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Abstract.

This study develops a novel uncertainty quantification (UQ) method for
cloud microphysical property retrievals using variance-based decomposition
and global sensitivity index. In this UQ framework, empirical orthogonal func-
tion (EOF) analysis is applied to the U.S. Department of Energy Atmospheric
Radiation Measurement (ARM) ground-based observations, which are the
inputs for the cloud retrieval studied here. The principal components (PCs)
in the EOF expansion are parameterized as random input variables, and hence
the input dimension is greatly reduced (up to a factor of 50), allowing large
ensemble of random samplings. The EOF expansion improves the accuracy
of the uncertainty estimation by taking into account the cross correlations
in the input data profiles. This method enables a probabilistic representa-
tion of a retrieval process by adding normally distributed perturbations into
PCs of sample-means of input data profiles within a time window. There-
fore, it effectively facilitates objective validation of climate models against
cloud retrievals under a probabilistic framework for rigorous statistical in-
ferences. Moreover, the variance-based global sensitivity index analysis, part
of this method, attributes the output uncertainties to each individual source,
thus providing directions for improving retrieval algorithms and observation
strategies. For demonstration, we apply this method to quantify the uncer-
tainties of the ARM program’s baseline cloud retrieval algorithm for an ice

cloud case observed at the Southern Great Plains site on March 9, 2000.
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1. Introduction

Cloud microphysical properties such as liquid and ice water contents retrieved from
ground-based measurements are important geophysical quantities that are often used in
developing and evaluating cloud parameterizations in climate models. However, studies
have shown that large differences and uncertainties exist in ground-based cloud retrievals
[Comstock et al., 2007; Turner et al., 2007; Zhao et al., 2012; Huang et al., 2012]. The
retrieval uncertainties are primarily caused by uncertainties in the retrieval theoretical
bases, assumptions, input data, and constraint parameters as indicated in these studies.
Quantitative knowledge about the retrieval uncertainties has thus been long desired by
the climate modeling community to better constrain model-produced cloud properties
[Xie et al., 2005; Xu et al., 2005; Xie et al., 2011].

A traditional way to estimate uncertainty is to randomly perturb input data profiles and
several key retrieval parameters used in a single cloud retrieval technique. The standard
deviation from the ensemble mean of the perturbed retrieval is considered as a proxy of
the uncertainty [Zhao et al., 2014]. The other way to estimate uncertainty is to calculate
the mean and standard deviation from multiple unperturbed cloud retrievals based on
different retrieval techniques and ground-based remote sensors [Comstock et al., 2007]. In
recent years, several studies estimate retrieval uncertainties through a radiative transfer
model and apply Bayesian calibration to statistically compare the surface and top-of-
atmosphere (TOA) radiative fluxes and other properties to observations [Posselt et al.,

2008; Comstock et al., 2013]. One can further apply multi-model Bayesian model selection,
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and model discrepancy techniques to mitigate the uncertainty estimated by multi-retrieval
algorithm [Madtta et al., 2014).

The above methods suffer from but are not restricted to the following limitations: (1)
the cross correlations in the input data profiles are often not considered; (2) parame-
terizing input data profiles with appropriate cross correlations is not an obvious task;
(3) sampling random variables amongst vertical layers, which could be on the order of
hundreds depending on the vertical resolution, requires an enormous, infeasible sampling
size; (4) characterizing probability density functions (PDFs) of the random variables of-
ten require unrealistic statistical hypotheses; (5) attributing the variability in the retrieval
output to that in each individual uncertainty source (i.e., global sensitivity analysis) is
not permitted in general; and (6) differences between measurements and the truth (i.e.,
bias analysis) are usually not considered.

To address these issues, we propose an uncertainty quantification (UQ) and sensitivity
analysis methodology based on Karhunen-Loéve expansion (KLE), Central-Limit Theo-
rem (CLT), and Sobol’ indices. The KLE [Kuhunen, 1947; Loéve, 1945] is a principal
component analysis (PCA) [Wilks, 2011], which transforms a number of possibly corre-
lated variables into a smaller number of uncorrelated variables called principal components
(PCs) through the empirical orthogonal function (EOF) expansion. For the first issue,
the application of the EOF expansion to ground-based cloud measurements such as those
from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM)
program allows us to obtain the cross correlations of input data profiles within a given
time window. In this study, we use a 0.5-hour time window, comparable to the typical

climate model temporal resolution.
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For the second issue, a stochastic representation of input data profiles is constructed
by using the PCs of the EOF expansion as input random variables, associated with the
extracted observational covariance matrix within the 0.5-hour time window. Hence the
uncertainty is automatically embedded in the EOF expansion by adding appropriate per-
turbations into the PCs. Since random perturbations are added into the PCs instead
of into each vertical layer of the input data profiles, the dimensionality of the stochastic
space (issue (3)) is significantly reduced so that it reduces the sampling size required to
stabilize the statistics of the cloud retrieval.

Since the target of this study is the 0.5-hour sample-mean of the stochastic data profile,
the CLT [Cramér, 1946; Gnedenko et al., 1954; Storch and Zwiers, 2002] can be leveraged
to solve the issue (4). Based on the CLT, the normally distributed perturbations are thus
added on the extracted input random variables (proof is provided in Appendices A and
B). To address the issue (5), we apply the variance-based global sensitivity index analysis
[Sobol, 1993] to the retrieval algorithm and attribute the uncertainties of vertically resolved
retrieval output to the input random variables as well as retrieval parameters. These
sensitivity indices can provide insights for improving retrieval algorithms and observation
strategies.

In summary, we employ the probabilistic PCA to enable the stochastic cloud retrieval by
adding observation-based perturbations to the PCs of the EOF expansion of the sample-
mean of input data profiles following normal distributions per CLT. The variance-based
sensitivity analysis attributes the vertically resolved retrieval output uncertainties to each
individual source. This variance-based UQ method effectively facilitates objective valida-

tion of climate models against cloud retrievals under a probabilistic framework for rigorous
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statistical inferences. It should be noted that the retrieval model structural uncertainty
and the bias are not addressed in the current work.

The structure of the paper is as follows. In Section 2, details of the probabilistic PCA
based uncertainty analysis in cloud microphysical property retrievals are given. In Sec-
tion 3, the capability of the UQ method is illustrated with an ice cloud case using the
ARM baseline cloud microphysical algorithm (MICROBASE). Results from our uncer-
tainty analysis and sensitivity study are shown in Section 4, followed by conclusions and

discussions in Section 5.

2. Methodology

The EOF analysis is a variance-based statistical technique designed for decomposition
of time series in terms of orthogonal basis functions that are determined from the empir-
ical data. The orthogonal basis functions are chosen to account for as much as variance
of the empirical data as possible. In this paper, the EOF analysis is applied to the
ARM measurements required as the MICROBASE inputs with 0.5-hour interval. The
realizations of the random variables in the EOF expansion are computed by projecting
empirical ARM measurements on the orthogonal basis functions. In general, the proba-
bilistic distributions of the random variables cannot be determined by these realizations.
According to the CLT, however, the sample-means of these random variables are normally
distributed when the number of measurements is large enough (a sampling size greater
than 30 is generally considered as large enough) within the time window. Therefore, it en-
ables the probabilistic representation of a stochastic retrieval process by adding normally
distributed perturbations to the PCs of the EOF representation of the sample-means of

the input data profiles (see Appendix B).
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us  To demonstrate the probabilistic PCA based method, we start with a temporal-spatial

s stochastic process denoted as Y (x,t,6) to represent stochastic input data profiles for the

-

v retrieval algorithm, where x denotes the height, ¢ the time, and # a random event. For

s example, Y (x,t,0) can be referred as the radar reflectivity profile that will be described
ne in Section 3. Accordingly, an ensemble of snapshots of the stochastic process Y (x,t,0)

20 observed in the time window [0, 7] can be recorded as

{y1, 92, Un} (1)

= where y; (x) = y(x,t;), ¢ = 1,...,n, n is the number of snapshots; and the ensemble

» average of the snapshots can be defined as 7 (x) = 1 3" v;.

n

-

s With measurement noises added to the stochastic process Y (x,t,6), we have a per-

w2 turbed input data profile denoted as Y’ (x,¢,0) and it can be written as

Y’ (x,t,0) =Y (x,t,60) + noise. (2)

s The stochastic process Y (x,t,6) can be decomposed into the ensemble average ¥ (x),

s and an intrinsic unknown random estimation error € (x, ¢, #), such that

Y (x,1,0) = 7 (x) + € (x,1,0) . (3)

127 Therefore, the perturbed stochastic process Y’ (x,t,0) can be decomposed as

Y'(x,t,0)) =7 (x) + € (x,t,0) + noise. (4)

128 One goal of this paper is to quantify the cloud retrieval uncertainties for climate model

P E R A T = O

» evaluation. The typical climate model temporal resolution is currently
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Thus, the perturbed input data profile Y’ (x,t,0) is transformed to a smoother statistic
Y7 (x,t,0), which is the sample-mean of Y’ (x, t, §) within the 0.5-hour time window. Given
a time window, the statistic Y7 (x,t,6) is also a random variable and it approximately
follows a normal distribution when the sampling size within the time window is large
enough (large number law) [Storch and Zwiers, 2002].

Due to the high dimensionality of the stochastic space for Y’ (x,t,6) (e.g., 512 vertical
layers in the ARM radar reflectivity profiles), it is computationally infeasible to sample all
the vertical layers individually. To reduce the dimensionality, we apply the EOF expansion
to represent the perturbed stochastic process Y’ (x,¢,6) in terms of eigenfunctions of its
correlation kernel assuming that it is piece-wise constant within the 0.5-hour time window.
The detailed derivations can be found in Appendices A and B.

By applying the CLT to the ARM ground-based observations, in Appendix B we show
that random variables appeared in the EOF expansion of Y7 (x, ¢, ) approximately follow
normal distribution when the sampling size is large enough. By truncating EOF expansion

of Y’ (x,t,0) to the order of M, we finally arrive at Y’ (x,t, ) that is the sample-mean of

the perturbed data profile with white noises added and it can be written explicitly as

2

ZL 4 error (x,t,0), (5)

M
— i
Y (x,t,0) =7+ > zm/—nl —
i=1 \/% Vin

where z = 21,29, ..., ZM}T follows a standard multivariate normal distribution, i.e., z ~
N (0,1) and I, is a M x M identity matrix; ();, ¢;) are corresponding pairs of eigenvalues
and eigenfunctions; oy denotes the standard deviation of normally distributed random

measurement noises; error (x,t, ) is the truncation error. The detailed proof is given in

March 11, 2015, 1:26pm
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CHEN ET AL.: UQ FRAMEWORK FOR CLOUD RETRIEVALS X-9
the Appendix B. To simplify, other than observation-based input data profiles, uniform
distributions are applied to perturb the retrieval parameters.

We apply Sobol’s method to derive the global sensitivity analysis of microphysi-
cal properties retrieved by MICROBASE. Sobol’s method is a variance-based sensi-
tivity analysis method, which divides the variance Var (?) into fractions attributed
to each input X; (first-order sensitivity or main effect indices S; = L where

Var (Y’ )
Vi = Vary, (EXNZ» (? | XZ)) defined as average over variations in other random inputs
or parameters), and their interactions (second-order sensitivity indices S;; or higher-order
indices formed by dividing other terms in the variance decomposition). The fractions
measure the contribution to the output variances of each input variable, including all
interactional variances with any other input variables in all the orders. The sum of all
the Sobol’s indices equals to one. Also, Latin Hypercube Sampling (LHS) procedure is
used to draw samples in the designed space for the input random variables and retrieval
parameters. LHS is an effective stratified sampling approach in a high-dimensional space

ensuring that all portions (with equal probability) of a given partition are sampled [McKay

et al., 1979].

3. Case Study

For demonstration, we apply the probabilistic PCA to propagate uncertainties from
ARM ground-based measurements as well as empirical parameters used in MICROBASE
into its retrieved products for uncertainty quantification and analysis. MICROBASE is
the ARM base-line cloud microphysical property retrieval algorithm based on the cloud
radar and lidar measurements [Dunn et al., 2011; Zhao et al., 2014]. It derives the cloud

liquid and ice properties using empirical regression equations obtained from in situ aircraft
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measurements. Liquid water content (LWC) and ice water content (IWC) are derived
from radar reflectivity measured by Millimeter Wavelength Cloud Radar (MMCR) with

a frequency of 35 GHz. In MICROBASE, LWC is retrieved by

LWC = LW P 2 (6)

X Zet,A7

whereas for pure ice clouds, IWC is retrieved by

IWC = aZé,,. (7)

In the equations above, a, b and ¢ are empirical parameters, and AZ is the vertical
increment. LWP represents the liquid water path, while Zer;, and Zey. represent the ef-
fective radar reflectivity profile for the liquid and ice, respectively. These Z-IWC empirical
parameters in the retrieval algorithm are determined with certain assumptions about the
ice particle size distribution, ice particle shape, and density [Liu and Illingworth, 2000].
Uncertainties in the retrieved quantities come from three sources: input profiles, the re-
trieval algorithms, and parameter assumptions as described in Zhao et al. 2012, 2014].
The uncertainty of input profiles is present in terms of two components, bias (related to
accuracy measuring difference between measurements and truth), and the unavoidable
random variations in measurements (related to precision). The bias of input data profiles
and retrieval model structural uncertainty are not considered in this research article.

For the selected case study, we apply our probabilistic PCA based method to quantify
uncertainties in MICROBASE retrieved ice for the high cirrus cloud case observed at the
ARM SGP CF site on March 9, 2000 during the year 2000 cloud intensive observational

period. This cirrus cloud case has been studied comprehensively by Comstock et al.
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[2007] to examine ice cloud properties from 15 state-of-art cloud retrievals. As described
by Comstock et al. [2007], the cirrus clouds were associated with the passage of a weak
upper-level disturbance over the SGP region and deepened as the disturbance moved
northeastward. Accordingly, optically thin ice clouds were observed initially (19:00-19:15
UTC) and between 22:00 and 22:30 UTC. The majority of the observed clouds were
optically thick clouds over the 3.5-hour time period as shown in Fig. la. Comstock et al.
[2007] shows large uncertainties in the retrieved ice cloud properties among the tested
algorithms for both optically thin (optical depth, 7 < 0.3) and thick (0.3 < 7 < 5.0)
cirrus clouds.

The detailed procedures of applying the probabilistic PCA based method to MI-
CROBASE are described as the following. First, in order to efficiently represent un-
certainty of input radar reflectivity profiles, we apply the PCA analysis to reduce the
dimensions from 512 layers to 10 modes (the first four EOFs or modes of the PCA are
shown in Fig. 2) to capture greater after 90% variance in the observed radar reflectivity
profiles (Fig. 1a) and extract uncorrelated, independent random variables with orthogonal
modes. For this test case, we assume that the correlation kernel of the stochastic radar
reflectivity profile is piece-wise constant within each 0.5-hour time window. The details
of computing eigenvalues and EOF's based on snapshots taken for an ensemble of relative
errors can be found in Appendix A. As a result, we expand the input radar reflectivity
profiles in terms of pairs of obtained eigenvalues and EOFs combined with associated PCs.
The probabilistic distributions of these PCs in the EOF expansion of the stochastic input

radar reflectivity profiles are generally unknown.
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The stochastic radar reflectivity profile is transformed to a smoother statistic, which
is the sample-mean of the observed ones within the 0.5-hour time window. Within each
0.5-hour time window, we have 180 times of observations (sampling size > 30). Based on
the CLT, the sample-mean of the radar reflectivity profile is thus expanded in terms of
independent and normally distributed random variables. The perturbation ranges of the
input data and empirical parameters follow Zhao et al. [2014] and the cloud retrieval and
measurement experts’ suggestions (personal communications). The measurement noise
of the radar reflectivity profile for each layer, denoted as g, is chosen to be 1.0 dBZ.
The range of the empirical parameter “a” is 0.03-0.22 (g/m?) /dBZ, while the empirical
parameter “b” is assumed to be a dimensionless constant 0.59. The value 0.59 is chosen
by the original MICROBASE algorithm for the parameter “b6”. We opt not to perturb
the parameter “b”, as the main purpose of this paper is to demonstrate the capacity of
our UQ method instead of thoroughly exploring the uncertainties in the Z-IWC empirical
relationship. Based on Eq. (5), the normally distributed perturbations are added on
the independent random variables for the sample-mean of the radar reflectivity profile.
Uniform distributions are assumed for the parameter “a”.

We utilize the Problem Solving environment for Uncertainty Analysis and Design Explo-
ration toolkit (PSUADE) [Tong, 2009] to perform the uncertainty and sensitivity analysis.
PSUADE is a software toolkit for performing uncertainty analysis, responsive surface anal-
ysis, global sensitivity analysis, design optimization, model calibration, with large number
of parameters and complex constraint. The samples of the random variables including PCs
in the EOF expansion and empirical parameters in MICROBASE are obtained by uniform

LH sampling using PSUADE. Based on Eq. (5), the PCs in the EOF expansion follow
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normal distributions. Therefore, the uniformly generated samples are thus converted to
normally distributed ones for the PCs. Based on the uncertainty analysis performed by
PSUADE, Figs. 1b and lc compare the 0.5-hour averages of IWC from the original (un-
perturbed) MICROBASE and probabilistic PCA based ensemble means (ensemble size
= 1000) of 0.5-hour sample-mean of IWC from the perturbed MICROBASE. Note that
the temporal resolution of the original MICROBASE retrievals is 10s. The probabilistic
PCA based ensemble means are of the same degree of magnitude as the original 0.5-hour
ensemble means, but generally greater for thick clouds. The probabilistic PCA based
standard deviation (STD, see Fig. 1d) is about 1/5 of the corresponding mean value in
this case.

Using our developed UQ methodology, the average (min, max) values of the ice water
path (IWP, unit: g/m?) retrieved by MICROBASE are 25.4 (0.8, 119.4), respectively.
IWP is derived consistently (i.e., integration over all the layers including the cloudless
ones) for different approaches. Accordingly, cloudless layers are included when calculating
0.5-hour sample-mean of IWP derived from different approaches. The range is about
a factor of 2 greater than the average numbers from 14 different retrievals shown in
Table 2 of Comstock et al. [2007] (16.4 (0.076, 63.3)). We choose a large perturbation
range (0.03-0.22 (g/m?®) /dBZ) of parameter “a” to cover various ice cloud conditions
rather than the one-day case here as the goal is to quantify uncertainties in long-term
ARM cloud retrievals. Despite the amplified parametric uncertainty, our IWP range
falls into the individual retrieval range in Comstock et al. [2007]. It highlights the fact
that propagating the uncertainties in the input data as well as the parameters through a

single retrieval (i.e., MICROBASE) leads to the uncertainties in the output comparable
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to the differences amongst different retrievals, many of which are rooted from different
theories/hypotheses and even based on different instruments. This implies that it might
be possible to partly reconcile different algorithms by understanding the causes of the
uncertainty in one of them. Through the variance-based sensitivity analysis performed by
PSUADE, it is found that the parameter “a” is mainly responsible for the variability of
the IWP retrieved by MICROBASE in this one-day case (see the Sobol’s global sensitivity
analysis section below for more details). Thus, the retrieval differences may be largely
caused by how differently the parameter “a” is assumed (or implicit assumptions about
the size, shape, and density of the target ice particles) by different algorithms.
Comparisons with independent observations (e.g., aircraft) provide another way to in-
terpret our method. Figure le compares the IWP from the counterflow virtual impactor
(CVI) (black line) [Twohy et al., 1997] observation on the aircraft, original MICROBASE
(red line), and our results (blue line). In general, the averages of in situ CVI measure-
ments are greater than both retrievals and they agree within a factor of two, which has
been revealed from a dozen of state-of-the-art retrievals comparisons (see Comstock et
al., 2007 Fig. 5a). The differences between observations and retrievals are partly due to
different sampling volumes, instrument uncertainties, sensitivities, and limitations [Com-
stock et al., 2007]. Our probabilistic PCA based ensemble means of sample-means of
retrieval products obtained by sampling perturbed MICROBASE are closer to the CVI
probe measurements than the averages obtained from the original MICROBASE, which
shows some encouraging signs of improving the retrieval results with our UQ method.
This improvement is probably because our methodology parameterizes the input mea-

surements based on the facts that (1) PCA extracts uncorrelated, independent random
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variables with orthogonal modes and the auto-correlation kernel is relatively more stable
than instantaneous measurements within the 0.5-hour window; and (2) sample-mean is a
smoother statistical variable and follows a normal distribution when the sampling size is
large enough per CLT. In other words, targeting at the 0.5-hour observation window we
replace the retrieval input of finite observations with normally distributed random fields.
Statistically, it is thus more likely that the probabilistic PCA based ensemble means of
the retrieved properties are closer to the reality than the ones using original algorithm.

The vertical bars in Fig. le are defined differently, but comparable. The CVI bars
(black) represent the STDs of the 2-min IWP observations when the aircraft flew over
the SGP site. The raw MICROBASE bars (red) depict the 0.5-hour STDs, while those
of our results (blue) represent the STDs of sample-means within 0.5 hour window. Three
types of bars overlap, which is consistent with Comstock et al. [2007]. Both methods
generally show smaller uncertainties than the CVI observations, which likely reflects the
large discrepancies in the sample volumes between the in situ observations and radar
retrievals. However, to fully evaluate the proposed method and compare it with the
original MICROBASE, the analysis needs to be expanded from the 1-day case to a longer
time period that covers different seasons and cloud conditions.

It is worth noting that the probabilistic PCA based method includes a uniform per-
turbation from the parameter “a”, whereas MICROBASE uses a constant value for the
parameter “a”. Nevertheless, targeting at the 0.5-hour time window, the uncertainties
(standard deviations) of sample-means quantified by applying probabilistic PCA to the
perturbed MICROBASE are generally smaller than those computed by the high-frequency

original MICROBASE data. This highlights the fact that our probabilistic PCA based
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method estimates the uncertainty for the sample-mean of N observations within an in-
terval chosen at model temporal resolution. The distribution of such statistic has a mean
that equals to the interval population mean of the input data profiles and its variance
equal to the variance of each instantaneous observation divided by N. Sample-mean is a
good statistical estimator of the population mean of the input data profiles within the time
window, where a “good” statistical estimator is defined as being efficient and unbiased in
a statistical sense.

When keeping the parameter “a” as a constant, the probabilistic PCA based error bars
are, as expected, much smaller than original MICROBASE (see Fig. 3). Great reduction
in the probabilistic PCA based uncertainties when fixing parameter “a” (see Fig. le and
Fig. 3) suggests that the parameter “a” is the main source of the uncertainty. In the
following section, we will apply Sobol’s sensitivity analysis to quantify the parametric
uncertainty from the parameter “a”, measurement uncertainty from radar profiles, and
their possible interactions.

Figure 4 displays the box plot of IWC PDFs at 8km (panel a) and the IWP PDFs
(panel b). The retrievals exhibit larger spread in the probability distribution of both
IWC and IWP for the optically thick clouds at 21:00-21:30 UTC. The IWP mean and
STD at 21:00-21:30 UTC are 65.4g/m? and 28.7 g/m?, respectively; while its mean and
STD at 22:00-22:30 UTC are 3.6g/m? and 1.6 g/m? respectively. However, the IWP
coefficients of variance defined as fraction of STD over mean are 0.4 for both 0.5-hour
windows, whereas IWC at 8 km has slightly larger coefficient of variance at 22:00-22:30

UTC (0.5) than at 21:00-21:30 UTC (0.4). These results reinforce the needs of quantifying

IWC uncertainties on different vertical layers.
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4. Sobol’s Sensitivity Analysis

Using PSUADE, Sobol’s sensitivity analysis with bootstrapping [ZTong, 2009] is im-
plemented by resampling a response surface. Figures ba—d show the results of Sobol’s
first and second order sensitivity analysis for IWP (left column) and IWC at 8 km (right
column) at 22:00-22:30 UTC. Results for 21:00-21:30 UTC are similar and not shown.
It is found that the parameter “a” is the major uncertainty source for both IWP and
IWC with close to 1.0 Sobol’s index (variance-based first-order sensitivity measure). This
means that almost 100% of the output variance is caused by the variance in the parame-
ter “a”, whereas almost no variance of the output is caused by the variances in the radar
reflectivity modes or interactions among them. Since the parameter “a” in the Z-IWC
relationship is determined by the ice particle size, shape, and density, these characteristics
need to be better described with more accurate cloud observations. This should be one
emphasis area in future measurements.

In addition, the first mode of radar reflectivity (Z1) is the second largest uncertainty
source (but much smaller than the parameter “a”) within the time window 22:00-22:30
UTC. There are also small contributions from the interaction between the parameter “a”
and Z1 (see Fig. 5d). The green points denote the uncertainties in Sobol’s index due to
statistical errors of resampling a response surface. These errors may cause Sobol’s indices
larger than one.

To separate out the measurement uncertainty (instrument noises) of radar profiles and
their possible interactions from the parametric uncertainty, parallel results are shown for

holding the parameter “a” as a constant in Figs. 6 and 7. Under this scenario, different

radar reflectivity modes can be responsible for the IWP and IWC uncertainties at the
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same time (e.g., Fig. 6b vs. Fig. 7b). It should be noted that radar reflectivity modes
with larger eigenvalues does not necessarily mean that they have more contributions on
the variance of the IWP or IWC than other modes. For instance, in Fig. 7a (21:00-21:30
UTC), the second largest eigenvalue and the value for the corresponding radar reflectivity
profile mode of IWC at 8km are 119 and -0.0222, respectively, while the third largest
eigenvalue and the value for the corresponding radar reflectivity profile mode of IWC at
8km are 105 and -0.1030, respectively. Accordingly, the sensitivity of the second and
the third radar reflectivity mode can be computed as 119 x | — 0.0222| = 2.6418 and
105 x | — 0.1030] = 10.815, respectively. It is found that the second radar reflectivity
mode is less sensitive than the third one in this case. This means that there is no obvious
correlation between eigenvalue and sensitivity for the extracted random variables using
the EOF expansion. Similar rationales can be applied to study how various uncertainty
sources contribute to the variability of IWP as well.

Therefore, this probabilistic PCA based sensitivity analysis is determined by both eigen-
values and corresponding spatial modes of the observed stochastic input profiles. As far as
the sensitivity analysis is concerned, the contribution of variability of IWP due to radar
reflectivity mode interactions is larger for the optically thin clouds observed at 22:00-
22:30 UTC (Fig. 6d) than other periods such as the one observed at 21:00-21:30 UTC
(Fig. 6¢). Nevertheless, it is a different kind of variability analysis result for INC at 8 km
(see Figs. 7cd). Such quantitative knowledge with vertically resolved information about
the relative contribution of individual error source to the output uncertainties provides

valuable insights and clues to improve the both retrieval algorithm and measurements.
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5. Conclusions and Discussions

Understanding and quantifying uncertainties in cloud retrieval is a subject of many
earlier studies [Comstock et al., 2007; Turner et al., 2007; Posselt et al., 2008; Comstock
et al., 2013; Zhao et al., 2014]. Our contribution here is the development of a general, novel
observation-based methodology to quantify the retrieval uncertainties for climate model
evaluation. The EOF reduction of dimensions of random inputs enables our probabilistic
PCA based approach to quantify vertically resolved uncertainty and conduct global sensi-
tivity analysis. The UQ profiles with high vertical resolution are often more desirable for
model evaluation as vertical structures of clouds are essential to many important topics
such as radiative forcing and climate change [Schneider, 1972; Schneider and Dickinson,
1974; Zelinka et al., 2012].

To reduce the dimensionality of random inputs, our method takes into account the
correlation between vertical layers in the input data by adopting the EOF expansion.
Moreover, by eliminating the unrealistic assumption that different layers are uncorre-
lated, the output uncertainty range becomes more accurate and reliable. Besides means
and standard deviations, the proposed method also quantifies the full PDFs of retrieved
quantities at each vertical layer. This observation-based PDF information can be used as
a priori for the Bayesian approach [McFarlane et al., 2002; Posselt et al., 2008; Shen et al.,
2013] to avoid the so-called subjective uncertainty introduced by assuming a priori PDF
(usually assumed to be uniform), and hence improve the results from Bayesian studies.

Besides propagating uncertainties in the input data and the parameters to retrieval
outputs, this UQ approach has the capability of attributing the output uncertainties to

individual error source, i.e., Sobol’s global sensitivity analysis. This capacity is partic-
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ularly useful when dealing with highly non-linear retrieval algorithms, as various error
sources are more likely entangled.

Despite of the above advantages, this framework does not cover all the aspects of UQ
analysis. For example, it cannot quantify systematic biases and the retrieval model struc-
tural uncertainty. The parameters of the retrieval algorithm may not be independent
as assumed in this approach. For instance, parameters “a” and “b” in the Eq. (7) are
dependent on each other [Matrosov, 1999]. In addition, some retrievals [McFarlane et al.,
2002; Turner, 2005; Posselt et al., 2008] have already applied some uncertainty estimation
approach, e.g. Bayesian calibration, and thus our approach may not be able to be directly
applied to such algorithms.

The case study in this paper mainly demonstrates the capacities of this newly developed
UQ methodology. We will expand the UQ analysis to long-term ARM observations to
include different seasons and cloud types. Such comprehensive knowledge about retrieval
uncertainties will facilitate the application of retrieval products in model evaluation and
can be used to improve instruments, observation strategies as well as retrieval algorithms.
We also plan to exploit the uncertainties of other retrieval algorithms. Using multi-
retrieval and global model observations, we can further apply multi-model calibration

technique to mitigate the uncertainty estimated by each retrieval algorithm.
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Appendix A
Subtracting ensemble mean ¢ (x) from each snapshot, we obtain a zero-mean N x n

snapshot matrix

Y= ~9% U Y] (A1)

It should be noted that we take snapshots of relative error for radar reflectivity profiles

and LWP; i.e., the snapshot matrix above is divided by g, for which corresponding formulas
can be derived similarly.

Without loss of generality, the following set of vectors

\I’:{wbw%"wwM} (AQ)

of order M < n provides an optimal representation of the ensemble data in a

M —dimensional subspace by minimizing the averaged projection error

H —\ 112
o ,W}nZ” vt (0= )|
s.t <¢; 1/;,>_5,,_ L o=y (A3)
. v Yyl — Yy T 0 ,L#],

where (-, -) represents an inner product, and Ily »; = Zf\il (y: — U, ) s is the projection
operator onto the M-dimensional space spanned by V.
To compute the EOFs or the modes of PCA 1; € R satisfying Eq. (A3), one solves

an N—dimensional eigenvalue problem

A,(/)i = )\i,(/)ia (A4)

where A = YY7 is the spatial correlation matrix.
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Since in practice the number of snapshots is much less than the the state dimension,
n << N, an efficient way to compute the reduced basis is to introduce a n—dimensional
matrix K = YTY and compute the eigenvalues A\; > Xy > ... > )\, > 0 of K with its
corresponding eigenvectors ¢, . .., ¢,. The corresponding EOF or modes of PCA are thus

obtained by

1

—Y¢;, i=1,...,M, Ab
Ny i, 1 (A5)

v =
Where <’(/)z', QZJ]> = 5ij~
One can define a relative information content to choose a low-dimensional basis of size

M << n by neglecting modes corresponding to the small eigenvalues. We define

Sl A
=1 "'t

and choose M such that M = argmin{l (m): I (m) > 7}, where 0 < v < 1 is the

I(m)=

percentage of total information retained in the reduced space and the tolerance v must
be chosen to be close unity in order to capture most of the energy of the snapshots basis.
A fast algorithm for eigenvalue calculation using a transposed matrix can be referenced
[Shen et al., 2014].

Therefore, for each one observation y;, it can be expanded in terms of M numbers of

EOFs or modes of PCA written as

w=0+ UV (A7)
=1

where modal coefficients V; computed by
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/n

s Since mean is subtracted from each snapshots, it can be shown that %Z?:1 (Vi;) =0,

454 such that <‘/;, ‘/3> = 6ij~

s where V;; corresponds to the observation y; — 7 projected onto the mode ;.

s As aresult, Y (x,t,0) can be approximated by EOF expansion to the order of M as

M
_ Ai
Y(x.t0) =5+ v/ & (A9)
i=1
s such that E(§) = 0 and E (&) = 6y, ¢ = 1,..., M, and & follows some unknown

w0 distribution.
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Appendix B

Let w = [wy,ws, ... ,wN]T be a temporally independent Gaussian noise injected into

each one of the observation y;. Therefore, w follows a multivariate normal distribution

defined as w ~ N (0, 02Iy), where Iy is a N x N identity matrix. Since ¥ is an orthogonal

transformation, Ww follows the same distribution as w, i.e., Yw ~ N (0, 021y). Therefore,

without loss of generality, adding Yw to the Equation (A9) and truncating it to the order

of M, we obtain that

Y' (x,t,0) =Y (x,t,0) + Yw

M \ M
7+ Zwi\/Z& + ) b
=1 =1

_y p (3 n (3 ﬁ% 1)

(B1)

where Y’ (x,t,0) is a stochastic process representing noisy observations, w; is the i-th

component of the truncated random vector Yw.

Let ¢; be ¢ =& + \7—2, we obtain

Y/, t,0) =5+ Y uiy[ =G
i=1

2
where F (¢;) =0 and Var (¢;) = (/1 + < "i) .

Taking average on both sides of the Eq. (B2) above, it can be rewritten as

o M N
Y’ (X,t,@) = g+ sz \/ iCZ
i=1
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a1 Finally, based on CLT [Cramér, 1946; Gnedenko et al., 1954] and considering the trunca-

2 tion error, we have

Zj

— M \:
Y’(x,t,@)zg%—;wi\/: NG

where z; ~ N (0,1), and the error (x,t,0) represents the truncation error incurred in the

+error (x,t,0), (B4)

expansion above, which can be estimated following [Shen et al., 2004, 2014].
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Figure 1.  Height-time plots at SGP CF site on March 9, 2000 for (a) MMCR reflectivity
(dBZ); (b) 0.5-hour averages of IWC (g/m?) from raw MICROBASE; (c) 0.5-hour ensemble
means (ensemble size=1000), and (d) standard deviations (STDs, o) of IWC from probabilistic
PCA based method; (e) comparison of 0.5-hour IWP (g/m?) from probabilistic PCA based
method (blue), raw MICROBASE (red), and 2-min in-situ CVI measurements (black) as aircraft
passed over the SGP CF site. Dashed lines connect the means, and error bars represent +1o.
Figure 2. Height-time plots at SGP CF site on March 9, 2000 for the leading four MMCR re-
flectivity (dBZ) profiles modes, marked with corresponding eigenvalues and weighting percentage
to capture the energy of snapshots of radar reflectivity profiles within each time window.
Figure 3. Comparison of 0.5-hour IWP (g/m?) from probabilistic PCA based method (blue)
when keeping a as a constant, raw MICROBASE (red), and 2-min in-situ CVI measurements
(black) as aircraft passed over the SGP CF site. Dashed lines connect the means, and error bars
represent +1o.

Figure 4. Probability density functions derived from probabilistic PCA based method of
(a) IWC (g/m?) at 8km, 19:00-22:30 shown as box plot (red lines: median; lower/upper blue
box lines: lower/upper quartiles; whiskers show the extent of the data); (b) IWP (g/m?) at

21:00-21:30 UTC (green) and 22:00-22:30 UTC (black) on March 9, 2000.

Figure 5. Sobol’s first-order index of (a) IWP and (b) IWC at 8km, and Sobol’s first and
second order (i.e., the sum of two different first order index and their joint index, Note that the
diagonal and sub-diagonal numbers are not shown by definition.) index of (¢) IWP and (d) IWC

at 8km. All the results are for March 9, 2000 22:00-22:30 UTC.
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Figure 6. Sobol’s first-order index of IWP for (a) 2100-21:30 UTC and (b) 22:00-22:30 UTC,
and Sobol’s first and second order (i.e., the sum of two different first order index and their joint
index, Note that the diagonal and sub-diagonal numbers are not shown by definition.) index of

IWP for (c) 2100-21:30 UTC and (d) 22:00-22:30 UTC. All the results are for March 9, 2000.

Figure 7. Sobol’s first-order index of IWC at 8 km for (a) 2100-21:30 UTC and (b) 22:00-22:30
UTC, and Sobol’s first and second order (i.e., the sum of two different first order index and their

joint index, Note that the diagonal and sub-diagonal numbers are not shown by definition.) index

of IWP for (c¢) 2100-21:30 UTC and (d) 22:00-22:30 UTC. All the results are for March 9, 2000.
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Error bar of IWP (g/m?)
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First + Second Order Sobol Index First Order Sobol Index (bootstrap)
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First + Second Order Sobol Index

First Order Sobol Index (bootstrap)
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