variations in other random inputs156

or parameters), and their interactions (second-order sensitivity indices Sij or higher-order157

indices formed by dividing other terms in the variance decomposition). The fractions158

measure the contribution to the output variances of each input variable, including all159

interactional variances with any other input variables in all the orders. The sum of all160

the Sobol’s indices equals to one. Also, Latin Hypercube Sampling (LHS) procedure is161

used to draw samples in the designed space for the input random variables and retrieval162

parameters. LHS is an e↵ective stratified sampling approach in a high-dimensional space163

ensuring that all portions (with equal probability) of a given partition are sampled [McKay164

et al., 1979].165

3. Case Study

For demonstration, we apply the probabilistic PCA to propagate uncertainties from166

ARM ground-based measurements as well as empirical parameters used in MICROBASE167

into its retrieved products for uncertainty quantification and analysis. MICROBASE is168

the ARM base-line cloud microphysical property retrieval algorithm based on the cloud169

radar and lidar measurements [Dunn et al., 2011; Zhao et al., 2014]. It derives the cloud170

liquid and ice properties using empirical regression equations obtained from in situ aircraft171
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measurements. Liquid water content (LWC) and ice water content (IWC) are derived172

from radar reflectivity measured by Millimeter Wavelength Cloud Radar (MMCR) with173

a frequency of 35GHz. In MICROBASE, LWC is retrieved by174

LWC = LWP
ZegLiq

nP
i=1

ZegLiq�Z
, (6)

whereas for pure ice clouds, IWC is retrieved by175

IWC = aZebIce. (7)

In the equations above, a, b and g are empirical parameters, and �Z is the vertical176

increment. LWP represents the liquid water path, while ZeLiq and ZeIce represent the ef-177

fective radar reflectivity profile for the liquid and ice, respectively. These Z-IWC empirical178

parameters in the retrieval algorithm are determined with certain assumptions about the179

ice particle size distribution, ice particle shape, and density [Liu and Illingworth, 2000].180

Uncertainties in the retrieved quantities come from three sources: input profiles, the re-181

trieval algorithms, and parameter assumptions as described in Zhao et al. [2012, 2014].182

The uncertainty of input profiles is present in terms of two components, bias (related to183

accuracy measuring di↵erence between measurements and truth), and the unavoidable184

random variations in measurements (related to precision). The bias of input data profiles185

and retrieval model structural uncertainty are not considered in this research article.186

For the selected case study, we apply our probabilistic PCA based method to quantify187

uncertainties in MICROBASE retrieved ice for the high cirrus cloud case observed at the188

ARM SGP CF site on March 9, 2000 during the year 2000 cloud intensive observational189

period. This cirrus cloud case has been studied comprehensively by Comstock et al.190
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[2007] to examine ice cloud properties from 15 state-of-art cloud retrievals. As described191

by Comstock et al. [2007], the cirrus clouds were associated with the passage of a weak192

upper-level disturbance over the SGP region and deepened as the disturbance moved193

northeastward. Accordingly, optically thin ice clouds were observed initially (19:00–19:15194

UTC) and between 22:00 and 22:30 UTC. The majority of the observed clouds were195

optically thick clouds over the 3.5-hour time period as shown in Fig. 1a. Comstock et al.196

[2007] shows large uncertainties in the retrieved ice cloud properties among the tested197

algorithms for both optically thin (optical depth, ⌧ < 0.3) and thick (0.3 < ⌧ < 5.0)198

cirrus clouds.199

The detailed procedures of applying the probabilistic PCA based method to MI-200

CROBASE are described as the following. First, in order to e�ciently represent un-201

certainty of input radar reflectivity profiles, we apply the PCA analysis to reduce the202

dimensions from 512 layers to 10 modes (the first four EOFs or modes of the PCA are203

shown in Fig. 2) to capture greater after 90% variance in the observed radar reflectivity204

profiles (Fig. 1a) and extract uncorrelated, independent random variables with orthogonal205

modes. For this test case, we assume that the correlation kernel of the stochastic radar206

reflectivity profile is piece-wise constant within each 0.5-hour time window. The details207

of computing eigenvalues and EOFs based on snapshots taken for an ensemble of relative208

errors can be found in Appendix A. As a result, we expand the input radar reflectivity209

profiles in terms of pairs of obtained eigenvalues and EOFs combined with associated PCs.210

The probabilistic distributions of these PCs in the EOF expansion of the stochastic input211

radar reflectivity profiles are generally unknown.212
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The stochastic radar reflectivity profile is transformed to a smoother statistic, which213

is the sample-mean of the observed ones within the 0.5-hour time window. Within each214

0.5-hour time window, we have 180 times of observations (sampling size > 30). Based on215

the CLT, the sample-mean of the radar reflectivity profile is thus expanded in terms of216

independent and normally distributed random variables. The perturbation ranges of the217

input data and empirical parameters follow Zhao et al. [2014] and the cloud retrieval and218

measurement experts’ suggestions (personal communications). The measurement noise219

of the radar reflectivity profile for each layer, denoted as �0, is chosen to be 1.0 dBZ.220

The range of the empirical parameter “a” is 0.03–0.22 (g/m3) /dBZ, while the empirical221

parameter “b” is assumed to be a dimensionless constant 0.59. The value 0.59 is chosen222

by the original MICROBASE algorithm for the parameter “b”. We opt not to perturb223

the parameter “b”, as the main purpose of this paper is to demonstrate the capacity of224

our UQ method instead of thoroughly exploring the uncertainties in the Z-IWC empirical225

relationship. Based on Eq. (5), the normally distributed perturbations are added on226

the independent random variables for the sample-mean of the radar reflectivity profile.227

Uniform distributions are assumed for the parameter “a”.228

We utilize the Problem Solving environment for Uncertainty Analysis and Design Explo-229

ration toolkit (PSUADE) [Tong , 2009] to perform the uncertainty and sensitivity analysis.230

PSUADE is a software toolkit for performing uncertainty analysis, responsive surface anal-231

ysis, global sensitivity analysis, design optimization, model calibration, with large number232

of parameters and complex constraint. The samples of the random variables including PCs233

in the EOF expansion and empirical parameters in MICROBASE are obtained by uniform234

LH sampling using PSUADE. Based on Eq. (5), the PCs in the EOF expansion follow235
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normal distributions. Therefore, the uniformly generated samples are thus converted to236

normally distributed ones for the PCs. Based on the uncertainty analysis performed by237

PSUADE, Figs. 1b and 1c compare the 0.5-hour averages of IWC from the original (un-238

perturbed) MICROBASE and probabilistic PCA based ensemble means (ensemble size239

= 1000) of 0.5-hour sample-mean of IWC from the perturbed MICROBASE. Note that240

the temporal resolution of the original MICROBASE retrievals is 10s. The probabilistic241

PCA based ensemble means are of the same degree of magnitude as the original 0.5-hour242

ensemble means, but generally greater for thick clouds. The probabilistic PCA based243

standard deviation (STD, see Fig. 1d) is about 1/5 of the corresponding mean value in244

this case.245

Using our developed UQ methodology, the average (min, max) values of the ice water246

path (IWP, unit: g/m2) retrieved by MICROBASE are 25.4 (0.8, 119.4), respectively.247

IWP is derived consistently (i.e., integration over all the layers including the cloudless248

ones) for di↵erent approaches. Accordingly, cloudless layers are included when calculating249

0.5-hour sample-mean of IWP derived from di↵erent approaches. The range is about250

a factor of 2 greater than the average numbers from 14 di↵erent retrievals shown in251

Table 2 of Comstock et al. [2007] (16.4 (0.076, 63.3)). We choose a large perturbation252

range (0.03–0.22 (g/m3) /dBZ) of parameter “a” to cover various ice cloud conditions253

rather than the one-day case here as the goal is to quantify uncertainties in long-term254

ARM cloud retrievals. Despite the amplified parametric uncertainty, our IWP range255

falls into the individual retrieval range in Comstock et al. [2007]. It highlights the fact256

that propagating the uncertainties in the input data as well as the parameters through a257

single retrieval (i.e., MICROBASE) leads to the uncertainties in the output comparable258
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to the di↵erences amongst di↵erent retrievals, many of which are rooted from di↵erent259

theories/hypotheses and even based on di↵erent instruments. This implies that it might260

be possible to partly reconcile di↵erent algorithms by understanding the causes of the261

uncertainty in one of them. Through the variance-based sensitivity analysis performed by262

PSUADE, it is found that the parameter “a” is mainly responsible for the variability of263

the IWP retrieved by MICROBASE in this one-day case (see the Sobol’s global sensitivity264

analysis section below for more details). Thus, the retrieval di↵erences may be largely265

caused by how di↵erently the parameter “a” is assumed (or implicit assumptions about266

the size, shape, and density of the target ice particles) by di↵erent algorithms.267

Comparisons with independent observations (e.g., aircraft) provide another way to in-268

terpret our method. Figure 1e compares the IWP from the counterflow virtual impactor269

(CVI) (black line) [Twohy et al., 1997] observation on the aircraft, original MICROBASE270

(red line), and our results (blue line). In general, the averages of in situ CVI measure-271

ments are greater than both retrievals and they agree within a factor of two, which has272

been revealed from a dozen of state-of-the-art retrievals comparisons (see Comstock et273

al., 2007 Fig. 5a). The di↵erences between observations and retrievals are partly due to274

di↵erent sampling volumes, instrument uncertainties, sensitivities, and limitations [Com-275

stock et al., 2007]. Our probabilistic PCA based ensemble means of sample-means of276

retrieval products obtained by sampling perturbed MICROBASE are closer to the CVI277

probe measurements than the averages obtained from the original MICROBASE, which278

shows some encouraging signs of improving the retrieval results with our UQ method.279

This improvement is probably because our methodology parameterizes the input mea-280

surements based on the facts that (1) PCA extracts uncorrelated, independent random281
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variables with orthogonal modes and the auto-correlation kernel is relatively more stable282

than instantaneous measurements within the 0.5-hour window; and (2) sample-mean is a283

smoother statistical variable and follows a normal distribution when the sampling size is284

large enough per CLT. In other words, targeting at the 0.5-hour observation window we285

replace the retrieval input of finite observations with normally distributed random fields.286

Statistically, it is thus more likely that the probabilistic PCA based ensemble means of287

the retrieved properties are closer to the reality than the ones using original algorithm.288

The vertical bars in Fig. 1e are defined di↵erently, but comparable. The CVI bars289

(black) represent the STDs of the 2-min IWP observations when the aircraft flew over290

the SGP site. The raw MICROBASE bars (red) depict the 0.5-hour STDs, while those291

of our results (blue) represent the STDs of sample-means within 0.5 hour window. Three292

types of bars overlap, which is consistent with Comstock et al. [2007]. Both methods293

generally show smaller uncertainties than the CVI observations, which likely reflects the294

large discrepancies in the sample volumes between the in situ observations and radar295

retrievals. However, to fully evaluate the proposed method and compare it with the296

original MICROBASE, the analysis needs to be expanded from the 1-day case to a longer297

time period that covers di↵erent seasons and cloud conditions.298

It is worth noting that the probabilistic PCA based method includes a uniform per-299

turbation from the parameter “a”, whereas MICROBASE uses a constant value for the300

parameter “a”. Nevertheless, targeting at the 0.5-hour time window, the uncertainties301

(standard deviations) of sample-means quantified by applying probabilistic PCA to the302

perturbed MICROBASE are generally smaller than those computed by the high-frequency303

original MICROBASE data. This highlights the fact that our probabilistic PCA based304
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method estimates the uncertainty for the sample-mean of N observations within an in-305

terval chosen at model temporal resolution. The distribution of such statistic has a mean306

that equals to the interval population mean of the input data profiles and its variance307

equal to the variance of each instantaneous observation divided by N . Sample-mean is a308

good statistical estimator of the population mean of the input data profiles within the time309

window, where a “good” statistical estimator is defined as being e�cient and unbiased in310

a statistical sense.311

When keeping the parameter “a” as a constant, the probabilistic PCA based error bars312

are, as expected, much smaller than original MICROBASE (see Fig. 3). Great reduction313

in the probabilistic PCA based uncertainties when fixing parameter “a” (see Fig. 1e and314

Fig. 3) suggests that the parameter “a” is the main source of the uncertainty. In the315

following section, we will apply Sobol’s sensitivity analysis to quantify the parametric316

uncertainty from the parameter “a”, measurement uncertainty from radar profiles, and317

their possible interactions.318

Figure 4 displays the box plot of IWC PDFs at 8 km (panel a) and the IWP PDFs319

(panel b). The retrievals exhibit larger spread in the probability distribution of both320

IWC and IWP for the optically thick clouds at 21:00–21:30 UTC. The IWP mean and321

STD at 21:00–21:30 UTC are 65.4 g/m2 and 28.7 g/m2, respectively; while its mean and322

STD at 22:00–22:30 UTC are 3.6 g/m2 and 1.6 g/m2, respectively. However, the IWP323

coe�cients of variance defined as fraction of STD over mean are 0.4 for both 0.5-hour324

windows, whereas IWC at 8 km has slightly larger coe�cient of variance at 22:00–22:30325

UTC (0.5) than at 21:00–21:30 UTC (0.4). These results reinforce the needs of quantifying326

IWC uncertainties on di↵erent vertical layers.327
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4. Sobol’s Sensitivity Analysis

Using PSUADE, Sobol’s sensitivity analysis with bootstrapping [Tong , 2009] is im-328

plemented by resampling a response surface. Figures 5a–d show the results of Sobol’s329

first and second order sensitivity analysis for IWP (left column) and IWC at 8 km (right330

column) at 22:00–22:30 UTC. Results for 21:00–21:30 UTC are similar and not shown.331

It is found that the parameter “a” is the major uncertainty source for both IWP and332

IWC with close to 1.0 Sobol’s index (variance-based first-order sensitivity measure). This333

means that almost 100% of the output variance is caused by the variance in the parame-334

ter “a”, whereas almost no variance of the output is caused by the variances in the radar335

reflectivity modes or interactions among them. Since the parameter “a” in the Z-IWC336

relationship is determined by the ice particle size, shape, and density, these characteristics337

need to be better described with more accurate cloud observations. This should be one338

emphasis area in future measurements.339

In addition, the first mode of radar reflectivity (Z1) is the second largest uncertainty340

source (but much smaller than the parameter “a”) within the time window 22:00–22:30341

UTC. There are also small contributions from the interaction between the parameter “a”342

and Z1 (see Fig. 5d). The green points denote the uncertainties in Sobol’s index due to343

statistical errors of resampling a response surface. These errors may cause Sobol’s indices344

larger than one.345

To separate out the measurement uncertainty (instrument noises) of radar profiles and346

their possible interactions from the parametric uncertainty, parallel results are shown for347

holding the parameter “a” as a constant in Figs. 6 and 7. Under this scenario, di↵erent348

radar reflectivity modes can be responsible for the IWP and IWC uncertainties at the349
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same time (e.g., Fig. 6b vs. Fig. 7b). It should be noted that radar reflectivity modes350

with larger eigenvalues does not necessarily mean that they have more contributions on351

the variance of the IWP or IWC than other modes. For instance, in Fig. 7a (21:00–21:30352

UTC), the second largest eigenvalue and the value for the corresponding radar reflectivity353

profile mode of IWC at 8km are 119 and -0.0222, respectively, while the third largest354

eigenvalue and the value for the corresponding radar reflectivity profile mode of IWC at355

8km are 105 and -0.1030, respectively. Accordingly, the sensitivity of the second and356

the third radar reflectivity mode can be computed as 119 ⇥ | � 0.0222| = 2.6418 and357

105 ⇥ | � 0.1030| = 10.815, respectively. It is found that the second radar reflectivity358

mode is less sensitive than the third one in this case. This means that there is no obvious359

correlation between eigenvalue and sensitivity for the extracted random variables using360

the EOF expansion. Similar rationales can be applied to study how various uncertainty361

sources contribute to the variability of IWP as well.362

Therefore, this probabilistic PCA based sensitivity analysis is determined by both eigen-363

values and corresponding spatial modes of the observed stochastic input profiles. As far as364

the sensitivity analysis is concerned, the contribution of variability of IWP due to radar365

reflectivity mode interactions is larger for the optically thin clouds observed at 22:00–366

22:30 UTC (Fig. 6d) than other periods such as the one observed at 21:00–21:30 UTC367

(Fig. 6c). Nevertheless, it is a di↵erent kind of variability analysis result for IWC at 8 km368

(see Figs. 7cd). Such quantitative knowledge with vertically resolved information about369

the relative contribution of individual error source to the output uncertainties provides370

valuable insights and clues to improve the both retrieval algorithm and measurements.371
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5. Conclusions and Discussions

Understanding and quantifying uncertainties in cloud retrieval is a subject of many372

earlier studies [Comstock et al., 2007; Turner et al., 2007; Posselt et al., 2008; Comstock373

et al., 2013; Zhao et al., 2014]. Our contribution here is the development of a general, novel374

observation-based methodology to quantify the retrieval uncertainties for climate model375

evaluation. The EOF reduction of dimensions of random inputs enables our probabilistic376

PCA based approach to quantify vertically resolved uncertainty and conduct global sensi-377

tivity analysis. The UQ profiles with high vertical resolution are often more desirable for378

model evaluation as vertical structures of clouds are essential to many important topics379

such as radiative forcing and climate change [Schneider , 1972; Schneider and Dickinson,380

1974; Zelinka et al., 2012].381

To reduce the dimensionality of random inputs, our method takes into account the382

correlation between vertical layers in the input data by adopting the EOF expansion.383

Moreover, by eliminating the unrealistic assumption that di↵erent layers are uncorre-384

lated, the output uncertainty range becomes more accurate and reliable. Besides means385

and standard deviations, the proposed method also quantifies the full PDFs of retrieved386

quantities at each vertical layer. This observation-based PDF information can be used as387

a priori for the Bayesian approach [McFarlane et al., 2002; Posselt et al., 2008; Shen et al.,388

2013] to avoid the so-called subjective uncertainty introduced by assuming a priori PDF389

(usually assumed to be uniform), and hence improve the results from Bayesian studies.390

Besides propagating uncertainties in the input data and the parameters to retrieval391

outputs, this UQ approach has the capability of attributing the output uncertainties to392

individual error source, i.e., Sobol’s global sensitivity analysis. This capacity is partic-393
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ularly useful when dealing with highly non-linear retrieval algorithms, as various error394

sources are more likely entangled.395

Despite of the above advantages, this framework does not cover all the aspects of UQ396

analysis. For example, it cannot quantify systematic biases and the retrieval model struc-397

tural uncertainty. The parameters of the retrieval algorithm may not be independent398

as assumed in this approach. For instance, parameters “a” and “b” in the Eq. (7) are399

dependent on each other [Matrosov , 1999]. In addition, some retrievals [McFarlane et al.,400

2002; Turner , 2005; Posselt et al., 2008] have already applied some uncertainty estimation401

approach, e.g. Bayesian calibration, and thus our approach may not be able to be directly402

applied to such algorithms.403

The case study in this paper mainly demonstrates the capacities of this newly developed404

UQ methodology. We will expand the UQ analysis to long-term ARM observations to405

include di↵erent seasons and cloud types. Such comprehensive knowledge about retrieval406

uncertainties will facilitate the application of retrieval products in model evaluation and407

can be used to improve instruments, observation strategies as well as retrieval algorithms.408

We also plan to exploit the uncertainties of other retrieval algorithms. Using multi-409

retrieval and global model observations, we can further apply multi-model calibration410

technique to mitigate the uncertainty estimated by each retrieval algorithm.411
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Appendix A

Subtracting ensemble mean ȳ (x) from each snapshot, we obtain a zero-mean N ⇥ n427

snapshot matrix428

Y = [y1 � ȳ, y2 � ȳ, . . . , yn � ȳ] . (A1)

It should be noted that we take snapshots of relative error for radar reflectivity profiles429

and LWP, i.e., the snapshot matrix above is divided by ȳ, for which corresponding formulas430

can be derived similarly.431

Without loss of generality, the following set of vectors432

 = { 1, 2, . . . , M} (A2)

of order M  n provides an optimal representation of the ensemble data in a

M�dimensional subspace by minimizing the averaged projection error

min
{ 1, 2,..., M}

1

n

nX

i=1

k(yi � ȳ)� ⇧ ,M (yi � ȳ)k2

s.t. h i, ji = �ij =

(
1 i = j

0 i 6= j
, (A3)

where h·, ·i represents an inner product, and ⇧ ,M =
PM

i=1 hyi � ȳ, ii i is the projection433

operator onto the M -dimensional space spanned by  .434

To compute the EOFs or the modes of PCA  i 2 RN satisfying Eq. (A3), one solves435

an N�dimensional eigenvalue problem436

A i = �i i, (A4)

where A = YYT is the spatial correlation matrix.437
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Since in practice the number of snapshots is much less than the the state dimension,438

n << N , an e�cient way to compute the reduced basis is to introduce a n�dimensional439

matrix K = YTY and compute the eigenvalues �1 � �2 � . . . � �n � 0 of K with its440

corresponding eigenvectors �1, . . . ,�n. The corresponding EOF or modes of PCA are thus441

obtained by442

 i =
1p
�i
Y�i, i = 1, . . . ,M, (A5)

where h i, ji = �ij.443

One can define a relative information content to choose a low-dimensional basis of size444

M << n by neglecting modes corresponding to the small eigenvalues. We define445

I (m) =

Pi=m
i=1 �iPi=n
i=1 �i

(A6)

and choose M such that M = argmin {I (m) : I (m) > �}, where 0  �  1 is the446

percentage of total information retained in the reduced space and the tolerance � must447

be chosen to be close unity in order to capture most of the energy of the snapshots basis.448

A fast algorithm for eigenvalue calculation using a transposed matrix can be referenced449

[Shen et al., 2014].450

Therefore, for each one observation yi, it can be expanded in terms of M numbers of451

EOFs or modes of PCA written as452

yi = ȳ +
MX

i=1

 i

r
�i
n
Vi, (A7)

where modal coe�cients Vi computed by453
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Vi =  T
i yi

r
n

�i
, (A8)

such that hVi, Vji = �ij.454

Since mean is subtracted from each snapshots, it can be shown that 1
n

Pn
j=1 (Vij) = 0,455

where Vij corresponds to the observation yj � ȳ projected onto the mode  i.456

As a result, Y (x, t, ✓) can be approximated by EOF expansion to the order of M as457

Y (x, t, ✓) = ȳ +
MX

i=1

 i

r
�i
n
⇠i, (A9)

such that E (⇠i) = 0 and E (⇠i⇠j) = �ij, i = 1, . . . ,M , and ⇠i follows some unknown458

distribution.459
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Appendix B

Let w = [w1, w2, . . . , wN ]
T be a temporally independent Gaussian noise injected into460

each one of the observation yi. Therefore, w follows a multivariate normal distribution461

defined as w ⇠ N (0, �2
0IN), where IN is a N⇥N identity matrix. Since  is an orthogonal462

transformation,  w follows the same distribution as w, i.e.,  w ⇠ N (0, �2
0IN). Therefore,463

without loss of generality, adding  w to the Equation (A9) and truncating it to the order464

of M , we obtain that465

Y 0 (x, t, ✓) = Y (x, t, ✓) + w

= ȳ +
MX

i=1

 i

r
�i
n
⇠i +

MX

i=1

 iwi

= ȳ +
MX

i=1

 i

r
�i
n

0

@⇠i +
wiq
�i
n

1

A , (B1)

where Y 0 (x, t, ✓) is a stochastic process representing noisy observations, wi is the i-th466

component of the truncated random vector  w.467

Let ⇣i be ⇣i = ⇠i +
wiq
�i
n

, we obtain468

Y 0 (x, t, ✓) = ȳ +
MX

i=1

 i

r
�i
n
⇣i, (B2)

where E (⇣i) = 0 and V ar (⇣i) =

s

1 +

✓
�0q
�i
n

◆2

.469

Taking average on both sides of the Eq. (B2) above, it can be rewritten as470

Y 0 (x, t, ✓) = ȳ +
MX

i=1

 i

r
�i
n
⇣i. (B3)
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Finally, based on CLT [Cramér , 1946; Gnedenko et al., 1954] and considering the trunca-471

tion error, we have472

Y 0 (x, t, ✓) = ȳ +
MX

i=1

 i

r
�i
n

vuuut1 +

0

@ �0q
�i
n

1

A
2

zip
n
+ error (x, t, ✓) , (B4)

where zi ⇠ N (0, 1), and the error (x, t, ✓) represents the truncation error incurred in the

expansion above, which can be estimated following [Shen et al., 2004, 2014].
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Figure 1. Height-time plots at SGP CF site on March 9, 2000 for (a) MMCR reflectivity

(dBZ); (b) 0.5-hour averages of IWC (g/m3) from raw MICROBASE; (c) 0.5-hour ensemble

means (ensemble size=1000), and (d) standard deviations (STDs, �) of IWC from probabilistic

PCA based method; (e) comparison of 0.5-hour IWP (g/m2) from probabilistic PCA based

method (blue), raw MICROBASE (red), and 2-min in-situ CVI measurements (black) as aircraft

passed over the SGP CF site. Dashed lines connect the means, and error bars represent ±1�.

Figure 2. Height-time plots at SGP CF site on March 9, 2000 for the leading four MMCR re-

flectivity (dBZ) profiles modes, marked with corresponding eigenvalues and weighting percentage

to capture the energy of snapshots of radar reflectivity profiles within each time window.

Figure 3. Comparison of 0.5-hour IWP (g/m2) from probabilistic PCA based method (blue)

when keeping a as a constant, raw MICROBASE (red), and 2-min in-situ CVI measurements

(black) as aircraft passed over the SGP CF site. Dashed lines connect the means, and error bars

represent ±1�.

Figure 4. Probability density functions derived from probabilistic PCA based method of

(a) IWC (g/m3) at 8 km, 19:00–22:30 shown as box plot (red lines: median; lower/upper blue

box lines: lower/upper quartiles; whiskers show the extent of the data); (b) IWP (g/m2) at

21:00–21:30 UTC (green) and 22:00–22:30 UTC (black) on March 9, 2000.

Figure 5. Sobol’s first-order index of (a) IWP and (b) IWC at 8 km, and Sobol’s first and

second order (i.e., the sum of two di↵erent first order index and their joint index, Note that the

diagonal and sub-diagonal numbers are not shown by definition.) index of (c) IWP and (d) IWC

at 8 km. All the results are for March 9, 2000 22:00–22:30 UTC.
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Figure 6. Sobol’s first-order index of IWP for (a) 2100–21:30 UTC and (b) 22:00–22:30 UTC,

and Sobol’s first and second order (i.e., the sum of two di↵erent first order index and their joint

index, Note that the diagonal and sub-diagonal numbers are not shown by definition.) index of

IWP for (c) 2100–21:30 UTC and (d) 22:00–22:30 UTC. All the results are for March 9, 2000.

Figure 7. Sobol’s first-order index of IWC at 8 km for (a) 2100–21:30 UTC and (b) 22:00–22:30

UTC, and Sobol’s first and second order (i.e., the sum of two di↵erent first order index and their

joint index, Note that the diagonal and sub-diagonal numbers are not shown by definition.) index

of IWP for (c) 2100–21:30 UTC and (d) 22:00–22:30 UTC. All the results are for March 9, 2000.
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