

1 Title: The impact of stand age and fertilization on the soil microbiome of *Miscanthus* ×
2 *giganteus*
3 List of authors: Lanying Ma,^{1,2} Fernando Igne Rocha,^{1,3} Jaejin Lee,^{1,2} Jinlyung Choi,^{1,2} Mauricio
4 Tejera⁴, Thanwalee Sooksa-Nguan,^{1,2} Nicholas Boersma,^{2,4} Andy VanLoocke,^{2,4} Emily Heaton,^{2,4}
5 Adina Howe^{1,2}§

6

7

8

9 Institute:

10 ¹Department of Agricultural and Biosystems Engineering, Iowa State University, Ames IA,
11 United States

12 ²Center for Advanced Bioenergy and Bioproducts Innovation, Urbana IL, United States

13 ³Department of Soil, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil

14 ⁴Department of Agronomy, Iowa State University, Ames IA, United States

15 §Corresponding author

16 Name: Adina Howe

17

18

19 Postal address: 1201 Sukup Hall, Ames IA. 50011 United States

20 Telephone: +1-515-294-0176

21 E-mail: adina@iastate.edu

22 Keywords: Soil bacterial community structure, *Miscanthus* × *giganteus*, staggered start
23 experiment, nitrogen response

24 Paper type: Original Research

25

26 Abstract

27

28 Yield of the perennial grass *Miscanthus × giganteus* has shown an inconsistent and
29 unpredictable response to nitrogen (N) fertilizer, yet fertilization underpins the crop's
30 environmental and economic sustainability. The interactions among soil microbial communities,
31 N availability, and *M. × giganteus* and management may explain changes in plant productivity.

32 In this study, soil samples from different stand ages of *M. × giganteus* in a replicated
33 chronosequence field trial were used to investigate the effects of stand age and N fertilizer rates
34 on microbial community structure. We hypothesized that there is a definable *M. × giganteus* soil
35 microbiome and that this community varies significantly with stand age and fertilization. Our
36 results showed that the main phyla in soil microbial communities, regardless of plant age, are
37 similar but microbial community structures are significantly different. The variation in observed
38 microbial communities generally decreases in older stand ages. The amount of N fertilizer
39 applied also affected the microbial community structure associated with different aged *M. ×*
40 *giganteus*. Specifically, the relative abundance of *Proteobacteria* (Alphaproteobacteria and
41 Gammaproteobacteria) and *Acidobacteria* (Subgroup Gp1) increased shortly after fertilization
42 and were more associated with younger *M. × giganteus*. Further, our results show a significant
43 relationship between bacterial alpha diversity and fertilization rates and that this response is also
44 impacted by stand age. Overall, our results emphasize linkages between microbial community
45 structure, plant age, and fertilization in *M. × giganteus*.

46 Introduction

47 Perennial biomass crops promise to provide both renewable energy and ecosystem
48 services, but their sustainability hinges critically on crop management (Davis et al. 2013).
49 Harnessing the phytobiome may increase the sustainability of these crops by increasing nutrient
50 use efficiency and thus reducing the need for economically and environmentally expensive
51 synthetic nitrogen (N) fertilizer (Robertson et al. 2017). In temperate rainfed regions, the grass
52 *Miscanthus × giganteus* (Greef et Deu.) stands out as a potential bioenergy crop because of its
53 high yields and low-input requirements (Heaton et al. 2004, Heaton et al. 2008, Heaton et al.
54 2010). Further, it has relatively high cold tolerance while still producing high yields of
55 lignocellulosic biomass (LeBauer et al. 2017; Wang et al. 2008). Estimates of the maximum
56 rainfed simulated end-of-growth-season biomass are ca. 40 Mg ha⁻¹ for *M. × giganteus*, twice as
57 much as switchgrass estimates (LeBauer et al. 2017; Miguez et al. 2012).

58 Despite high potential as a bioenergy feedstock, the most appropriate management
59 strategies for the growth of *M. × giganteus* are still being explored, especially with regard to
60 fertilization needs (Tejera et al. 2019). Generally, the long term growth of *M. × giganteus* would
61 result in the eventual depletion of soil N and thus fertilization is recommended (Cadoux et al.,
62 2012). However, previous studies have reported inconsistent responses of *M. × giganteus* to N
63 fertilization (LeBauer et al. 2017). For instance, *M. × giganteus* yields have been shown to
64 increase as a result of increased N supply (0, 60, and 120 kg ha⁻¹) in a mediterranean climate
65 (Cosentino et al. 2007). Similarly, N fertilization was found to have a positive effect on yield in
66 Europe (Ercoli et al. 1999; Iqbal et al. 2015; Stépień et al. 2014). In contrast, no significant
67 fertilizer effects on yield of *M. × giganteus* were observed at rates 0, 60, and 120 kg ha⁻¹ in
68 England (Christian et al. 2008) or with ammonium nitrate at rates of 0 and 100 kg ha⁻¹ in North

69 Carolina (Christian et al. 2008; Rinta-Kanto et al. 2005; Teat et al. 2015). These inconsistent
70 observations of *M. × giganteus* response likely represent variations in environmental conditions
71 and soil types as well as sources of N. Another potential reason for the observed differences may
72 be the stand ages of the *M. × giganteus* in the various studies, where annual harvesting may
73 cause N depletion in the soils (Arundale et al. 2014). For example, specific *M. × giganteus*
74 plants were found to respond to N fertilizer only after the third growing season (Miguez et al.
75 2008).

76 One of the factors impacting the availability of nitrogen to plants is the soil's underlying
77 microbial communities (Moreau et al. 2019; Tao et al. 2019). In *M. × giganteus*, this microbial
78 community has been identified to provide benefits associated with biological nitrogen fixation
79 (Christian et al. 1997; Davis et al. 2010; Keymer and Kent 2014). Our understanding of soil,
80 plant, and microbial community interactions helps to guide sustainable agroecosystem
81 management (e.g., N additions). Similar to observations of biomass yield, soil microbial
82 communities of *M. × giganteus* have been observed to have inconsistent responses to nitrogen
83 fertilization. In a long-term field experiment, nitrogen fertilization had little effect on soil
84 microbial communities (Liu and Ludewig 2019). In a study of *M. × giganteus* from four sites in
85 Illinois, Kentucky, Nebraska, and New Jersey, no significant differences in nitrogen-fixing
86 microbial communities were observed between N application rates (Li et al. 2016). In contrast,
87 the microbial composition and biomass of five year old stands of *M. × giganteus* were observed
88 to change significantly as a result of fertilization (Oates et al. 2016). It is possible that these
89 observed mixed responses of *M. × giganteus* to fertilization could be associated with its
90 perennial lifestyle and studying plants at different stages of establishment. The high N-use
91 efficiency and low N leaching of *M. × giganteus* has previously been attributed to the plant's

92 ability to translocate nutrients to rhizomes at the end of the growing season (Beale and Long
93 1997). Potentially, as a stand ages and the associated rhizomes mature, the plant's capacity to
94 store nutrients and associated microbial communities may change.

95 In this study, we explore the relationships of N fertilization on *M. × giganteus* of varying
96 stand ages and its associated soil bacterial communities. Unlike previous studies that assessed
97 stand age effects by following the same stands over multiple growing seasons, we used a
98 staggered start experimental design (Loughin 2006), in which we planted replicated plots of *M. ×*
99 *giganteus* over three years within a randomized plot layout (Supplementary Fig. S1). This
100 allowed us to compare replicated stands of different ages of *M. × giganteus* within the 2018
101 growing season (Tejera et al. 2019) and to separate the effect of stand age from that of the
102 seasonal environment. We compared three stand ages of *M. × giganteus* and three N fertilization
103 rates (0, 224, and 448 kg ha⁻¹) during one growing season. We hypothesized that diversity and
104 membership of microbial communities within the soils of *M. × giganteus* are influenced by stand
105 age and N fertilization rate. Further, we expect that there is a relationship between observed
106 diversity and above ground biomass production of *M. × giganteus*. Identification of the
107 relationships between diversity, microbial composition, stand age, fertilization and productivity
108 will help to better predict their impacts on *M. × giganteus* sustainable growth.

109 **Materials and methods**

110

111 **Site description:** This study used the Long-term Assessment of Miscanthus Productivity and
112 Sustainability (LAMPS) site located in Central IA (42.013° N, 93.743° W). The site has poorly
113 drained soil (fine-loamy, mixed, superactive, mesic Typic Endoaquoll) and four replications of
114 each growing treatment as previously described (Tejera et al. 2019). In summary, treatment

115 levels include three planting years (2015, 2016, and 2017) in 24 m × 120 m main plots with split-
116 plot treatments of five N fertilization rates (0, 112, 224, 336, and 448 kg ha⁻¹) in 24 m × 12 m
117 plots (Supplementary Fig. S1). *M. × giganteus* clone “Freedom” (AgGrow Tech, Greensboro,
118 NC, USA) was planted in 0.3-m rows at a density of around 11 rhizome m⁻² by a specialized plot
119 planter. This clone has no discernible genetic differences from the “Illinois” or “Hornum” clone
120 used elsewhere in the literature (Głowiak et al. 2015). With the exception of plots with no
121 fertilization, N fertilization was annually applied as an aqueous solution of urea-ammonium
122 nitrate in a single application. Fertilizer was side-dressed into the soil at 0.1 m depth, following
123 coulter wheels spaced 1.5 m apart that cut field residue and opened the soil to avoid surface plant
124 residue. For the year of this study, N fertilizer was applied on May 9, 2018. Historically,
125 herbicide was applied to all stand ages during their first two years of growth to control weeds,
126 and standing biomass was annually removed mid-winter after full crop senescence and
127 substantial leaf drop (see Tejera et al. (2019) for full management details). Standing crop
128 biomass was measured on November 13, 2018 in two 1-m quadrants per plot following the
129 methods of Tejera et al. (2019) (Supplementary Table S1).

130 **Sampling and DNA extraction:** Soil samples were taken in 2018 from plots planted with *M. ×*
131 *giganteus* in 2015, 2016, and 2017 representing four-year, three-year, and two-year stand ages,
132 respectively. Fertilizer was applied on May 9. Soils from blocks treated with 0, 224, and 448 kg
133 ha⁻¹ N fertilizer were collected on April 25, April 30, May 14, May 30, and July 3 or -14, -10, 5,
134 21, 55 days relative to fertilization, respectively. Bulk soils were obtained from within a 10 cm
135 radius of the plant using a sampling core with a 30.5 cm wet sample tube and 1.75 cm in
136 diameter (Clements Associates Inc, Newton, IA, USA). Roots collected within the sample were
137 not separated. The first 10 cm depth of soil was collected and stored immediately in sampling

138 bags on dry ice; samples were stored at -80°C upon return to the laboratory. For each plot, two
139 to three samples were obtained and analyzed independently (e.g., not composited). In total, 432
140 samples were collected (4 blocks x 3 plots x 3 fertilization rates x 5 sampling days x 2-3
141 replicates). For DNA extraction, each soil sample was homogenized and aliquoted into a 0.25 g
142 subsample. DNA extraction was performed using MagAttract PowerSoil DNA EP kit for DNA
143 (Qiagen, Germantown, MD, USA) following the standard protocol of this kit and the liquid
144 handling of the Eppendorf epMotion 5075 (Eppendorf, Enfield, CT, USA).

145 **16S rRNA gene amplicon sequencing:** Deoxyribonucleic acid samples with concentration
146 above 10 ng μl^{-1} were diluted to 10 ng μl^{-1} prior to sequencing. Samples with concentration
147 lower than 10 ng μl^{-1} were submitted directly for amplicon sequencing. In summary, the V4
148 region of the bacterial 16S rRNA gene was amplified. Amplification was performed using 10
149 μM each of 16S rRNA v4 region primers. The forward primer, 515F, used was
150 GTGYCAGCMGCCGCGGTAA, and the reverse primer, 806R, used was
151 GGACTACNVGGGTWTCTAAT. The target amplicon size was 390 bp. The PCR
152 amplification parameters were as follows for a 384-well plate: 94 °C for 3 min and then 94 °C for
153 60 s, 50 °C for 60 s, and 72 °C for 105 s repeated for 35 cycles with a final extension of 72 °C for
154 10 min. The specific protocol is described at
155 <https://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/16s>. Sequencing of bacterial
156 amplicons was performed on Illumina Miseq with Miseq Reagent Kit V2 (Illumina, San Diego,
157 CA, USA) at Argonne National Laboratory (Argonne, IL, USA), and sequencing libraries were
158 comprised of 150 bp paired-end reads. Sequencing data is deposited in the NCBI Short Read
159 Archive (SRA) as project PRJNA601860 (sample specific data is shown in Supplementary Table
160 S1).

161 **Amplicon bioinformatic analysis:** The sequencing data was analyzed by DADA2 package
162 (version 1.13.1) to determine abundances of amplicon sequence variants (ASVs) (Callahan et al.
163 2016). Truncated sequence read length was set to 145 bp to remove low quality tails based on
164 inspection of quality control profiles. The filtering parameters were set to be
165 truncLen=c(145,145), truncQ=2, rm.phix=TRUE, compress=TRUE. The taxonomic identity of
166 each observed ASV was determined using sequence similarity to representatives in the
167 Ribosomal Database Project (RDP) Classifier (version 11.5). ASVs observed in less than 10
168 samples were removed. Samples with less than 9,000 reads were removed, resulting in a total of
169 416 samples (Supplementary Table S1). Each sequencing library was adjusted to 9,000 reads for
170 estimation of ASV abundances unless otherwise indicated.

171 **Statistical analysis:** All statistical analysis was performed in R (R Core Team, 2019). We
172 estimated alpha diversity in samples, expressed as Shannon diversity and Chao 1 richness, using
173 the function *estimate_richness()* included in the phyloseq package, version 1.30.0. Alpha
174 diversity was estimated for each stand age and sampling day to identify differences between N
175 fertilization rates. Generalized linear mixed-effect models (GLMM) fit by maximum likelihood
176 were applied to test the effects of plant above-ground biomass, stand age, and N fertilization
177 rates on soil alpha diversity (lme4 package, version 1.1-23 and lmerTest, version 3.1-2).
178 Experimental factors were considered as both main fixed effects, in interactions, and as a nested
179 random effect within blocks. The Wald chi-square test and least-square means for pairwise t-test
180 with false discovery rate correction for multiple comparisons were used to test the significance of
181 relationships between soil microbial richness and diversity and N fertilization and plant biomass.
182 The rank-based coefficient Kendall's (τ) non-parametric test was used to estimate the amount
183 and direction of correlation between evaluated factors and alpha-diversity measures.

184 Permutational multivariate analysis of variance (PERMANOVA) distance matrices was
185 performed with the *adonis()* function from the *vegan* package, version 2.5 - 5, based on the Bray-
186 Curtis dissimilarity distances between samples with p-values for the test statistic (pseudo-F)
187 based on 999 permutations. As the experimental plot was identified as a major factor to structure
188 the microbial composition, PERMANOVA was also performed using the “strata” argument for
189 plot sites to better identify the impacts of stand age and N fertilization rates. This analysis
190 restricts permutations to samples within each block and was used to quantify variations between
191 and within treatments (e.g. N fertilization rates and stand age). To test differences in the
192 variability of soil bacterial communities between N fertilization, we used PERMDISP analyses
193 for each experimental period. Multivariate dispersions, based on distances of observations to
194 their centroid, were first calculated using the *betadisper()* function of *vegan*. The mean
195 dispersion was next compared between groups via the *permutes()* function (based on 999
196 permutations). Principal Coordinates Analysis (PCoA) was performed to visualize the
197 dissimilarity among samples using the Bray-Curtis dissimilarity matrix.

198 We identified representative ASVs within each stand age and required that each ASV be
199 detected with at least ten reads in a single sample. ASVs were next determined as unique to a
200 stand age or shared between stand ages. To represent these results, a venn diagram was created
201 using the *VennDiagram* package (version 1.6.20). To identify significantly enriched ASVs
202 between stand ages, differential abundance analysis based on the negative binomial distribution
203 with Wald’s test was performed on the experimental factors of block and N fertilization rate.
204 This analysis was performed by the function *DESeq* with non-rarefied data from the R package
205 *DESeq2*, version 3.8. Pairwise comparisons to unfertilized treatments were performed, including

206 comparisons of 224 to 0 kg ha⁻¹ N and 448 to 0 kg ha⁻¹ N under each stand age of *M. ×*
207 *giganteus*.

208 Code for all described analysis is available at [https://github.com/germs-lab/LAMPS-
209 miscanthus-microbiome](https://github.com/germs-lab/LAMPS-miscanthus-microbiome).

210 **Results**

211 In this study, the *M. × giganteus* plots performed typically for Iowa, yielding between 12
212 and 30 Mg ha⁻¹ depending on treatment and stand age (Supplementary Table S1). Stand age had
213 a large effect on biomass yield ($P_{Age} = 0.0068$). Three- and four-year old stands yielded ~20%
214 more biomass than two-year old stands. Nitrogen fertilization also had a significant effect on
215 biomass yield, with significant correlations with biomass in three- and four-year old stands but
216 not in two-year old stands ($P_{Nrate} < 0.0001$, Supplementary Fig. S2). Fertilized plots yielded up
217 to 38% more biomass than unfertilized plots, but this response changed with stand age ($P_{Nrate*Age} < 0.0001$).

219 In our *M. × giganteus* soil samples, we observed a total of 31 bacterial phyla and 39,810
220 ASVs. ASVs associated with *Proteobacteria*, *Actinobacteria*, *Acidobacteria*, *Verrucomicrobia*,
221 and *Bacteroidetes* were found to be the most abundant and comprising over 80% by relative
222 abundance (Fig. 1A). *Proteobacteria* were dominant in the microbiome, with
223 Alphaproteobacteria comprising the largest proportion followed by Betaproteobacteria,
224 Deltaproteobacteria, and Gammaproteobacteria (Fig. 1B). A total of 39,810 ASVs were
225 observed in sampled soils (Fig. 2). ASVs uniquely associated within each stand age were
226 identified, with 1,550, 812, and 701 ASVs identified in 2, 3, and 4 year-old stands, respectively.
227 Shared between samples from all three stand ages, a total of 27,315 ASVs (68% of total) were
228 identified, and these shared ASVs represent highly abundant membership, comprising over 80%

229 of the total observed abundance (Fig. 3A). In contrast, unique ASVs identified from each stand
230 age comprised only a small percentage (<1%) of total observed abundance (Fig. 3B). These
231 unique ASVs were represented by diverse phyla but were dominated by Proteobacteria
232 (Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria), Actinobacteria, and
233 Acidobacteria.

234 Overall, we observed no statistically significant differences in alpha diversity between
235 soils originating from the three stand ages of *M. × giganteus* (Supplementary Table S2).
236 Fertilization rates and stand age interactions were observed to effect alpha diversity. With
237 increased fertilization rates, we observed that alpha diversity was negatively affected, especially
238 in two-year old stands (Fig. 4). This trend was also found in response to days since fertilization,
239 where alpha diversity decreased in samples directly after fertilization, particularly in younger
240 stands (Supplementary Table 3, Fig. 4). No significant ($P > 0.05$) correlations between alpha
241 diversity and days relative to fertilization were observed in four-year old stand or samples that
242 received no N fertilizer.

243 Next, we identified taxa and their associated phyla that were observed to be significantly
244 different between fertilization rates within each stand age (Supplementary Fig. S3). In two- and
245 four-year old plants, a total of 194 and 47 ASVs, respectively, were identified as significantly
246 differentially abundant ASVs under varying treatments of N rates. The most dominant phyla
247 represented by these ASVs in soils from two-year plants were Proteobacteria (classes
248 Alphaproteobacteria and Gammaproteobacteria) and Acidobacteria. Dominant phyla associated
249 with these ASVs in soils from four-year plants also included Proteobacteria (classes
250 Alphaproteobacteria and Gammaproteobacteria), followed by Actinobacteria. Overall, the
251 majority of these ASVs were unique to each stand age, with only 11 of these ASVs were

252 identified as present in both two- and four-year old stands. From three-year old *M. × giganteus*,
253 only three ASVs were observed to change significantly due to the N fertilization rates.

254 Generally, we observed differences in the microbial community structure of the youngest
255 stand age (two-year) compared to the older stand ages. First, the ASVs identified as significantly
256 enriched in fertilized treatments of two-year old *M. × giganteus* samples represented a greater
257 relative abundance compared to those identified in older stand age samples (12 vs 3% average
258 relative abundance, Supplementary Fig. S3). Second, many of these ASVs were also found to
259 have a seasonal response to fertilization, and these trends were also more pronounced in two-
260 year old stands. Particularly, *Proteobacteria* (especially *Alphaproteobacteria* and
261 *Gammaproteobacteria*) and *Acidobacteria* (especially subdivision 1) increased in relative
262 abundance five days after the 448 kg ha⁻¹ fertilization in both two-year and four-year old stands
263 (Supplementary Fig. S4).

264 Beta diversity was calculated based on Bray-Curtis dissimilarity for sample-to-sample
265 comparison. PERMANOVA analysis demonstrated that the largest observed variation to affect
266 this diversity was the plot of sample origination ($R^2 = 0.244$, $F = 4.520$, $P = 0.001$), followed by
267 stand age ($R^2 = 0.075$, $F = 21.652$, $P = 0.001$) and fertilization rates ($R^2 = 0.012$, $F = 3.532$, $P =$
268 0.001). The days relative to fertilization (i.e., sampling day) also affected the microbial
269 community structure significantly (PERMANOVA, $R^2 = 0.09$, $F = 1.424$, $P = 0.04$). To further
270 analyze the effects of stand ages and N fertilization rates, we evaluated differences within a
271 block. All PERMANOVA analyses were also performed without 'strata as plot' with similar
272 results observed. Comparison of beta diversity estimates observed between stand ages showed
273 that microbial communities between two- and three- year old *M. × giganteus* (PERMANOVA, F
274 = 22.7, $P = 0.001$, strata with plot) and two- and four- year old *M. × giganteus* (PERMANOVA,

275 F = 5.37, P = 0.028, strata with plot) were significantly different (Supplementary Fig. S5). No
276 significant difference was observed in communities from soils collected from the three- and four-
277 year old stands. While the most abundant phyla observed in soils from all three plant ages was
278 consistent, the contribution of specific phylum to the total abundance varied, with
279 *Verrucomicrobia*, *Gemmatimonadetes*, *Planctomycetes*, and *Thaumarcheota* observed as
280 significantly different between all three stand ages (Supplementary Fig. S6).

281 We evaluated the impact of N fertilization rates on the heterogeneity of microbial
282 composition within each stand age of *M. × giganteus*. Generally, we observed the largest
283 variation between samples in two-year old stand age (PERMDISP, F = 11.81; P = 0.001), where
284 significant differences were observed under all N fertilization rates (Supplementary Fig. S7). In
285 three-year old stands, this variation was found to be decreased (PERMDISP, F = 1.49; P =
286 0.238). In four-year old stands, significant dissimilarity between soil communities was detected
287 (PERMDISP, F = 9.15; P = 0.001), however, only significant differences were observed between
288 unfertilized and fertilized groups (PERMDISP, 0 x 224 kg ha⁻¹: P = 0.003; 0 x 448 kg ha⁻¹: P =
289 0.001; 224 x 448 kg ha⁻¹: P = 0.244).

290 Finally, we evaluated our ability to predict the soil microbiome diversity from above-
291 ground biomass. Overall, patterns of increasing biomass with increased fertilization
292 (Supplementary Fig. S2). We developed a predictive model for the effects of the interactions
293 between above-ground biomass and N fertilization rate on alpha-diversity (Fig. 5). This model
294 showed a positive correlation of biomass and alpha diversity from fertilized samples which was
295 not present in non-fertilized samples. While we observed that there is not a direct effect of stand
296 age on alpha diversity (Supplementary Table 2), we identified a relationship between biomass

297 and alpha diversity that varies depending on stand age and fertilization rates (Supplementary Fig.
298 S8).

299 **Discussion**

300 In this study, we explored the relationships between the soil microbial communities of *M.*
301 *× giganteus*, its stand age, and nitrogen fertilization rates. This community is dominated by
302 Proteobacteria (mainly Alphaproteobacteria), Acidobacteria, and Actinobacteria, which is
303 consistent with previous studies of *M. × giganteus* (Yan et al. 2017; Zhalnina et al. 2018). The
304 large majority of membership of this community is present across plants from all stand ages
305 within our study (Fig. 3B), though unique taxa were identified as specific to soils from two-,
306 three-, and four-year old plants.

307 To determine the impacts of plant stand age and fertilization rates on the overall *M. ×*
308 *giganteus* microbiome, we evaluated several characteristics of the soil microbiomes, including
309 estimations of alpha diversity and significantly enriched members between treatments. While
310 there is evidence of a high proportion of the microbial community shared between the samples,
311 impacts of plant stand age and fertilization to alter these communities are illustrated consistently
312 in our results. Between microbiomes originating from plants of varying stand ages, differences
313 between microbial communities were observed to be mainly due to shifts in the proportions of
314 present bacteria rather than different community membership. In response to varying
315 fertilization rates, microbial taxa in each stand age were significantly enriched, with more
316 pronounced shifts in response to fertilization in communities associated with younger stand ages.
317 Additionally, we observe that the microbial communities associated with younger, two-year old
318 stands are more variable in their biodiversity. In comparison, the microbiomes of the four-year
319 old stands were observed to have decreased overall alpha-diversity and appeared more similar in

320 composition to three-year old than two-year old stands. Overall, these results suggest that stand
321 age shifts the underlying soil microbial communities and is consistent with a previous study in
322 *Pinus elliottii* that showed a significant impact of plant age on microbial communities (Wu et al.
323 2015).

324 In the youngest stand age, notable enrichments of *Proteobacteria*, especially
325 *Alphaproteobacteria* and *Gammaproteobacteria*, and *Acidobacteria* were observed in response to
326 fertilization. *Acidobacteria* and *Proteobacteria* have previously been associated with N cycling
327 and have been observed to be enriched in response to long-term elevated nitrogen in diverse
328 agricultural soils (Dai et al. 2018; Pan et al. 2014). *Acidobacteria* have previously been found to
329 be sensitive to inorganic and organic nutrients inputs and have been previously associated with
330 nitrate reduction based on both the conservation of nitrate reduction genes and characterization
331 of this activity in isolates (Kielak et al. 2016; Ward et al. 2009). Our results are also consistent
332 with other studies which have observed the enrichment of *Alphaproteobacteria* and
333 *Gammaproteobacteria* in *M. × giganteus* in rhizomes after fertilization (Liu and Ludewig 2019).
334 Both *Alphaproteobacteria* and *Gammaproteobacteria* have also been observed as significant
335 membership in the phyllosphere of *M. × giganteus*, with both classes having compensatory
336 patterns over 10-week growing season (Grady et al. 2019). The consistent observations of the
337 enrichment of these bacteria in *M. × giganteus* suggests that these bacteria may play a role in the
338 microbial response to fertilization. A future research direction is to use functional studies to
339 understand whether these differences in microbial communities are attributed to functional
340 changes or benefits to the plant or soils.

341 In association with our observations that specific microbial membership in older
342 Miscanthus stands have a less pronounced response to fertilization, we also observed that the

343 alpha diversity of older stand ages were generally less variable in response to fertilization
344 compared to alpha diversity estimated in younger stand ages. Our results consistently suggest
345 that interactions between stand age and fertilization are important to the diversity observed in *M.*
346 *× giganteus*. N fertilization has been previously shown to cause shifts of microbial communities
347 in other plant studies (Dai et al. 2018; Fierer et al. 2012; Yu et al. 2016), but within *M. ×*
348 *giganteus*, previous studies have shown little effect of N fertilization on soil communities (Li et
349 al. 2016; Liu and Ludewig 2019). Our results indicate that stand age can influence the *M. ×*
350 *giganteus* microbial community response to fertilization and thus N availability to the plants.
351 Over multiple growing seasons, plants within aged stands can accumulate increased dead plant
352 organs (litter and roots) both above and below the soil surface and also will develop more mature
353 rhizomes. Potentially, the decreased heterogeneity and variability in the response of the
354 microbiome of older *M. × giganteus* is related to its perennial growth and more consistency in
355 the availability of nutrients.

356 Our observations of role of stand ages in response to fertilization are also consistent with
357 the yield variability at this site (Tejera et al. 2019). We compared observations of alpha diversity
358 within soil microbiomes with above-ground biomass production observed during this sampling
359 year. We identified significant relationships between alpha diversity, stand ages, fertilization
360 and above-ground biomass production, with general patterns of increased above-ground biomass
361 with increased alpha diversity under fertilized conditions. Overall, this result highlights a
362 relationship between microbiome, plant productivity, and fertilization practices. As stands of
363 different ages were planted in different years, a possible confounding factor to these observations
364 are the conditions during the establishment of stands, e.g., climate conditions during the year of
365 planting. Soil properties, such as pH, climate, and organic carbon availability have previously

366 been shown to affect associated microbiomes (Fierer 2017; Lauber et al. 2009). The year of
367 planting has been previously reported to significantly affect biomass yield along with stand age,
368 with planting condition associated with larger effects on one-year old stands but minimal
369 compared to age effects after the second year of growth (Tejera et al. 2019). Conditions
370 associated with planting, especially rhizome condition and weather conditions have been shown
371 to influence stand performance in subsequent years at climatically similar locations in North
372 America and Europe (Lewandowski et al. 2016; Maughan et al. 2012).

373 Overall, this study supports the use of microbial characterization to understand *M. ×*
374 *giganteus* productivity and highlights the need to consider plant age in developing management
375 strategies. Our observations that there are consistent bacterial communities associated with *M. ×*
376 *giganteus* that shifts in response to plant and soil traits justifies future research to better link this
377 microbiome with plant productivity and sustainability. This study specifically focuses on the
378 bacterial community within the *M. × giganteus* soil microbiome. Understanding the role and
379 interactions of other living organisms in the soil (e.g., fungi, nematodes, etc.) and their
380 interactions with nutrients represent another opportunity for future research. Additionally, there
381 is a need to obtain better functional information to understand the response of the *M. × giganteus*
382 bacterial communities to fertilization and how this helps to meet the N needs of *M. × giganteus*
383 over varying plant ages.

384 **Acknowledgements**

385 This work was funded by the DOE Center for Advanced Bioenergy and Bioproducts Innovation

386 (U.S. Department of Energy, Office of Science, Office of Biological and Environmental

387 Research under Award Number DE-SC0018420). The DNA sequencing in this study was

388 performed at Environmental Sample Preparation and Sequencing Facility at Argonne National

389 Laboratory. The LAMPS experiment was funded by USDA National Institute of Food and

390 Agriculture Hatch grant 1008969, the Leopold Center for Sustainable Agriculture, and the Iowa

391 State University Department of Agronomy. FIR was also supported by Coordenação de

392 Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES; PDSE call nº 41/2018). Any

393 opinions, findings, and conclusions or recommendations expressed in this publication are those

394 of the author(s) and do not necessarily reflect the views of the U.S. Department of Energy,

395 USDA, Leopold Center for Sustainable Agriculture or Iowa State University. Partial support

396 was also provided by USDA Hatch Project IOW04414.

397 **References**

398

399 Arundale, R. A., Dohleman, F. G., Heaton, E. A., McGrath, J. M., Voigt, T. B., and Long, S. P.

400 2014. Yields of *Miscanthus × giganteus* and *Panicum virgatum* decline with stand age in

401 the Midwestern USA. *GCB Bioenergy* 6:1–13. <https://doi.org/10.1111/gcbb.12077>

402 Beale, C. V., and Long, S. P. 1997. Seasonal dynamics of nutrient accumulation and partitioning

403 in the perennial C4-grasses *Miscanthus × giganteus* and *Spartina cynosuroides*. *Biomass*

404 and *Bioenergy* 12:419–428. [https://doi.org/https://doi.org/10.1016/S0961-9534\(97\)00016-0](https://doi.org/https://doi.org/10.1016/S0961-9534(97)00016-0)

405 Cadoux, S., Riche, A. B., Yates, N. E., and Machet, J. M. 2012. Nutrient requirements of

- 406 *Miscanthus × giganteus*: Conclusions from a review of published studies. Biomass and
407 Bioenergy 38:14–22. <https://doi.org/10.1016/j.biombioe.2011.01.015>
- 408 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.
409 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat.
410 Methods 13:581–583. <https://doi.org/10.1038/nmeth.3869>
- 411 Christian, D. G., Poulton, P. R., Riche, A. B., and Yates, N. E. 1997. The recovery of 15N-
412 labelled fertilizer applied to *Miscanthus × giganteus*. Biomass and Bioenergy 12:21–24.
413 [https://doi.org/https://doi.org/10.1016/S0961-9534\(96\)00060-8](https://doi.org/https://doi.org/10.1016/S0961-9534(96)00060-8)
- 414 Christian, D. G., Riche, A. B., and Yates, N. E. 2008. Growth, yield and mineral content of
415 *Miscanthus × giganteus* grown as a biofuel for 14 successive harvests. Ind. Crops Prod.
416 28:320–327. <https://doi.org/10.1016/j.indcrop.2008.02.009>
- 417 Cosentino, S. L., Patanè, C., Sanzone, E., Copani, V., and Foti, S. 2007. Effects of soil water
418 content and nitrogen supply on the productivity of *Miscanthus × giganteus* Greef et Deu. in
419 a Mediterranean environment. Ind. Crops Prod. 25:75–88.
420 <https://doi.org/10.1016/j.indcrop.2006.07.006>
- 421 Dai, Z., Su, W., Chen, H., Barberán, A., Zhao, H., Yu, M., Yu, L., Brookes, P. C., Schadt, C. W.,
422 Chang, S. X., and Xu, J. 2018. Long-term nitrogen fertilization decreases bacterial diversity
423 and favors the growth of *Actinobacteria* and *Proteobacteria* in agro-ecosystems across the
424 globe. Glob. Chang. Biol. 24:3452–3461. <https://doi.org/10.1111/gcb.14163>
- 425 Davis, S. C., Boddey, R. M., Alves, B. J. R., Cowie, A. L., George, B. H., Ogle, S. M., Smith, P.,
426 van Noordwijk, M., and van Wijk, M. T. 2013. Management swing potential for bioenergy
427 crops. GCB Bioenergy 5:623–638. <https://doi.org/10.1111/gcbb.12042>

- 428 Davis, S. C., Parton, W. J., Dohleman, F. G., Smith, C. M., Grosso, S. Del, Kent, A. D., and
429 DeLucia, E. H. 2010. Comparative Biogeochemical Cycles of Bioenergy Crops Reveal
430 Nitrogen-Fixation and Low Greenhouse Gas Emissions in a *Miscanthus × giganteus* Agro-
431 Ecosystem. *Ecosystems* 13:144–156. <https://doi.org/10.1007/s10021-009-9306-9>
- 432 Ercoli, L., Mariotti, M., Masoni, A., and Bonari, E. 1999. Effect of irrigation and nitrogen
433 fertilization on biomass yield and efficiency of energy use in crop production of
434 *Miscanthus*. *F. Crop. Res.* 63:3–11. [https://doi.org/10.1016/S0378-4290\(99\)00022-2](https://doi.org/10.1016/S0378-4290(99)00022-2)
- 435 Fierer, N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome.
436 *Nat. Rev. Microbiol.* 15:579–590. <https://doi.org/10.1038/nrmicro.2017.87>
- 437 Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M. A., and Knight, R. 2012.
438 Comparative metagenomic, phylogenetic and physiological analyses of soil microbial
439 communities across nitrogen gradients. *ISME J.* 6:1007–1017.
440 <https://doi.org/10.1038/ismej.2011.159>
- 441 Głowacka, K., Clark, L. V., Adhikari, S., Peng, J., Stewart, J. R., Nishiwaki, A., Yamada, T.,
442 Jørgensen, U., Hodkinson, T. R., Gifford, J., Juvik, J. A., and Sacks, E. J. 2015. Genetic
443 variation in *Miscanthus × giganteus* and the importance of estimating genetic distance
444 thresholds for differentiating clones. *GCB Bioenergy* 7:386–404.
445 <https://doi.org/10.1111/gcbb.12166>
- 446 Grady, K. L., Sorensen, J. W., Stopnisek, N., Guittar, J., and Shade, A. 2019. Assembly and
447 seasonality of core phyllosphere microbiota on perennial biofuel crops. *Nat. Commun.*
448 10:4135. <https://doi.org/10.1038/s41467-019-11974-4>
- 449 Heaton, E. A., Clifton-Brown, J., Voigt, T. B., Jones, M. B., and Long, S. P. 2004. *Miscanthus*

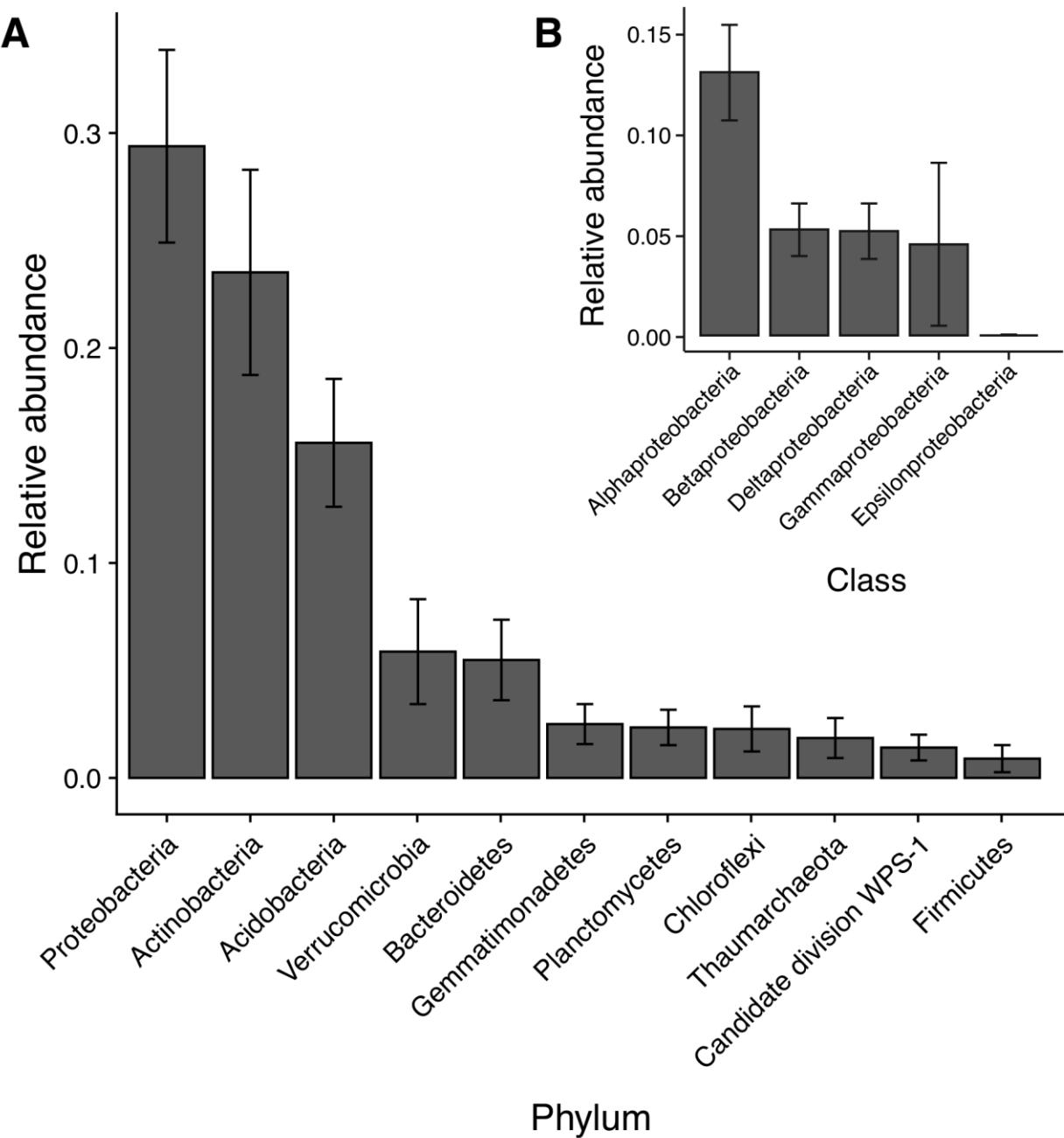
- 450 for renewable energy generation: European union experience and projections for Illinois.
- 451 *Mitig. Adapt. Strateg. Glob. Chang.* 9:433–451.
- 452 <https://link.springer.com/content/pdf/10.1023%2FB%3AMITI.0000038848.94134.be.pdf>
- 453 Heaton, E. A., Dohleman, F. G., and Long, S. P. 2008. Meeting US biofuel goals with less land:
- 454 *The potential of Miscanthus. Glob. Chang. Biol.* 14:2000–2014.
- 455 <https://doi.org/10.1111/j.1365-2486.2008.01662.x>
- 456 Heaton, E. A., Dohleman, F. G., Miguez, A. F., Juvik, J. A., Lozovaya, V., Widholm, J.,
- 457 Zabotina, O. A., McIsaac, G. F., David, M. B., Voigt, T. B., Boersma, N. N., and Long, S.
- 458 P. 2010. *Miscanthus: A promising biomass crop. Adv. Bot. Res.* 56:75–137.
- 459 <https://doi.org/10.1016/B978-0-12-381518-7.00003-0>
- 460 Iqbal, Y., Gauder, M., Claupein, W., Graeff-Hönninger, S., and Lewandowski, I. 2015. Yield and
- 461 quality development comparison between miscanthus and switchgrass over a period of 10
- 462 years. *Energy* 89:268–276. <https://doi.org/10.1016/j.energy.2015.05.134>
- 463 Keymer, D. P., and Kent, A. D. 2014. Contribution of nitrogen fixation to first year *Miscanthus*
- 464 *× giganteus*. *GCB Bioenergy* 6:577–586. <https://doi.org/10.1111/gcbb.12095>
- 465 Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., and Kuramae, E. E. 2016. The
- 466 Ecology of Acidobacteria: Moving beyond Genes and Genomes. In *Frontiers in*
- 467 *Microbiology* (Vol. 7, p. 744).
- 468 <https://www.frontiersin.org/article/10.3389/fmicb.2016.00744>
- 469 Lauber, C. L., Hamady, M., Knight, R., and Fierer, N. 2009. Pyrosequencing-based assessment
- 470 of soil pH as a predictor of soil bacterial community structure at the continental scale. *Appl.*
- 471 *Environ. Microbiol.* 75:5111–5120. <https://doi.org/10.1128/AEM.00335-09>

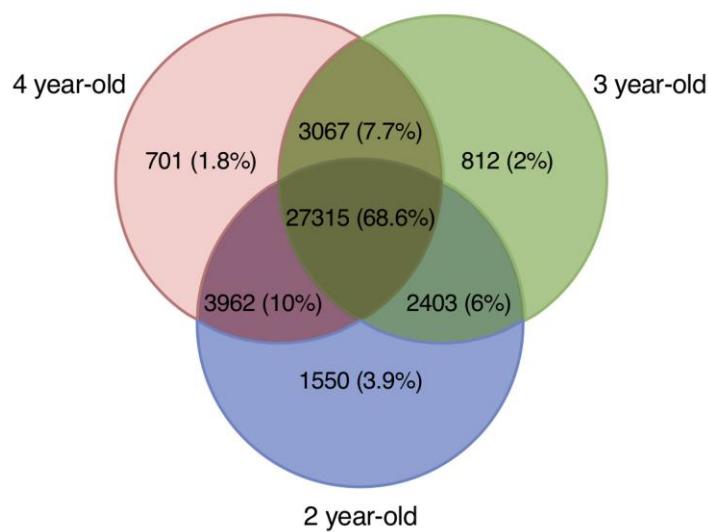
- 472 LeBauer, D., Kooper, R., Mulrooney, P., Rohde, S., Wang, D., Long, S. P., and Dietze, M. C.
- 473 2017. BETYdb: a yield, trait, and ecosystem service database applied to second-generation
- 474 bioenergy feedstock production. *GCB Bioenergy* 10:61–71.
- 475 <https://doi.org/10.1111/gcbb.12420>
- 476 Lewandowski, I., Clifton-Brown, J., Trindade, L. M., Van Der Linden, G. C., Schwarz, K. U.,
- 477 Müller-Sämann, K., Anisimov, A., Chen, C. L., Dolstra, O., Donnison, I. S., Farrar, K.,
- 478 Fonteyne, S., Harding, G., Hastings, A., Huxley, L. M., Iqbal, Y., Khokhlov, N., Kiesel, A.,
- 479 Lootens, P., ... Kalinina, O. 2016. Progress on optimizing miscanthus biomass production
- 480 for the european bioeconomy: Results of the EU FP7 project OPTIMISC. *Front. Plant Sci.*
- 481 7:1–23. <https://doi.org/10.3389/fpls.2016.01620>
- 482 Li, D., Voigt, T. B., and Kent, A. D. 2016. Plant and soil effects on bacterial communities
- 483 associated with *Miscanthus × giganteus* rhizosphere and rhizomes. *GCB Bioenergy* 8:183–
- 484 193. <https://doi.org/10.1111/gcbb.12252>
- 485 Liu, Y., and Ludewig, U. 2019. Nitrogen-dependent bacterial community shifts in root, rhizome
- 486 and rhizosphere of nutrient-efficient *Miscanthus × giganteus* from long-term field trials.
- 487 *GCB Bioenergy* 11:1334–1347. <https://doi.org/10.1111/gcbb.12634>
- 488 Loughin, T. M. 2006. Improved experimental design and analysis for long-term experiments.
- 489 *Crop Sci.* 46:2492–2502. <https://doi.org/10.2135/cropsci2006.04.0271>
- 490 Maughan, M., Bollero, G., Lee, D. K., Darmody, R., Bonos, S., Cortese, L., Murphy, J.,
- 491 Gaussoin, R., Sousek, M., Williams, D., Williams, L., Miguez, F., and Voigt, T. 2012.
- 492 *Miscanthus × giganteus* productivity: The effects of management in different environments.
- 493 *GCB Bioenergy* 4:253–265. <https://doi.org/10.1111/j.1757-1707.2011.01144.x>

- 494 Miguez, F. E., Maughan, M., Bollero, G. A., and Long, S. P. 2012. Modeling spatial and
495 dynamic variation in growth, yield, and yield stability of the bioenergy crops *Miscanthus* ×
496 *giganteus* and *Panicum virgatum* across the conterminous United States. *GCB Bioenergy*
497 4:509–520. <https://doi.org/10.1111/j.1757-1707.2011.01150.x>
- 498 Miguez, F. E., Villamil, M. B., Long, S. P., and Bollero, G. A. 2008. Meta-analysis of the effects
499 of management factors on *Miscanthus* × *giganteus* growth and biomass production. *Agric.*
500 *For. Meteorol.* 148:1280–1292. <https://doi.org/10.1016/j.agrformet.2008.03.010>
- 501 Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L., and Philippot, L. 2019. A plant
502 perspective on nitrogen cycling in the rhizosphere. *Funct. Ecol.* 33:540–552.
503 <https://doi.org/10.1111/1365-2435.13303>
- 504 Oates, L. G., Duncan, D. S., Sanford, G. R., Liang, C., and Jackson, R. D. 2016. Bioenergy
505 cropping systems that incorporate native grasses stimulate growth of plant-associated soil
506 microbes in the absence of nitrogen fertilization. *Agric. Ecosyst. Environ.* 233:396–403.
507 <https://doi.org/10.1016/j.agee.2016.09.008>
- 508 Pan, Y., Cassman, N., De Hollander, M., Mendes, L. W., Korevaar, H., Geerts, R. H. E. M., Van
509 Veen, J. A., and Kuramae, E. E. 2014. Impact of long-term N, P, K, and NPK fertilization
510 on the composition and potential functions of the bacterial community in grassland soil.
511 *FEMS Microbiol. Ecol.* 90:195–205. <https://doi.org/10.1111/1574-6941.12384>
- 512 R_Core_Team. 2019. R: A language and environment for statistical computing. R Found. Stat.
513 <https://www.r-project.org/>
- 514 Rinta-Kanto, J. M., Ouellette, A. J. A., Boyer, G. L., Twiss, M. R., Bridgeman, T. B., and
515 Wilhelm, S. W. 2005. Quantification of toxic *Microcystis* spp. during the 2003 and 2004

- 516 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol.
517 39:4198–4205. <http://www.ncbi.nlm.nih.gov/pubmed/15984800>
- 518 Robertson, G. P., Hamilton, S. K., Barham, B. L., Dale, B. E., Izaurrealde, R. C., Jackson, R. D.,
519 Landis, D. A., Swinton, S. M., Thelen, K. D., and Tiedje, J. M. 2017. Cellulosic biofuel
520 contributions to a sustainable energy future: Choices and outcomes. Science (80-.). 356:1–
521 9. <https://doi.org/10.1126/science.aal2324>
- 522 Stępień, W., Górska, E. B., Pietkiewicz, S., and Kalaji, M. H. 2014. Long-term mineral
523 fertilization impact on chemical and microbiological properties of soil and *Miscanthus* ×
524 *giganteus* yield. Plant, Soil Environ. 60:117–122.
- 525 Tao, K., Kelly, S., and Radutoiu, S. 2019. Microbial associations enabling nitrogen acquisition in
526 plants. Curr. Opin. Microbiol. 49:83–89.
527 <https://doi.org/https://doi.org/10.1016/j.mib.2019.10.005>
- 528 Teat, A. L., Neufeld, H. S., Gehl, R. J., and Gonzales, E. 2015. Growth and Yield of *Miscanthus*
529 × *giganteus* Grown in Fertilized and Biochar-Amended Soils in the Western North Carolina
530 Mountains. Castanea 80:45–58. <https://doi.org/10.2179/14-021R1>
- 531 Tejera, M., Boersma, N., Vanloocke, A., Archontoulis, S., Dixon, P., Miguez, F., and Heaton, E.
532 2019. Multi-year and Multi-site Establishment of the Perennial Biomass Crop *Miscanthus* ×
533 *giganteus* Using a Staggered Start Design to Elucidate N Response. BioEnergy Res.
534 12:471–483. <https://doi.org/10.1007/s12155-019-09985-6>
- 535 Wang, D., Portis, A. R., Moose, S. P., and Long, S. P. 2008. Cool C4 Photosynthesis: Pyruvate
536 Pi Dikinase Expression and Activity Corresponds to the Exceptional Cold Tolerance of
537 Carbon Assimilation in *Miscanthus* × *giganteus*. Plant Physiol. 148:557–567.

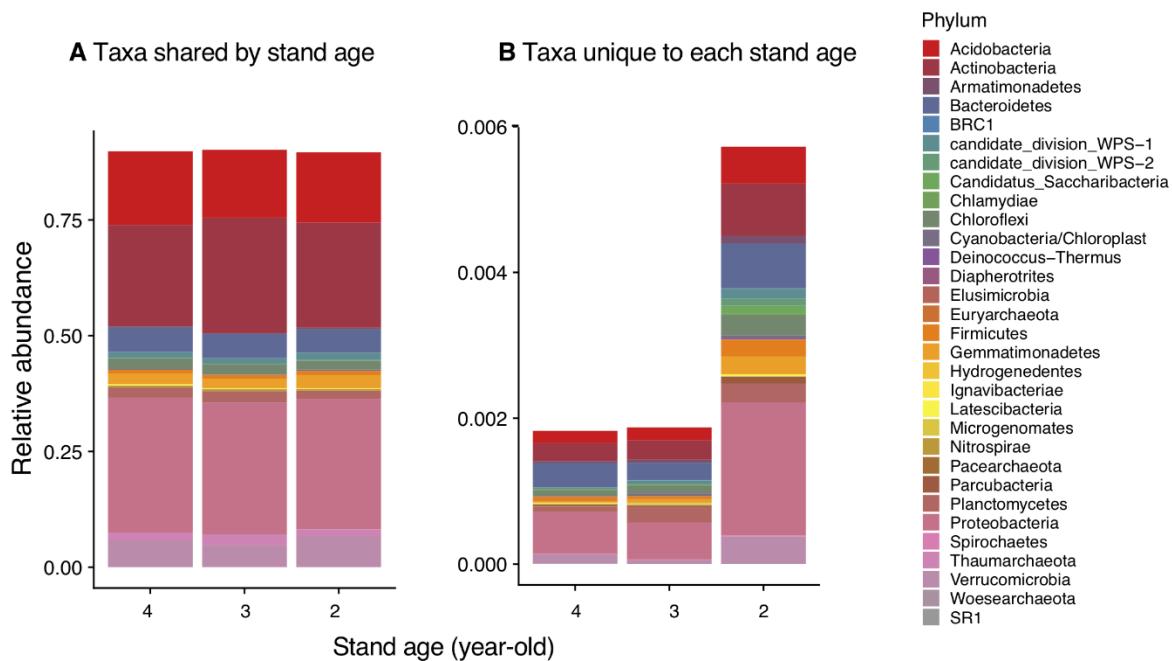
538 <https://doi.org/10.1104/PP.108.120709>

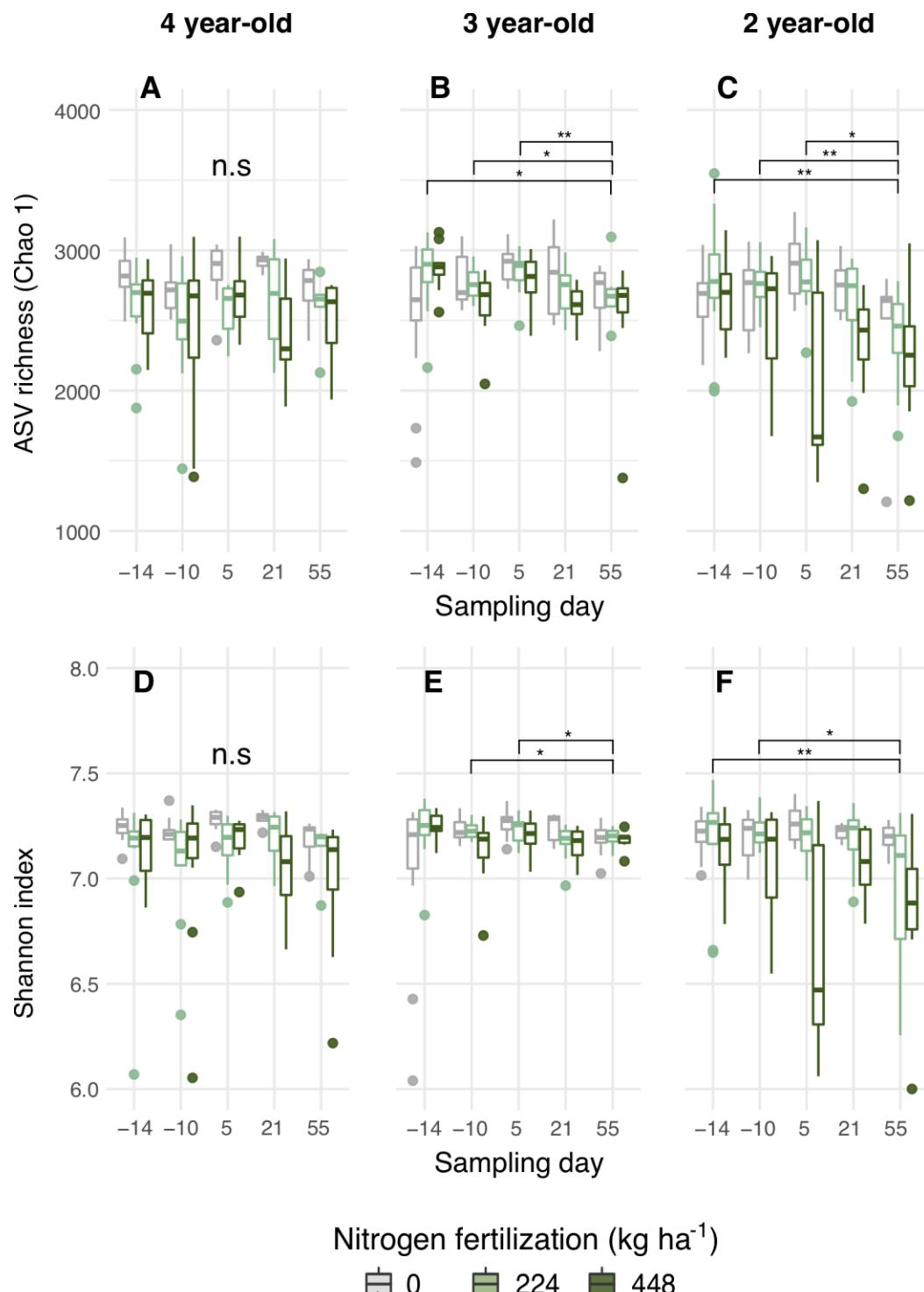

539 Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B., Coutinho, P. M., Wu, M., Xie, G.,
540 Haft, D. H., Sait, M., Badger, J., Barabote, R. D., Bradley, B., Brettin, T. S., Brinkac, L. M.,
541 Bruce, D., Creasy, T., Daugherty, S. C., Davidsen, T. M., DeBoy, R. T., ... Kuske, C. R.
542 2009. Three Genomes from the Phylum Acidobacteria Provide
543 Insight into the Lifestyles of These Microorganisms in Soils. *Appl. Environ. Microbiol.*
544 75:2046 LP – 2056. <https://doi.org/10.1128/AEM.02294-08>


545 Wu, Z., Elizabeth Haack, S., Lin, W., Li, B., Wu, L., Fang, C., and Zhang, Z. 2015. Soil
546 Microbial Community Structure and Metabolic Activity of *Pinus elliottii* Plantations across
547 Different Stand Ages in a Subtropical Area OPEN ACCESS. PLoS One 10:1–11.
548 <https://doi.org/10.1371/journal.pone.0135354>

549 Yan, G., Xing, Y., Xu, L., Wang, J., Dong, X., Shan, W., Guo, L., and Wang, Q. 2017. Effects of
550 different nitrogen additions on soil microbial communities in different seasons in a boreal
551 forest. *Ecosphere* 8:1–19. <https://doi.org/10.1002/ecs2.1879>

552 Yu, C., Hu, X., Deng, W., Li, Y., Han, G., and Xiong, C. 2016. Response of Bacteria
553 Community to Long-Term Inorganic Nitrogen Application in Mulberry Field Soil. PLoS
554 One 11:1–12. <https://doi.org/10.1371/journal.pone.0168152>


555 Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., da Rocha, U. N., Shi, S., Cho, H., Karaoz, U.,
556 Loqué, D., Bowen, B. P., Firestone, M. K., Northen, T. R., and Brodie, E. L. 2018.
557 Dynamic root exudate chemistry and microbial substrate preferences drive patterns in
558 rhizosphere microbial community assembly. *Nat. Microbiol.* 3:1–11.
559 <https://doi.org/10.1038/s41564-018-0129-3>


Fig. 2. Venn diagram of the total number (and percentile) of amplicon sequence variations (ASVs) associated with different stand ages of *M. × giganteus*.

565
566
567
568
569
570
571
572
573
574
575
576
577

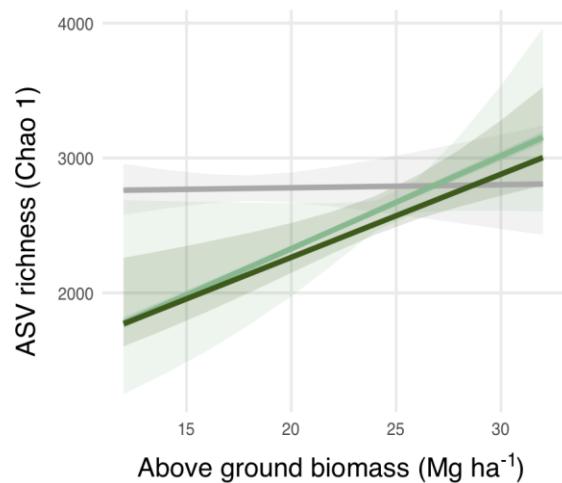
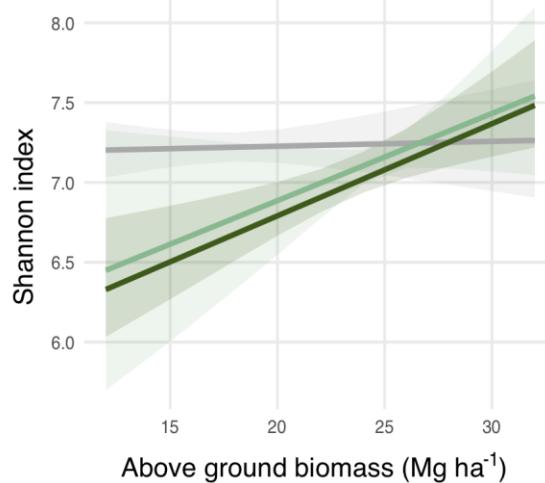


578
579
580
581
582

Fig. 3. A, Taxonomic distribution of the ASVs shared by soils from each stand age of *M. × giganteus* as measured during the summer growing season in 2018. **B**, Taxonomic distribution of the ASVs unique to each stand age of *M. × giganteus*.

583
584 **Fig. 4.** Short-term effect of N fertilization on the alpha diversity of soil bacterial communities in
585 *M. × giganteus* planting areas by stand ages. Chao 1 estimated richness for **A**, four- **B**, three-
586 and **C**, two-year old and Shannon diversity estimates for **D**, four- **E**, three- and **F**, two-year old
587 stand ages shown for varying fertilization rates and over the season. Sampling days are reported
588 relative to the day of fertilizer application. Asterisks indicate significant differences between
589 sampling days, where significance is denoted as * $P < 0.05$, ** $P < 0.01$, and n.s. = not
590 significant.

591

A**B**Nitrogen fertilization (kg ha^{-1})

0 224 448

592

593

594

595

596

597

598

Fig. 5. Alpha-diversity estimates of **A**, richness by estimated Chao 1 and **B**, Shannon diversity of bacterial communities predicted by the interaction between N fertilization and *M. × giganteus* above-ground biomass. Estimates are from predicted marginal effects.