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Dielectric Metasurfaces for High-Q Resonances

* Higher Q-factor = Strong light-matter interaction

* High-Q resonances in bulky conventional cavities
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* A compact, flexible alternative: dielectric metasurfaces
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* How to overcome low Q-factors of Mie resonances in dielectric metasurfaces?
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Dielectric Metasurfaces for High-Q Resonances

* How to achieve high-Q : start from non-radiating 'dark' mode, and then break the symmetry
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* Field is mostly confined
inside, and is ill-defined
outside the resonator

4 limited applications for
light-matter interactions
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Toroidal Resonances in Metamaterials

* Toroidal dipole: self-closing field profile 4 inherently weak free space coupling, well-suited for high-Q resonances
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T. Kaelberer et al., Science 330, 1510 (2010)

* Toroidal dipoles are 3-dimensional distribution and generally requires complex 3-D structures to observe

* 2-dimensional dielectric metamaterials with high quality factor toroidal resonances? 
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Dielectric Cuboid Arrays for High-Q Toroidal Resonances

J. Algorri et al., Optics Express 27, 6320 (2019)

Target A.: 1500 nm

Dielectric: Si (n=3.6)

P = 780 nm

1 = 630 nm

g = 155 nm

h = 300 nm

* High index of Si allow strong field confinement and enhancement

* Void in the middle allows a strong in-plane dipolar field to interact with the environment

9/18



Simulations and Multipole Decomposition Studies
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* High-Q resonance with toroidal electric field profile is observed near 1500 nm

* Center void incorporates a strong field enhancement with a well-defined, in-plane dipolar distribution,
which should be ideal for coupling to quantum emitters
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Simulations and Multipole Decomposition Studies
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* Large magnetic quadrupole is a consequence of exciting the 3-D toroidal dipole in a 2-D geometry

* The magnetic quadrupoles are expelled from the center of the resonance, such that toroidal dipole is still clearly visible
in the field distribution

(more discussion on magnetic quadrupoles in A. Basharin et al., Phys. Rev. X 5, 011036 (2015)) 11/18



Fabrication and Measurement
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* Fabrication with standard top-down approach on poly-Si on quartz

* Experimental Q-factor of 728 is observed

1520
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Broadband Application:Visible Wavelength Viable

* High index, low loss dielectrics are very limited in visible wavelengths 4 few high-Q dielectric metasurfaces
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* Cuboids can support toroidal resonances even with dielectrics of a moderate index

Target A: 680 nm

P = 450 nm

1 = 400 nm

g = 35 nm

h = 100 nm
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Broadband Application:Visible Wavelength Viable
No

rm
al

iz
ed

 t
ra

ns
mi

ss
io

n 
No

rm
al

iz
ed

 t
ra

ns
mi

ss
io

n 

0.8

0.6

0.4

0.2

0  
500 600 700 800

1

0.8

0.6

0.4

0.2

0
500 600 700 800

Wavelength (nm)

IE/E01
124 a) 2.5

-0

2

co 
1.5

a)

1 0 

TU. n g
E

QE

QM
QT
OE
OM

670 680 690 700

Wavelength (nm) Wavelength (nm)

* Same physics can be observed in visible wavelengths

fill

=7 UM
'itttis, I to°

14 /18



Contents

1. Introduction

o Dielectric Metasurfaces for High-Q Resonances

O Toroidal Resonances in Metamaterials

2. Results

O Simulations and Multipole Decomposition Studies

o Fabrication and Measurement

O Broadband Application: Visible Wavelength Viable

3. Discussion

O Application #1: Refractometric Sensing

o Application #2: Coupling to 2-D Materials

15 /18



Application #I: Refractometric Sensing
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* Strong field enhancement at the void allows efficient refractometric sensing

* State-of-the-art for dielectric metasurface (NIR): —300 nm/RIU,[11 conventional Mie resonators: —30 nm/RIU[2]

[1] Y. Yang et al., Nature Communications 5, 5753 (2014)

[2] N. Bosio et al., ACS Photonics 6, 1556 (2019)
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Application #2: Coupling to 2-D Materials

WSe2 on TiO2 metasurface
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* Toroidal metasurfaces can modify emission from 2-D materials placed atop via Purcell effect

17/18



Summary

* Dielectric metasurface with high Q-factor toroidal resonances are demonstrated in near-infrared
and visible wavelengths.

* Cuboid arrays allow formation of high-Q toroidal resonance without very small gaps or precisely
controlled asymmetry in the structure of the resonator.

* Center void allows a strong in-plane dipolar electric field to couple to free space, allowing an
efficient refractometric sensing and a potential strong coupling to quantum emitters integrated onto
the resonator.
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Thank you!

Questions welcome: pajeong@sandia.gov
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