
Just Another Quantum Assembly Language
(Jaqa1TM)

B. C. A. Morrison*tt, A. J. Landahl*tt, D. S. Lobser5,
K. S. Rudinger*, A. E. Russo*, J. W. Van Der Wa111, P. Maunz1

*Center for Computing Research, Sandia National Laboratories, Albuquerque, NM
t Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM

1Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM
§Center for Microsystems Engineering, Science, and Applications, Sandia National Laboratories, Albuquerque, NM

Corresponding author: benmorr@sandia.gov

Abstract—QSCOUT is the Quantum Scientific Computing
Open User Testbed, a trapped-ion quantum computer testbed
realized at Sandia National Laboratories on behalf of the Depart-
ment of Energy's Office of Science and its Advanced Scientific
Computing (ASCR) program. Jaqal, for Just Another Quantum
Assembly Language, is the programming language used to specify
programs executed on QSCOUT. We describe the capabilities of
the Jaqal language, our approach in designing it, and the reasons
for its creation. To learn more about QSCOUT and the Jaqal
language developed for it, please visit qscout.sandia.goV or send
an e-mail to qscout@sandia.go*

Index Terms—physics, quantum mechanics, quantum comput-
ing

I. INTRODUCTION

QSCOUT is the Quantum Scientific Computing Open User
Testbed, a trapped-ion quantum computer testbed realized at
Sandia National Laboratories on behalf of the Department of
Energy's Office of Science and its Advanced Scientific Com-
puting Research (ASCR) program. As an open user testbed,
QSCOUT provides the following to its users:

• Transparency: Full implementation specifications of the
underlying native trapped-ion quantum gates.

• Extensibility: Pulse definitions can be programmed to
generate custom trapped-ion gates.

• Schedulability: Users have full control of sequential and
parallel execution of quantum gates.

In order to provide these features, we must have a quantum
assembly language designed around both the flexibility and
the detailed control they require. We considered a wide variety
of existing languages. However, they either were lacking on
one of these points, or were too focused towards a particular
other hardware model, which led us to develop our own. Due
to the proliferation of such languages in this fledgling field,
ours is named Just Another Quantum Assembly Language,
or Jaqal. We attempt to combine key advantages of existing
languages to support the needs of our current hardware while
providing room for extension to a wide variety of future
targets.

This material was funded by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research Quantum Testbed
Program.

A. QSCOUT Hardware 1.0

The first version (1.0) of the QSCOUT hardware realizes
a single register of qubits stored in the hyperfine clock states
of trapped 1711/3+ ions arranged in a one-dimensional chain
Single and multi-qubit gates are realized by tightly focused
laser beams that can address individual ions. The native
operations available on this hardware include the following:

• Global preparation and measurement of all qubits in the
z basis.

• Parallel single-qubit rotations about any axis in the equa-
torial plane of the Bloch sphere.

• The Molmer—Sorensen two-qubit gate [4] between any
pair of qubits, in parallel with no other gates.

• Single-qubit Z gates executed virtually by adjusting the
reference clocks of individual qubits.

Importantly, QSCOUT 1.0 does not support measurement of
a subset of the qubits. Consequently, it also does not support
classical feedback. This is because, for ions in a single chain,
the resonance fluorescence measurement process destroys the
quantum states of all qubits in the ion chain, so that there are
no quantum states onto which feedback can be applied. Future
versions of the QSCOUT hardware will support feedback.
QSCOUT 1.0 uses Jaqal to specify quantum programs

executed on the testbed. On QSCOUT 1.0, every quantum
computation starts with preparation of the quantum state of the
entire qubit register in the z basis. Then it executes a sequence
of parallel and serial single and two-qubit gates. After this, it
executes a simultaneous measurement of all qubits in the z
basis, returning the result as a binary string. This sequence
of prepare-all/do-gates/measure-all can be repeated multiple
times in a Jaqal program, if desired. However, any adaptive
program that uses the results of one such sequence to issue
a subsequent sequence must be done with metaprogramming,
because Jaqal does not currently support feedback. Once the
QSCOUT platform supports classical feedback, Jaqal will be
extended to support it as well.

B. Language Goals

To realize our objectives, the Jaqal quantum assembly
language (QASM) fulfills the following requirements. While

SAND2020-4650C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

many of them were inspired by other languages' design
choices, this particular set was not available in any mainstream
language. Thus, we developed Jaqal to combine the features
most relevant to our specific application, and ideally to a
variety of future platforms with similar goals.

• Jaqal fully specifies the allocation of qubits within the
quantum register, which cannot be altered during exe-
cution. This explicit specification of which qubits will
be used can be found in low-level languages like Open-
QASM pp and Cirq pp, but is lacking from many
higher-level languages which often instead have language
constructs for allocating "clean" qubits in a known state
or "dirty" qubits in an unknown one K.

• Jaqal requires the scheduling of serial and parallel gate
sequencing to be fully and explicitly specified. Many
quantum languages leave scheduling either completely
unspecified, or constrained only by "barrier" statements,
which prevent reordering of gates across them but allow
gates between them to be executed in any order and/or
simultaneously. Cirq pp is a notable exception, allowing
circuits to be split into "moments" in which all gates
are executed in parallel, with each moment executed
sequentially after the last. However, Jaqal's scheduling
is even more flexible, allowing a sequence of gates to be
placed in parallel with a single (longer duration) gate on
a different qubit, for example.

• Jaqal can execute any native (built-in or custom) gate
specified in any Gate Pulse File it references. There are
many standards for pulse-level quantum programming,
such as OpenPulse pp, already available. However, these
standards do not integrate well with assembly-level lan-
guages. You cannot, for example, define a gate at the
pulse level in OpenPulse and then call that gate from a
OpenQASM program alongside the built-in native gates.
Jaqal allows custom gates to be defined, and their imple-
mentation encapsulated so their use in a Jaqal program
is identical to that of a built-in gate.

• Jaqal can be used to define composite gate 'macros'
which are implemented by arbitrary parallel and/or serial
combinations of native gates. This is a common feature
across both QASM-like languages pp and other quantum
programming languages [[7], Jaqal's syntax is very
similar to that used by other QASM-like languages.

• Jaqal's built-in execution flow control is sufficient to
concisely express common benchmarking circuit patterns
such as repeated gate set tomography germs [y], while
also being restricted enough to guarantee halting in
bounded time. Some form of flow control is present in
most quantum languages, usually conditional execution.
Looping constructs like Jaqal's are rarer; Quil does have
loops, implemented via jump instructions [7], but—unlike
Jaqal—its jump instructions can lead to non-halting pro-
grams. Q# similarly has repeat-until and while loops that
can run for unbounded time [M. While this is of course
necessary for truly universal computation, in practice

we are interested only in programs of bounded (perhaps
polynomial) execution time. Jaqal's loops, which run for
a fixed number of iterations, guarantee this, but can still
significantly reduce the size of programs.

While Jaqal is built upon a lower-level pulse definition
in Gate Pulse Files, it is the lowest-level QASM program-
ming language exposed to users in QSCOUT. As an as-
sembly language, it has been designed with metaprogram-
ming (specifically generative programming) in mind from the
start. While one can write Jaqal directly—and we do not
discourage doing so—we expect most Jaqal code will be
machine-generated. This significantly reduces the burden on
the relatively limited classical computing hardware attached
directly to the QSCOUT testbed: all classical computations are
necessarily moved out of the runtime execution of Jaqal and
into a metaprogram that runs on a more sophisticated classical
computer. This means that we omit several features from Jaqal
that are popular in other quantum computing languages, with
the expectation that programs (written in a classical program-
ming language) that generate Jaqal code can easily replicate
those features, at least from the developer's perspective. For
example, we do not include any form of classical arithmetic
features; if a gate parameter such as a rotation angle needs to
be calculated from known values rather than specified directly,
that calculation occurs at code-generation time rather than
at runtime. We are currently developing a Python package
containing tools for writing metaprograms to generate Jaqal
code, which will be available to users of Jaqal. However, we
anticipate that users will also develop their own higher-level
programming languages that compile down to Jaqal.

II. GATE PULSE FILE

The laser pulses that implement built-in or custom trapped-
ion gates are defined in a Gate Pulse File (GPF). Even-
tually, users will be able to write their own GPF files, but
that capability will not be available in our initial software
release. However, users will be free to specify composite
gates by defining them as sub-circuit rnacrosl. Additionally,
custom native gates can be added in collaboration with Sandia
scientists by specifying the pulse sequences to realize the
gate. Furthermore, we have have provided a GPF file for the
built-in gates of the QSCOUT 1.0 platform, which, other than
the Wilmer-Sorensen gate [4], are standard quantum gates as
described in Ref. [6]:T

• p r ep a r e all prepares each qubit in the register in the

13) state in the computational (z) basis.
• measure_all measures each qubit in the register in

the computational (z) basis.
• Rx <qubit> <angle>, Ry <qubit> <angle>,

and Rz <qubit> <a n g 1 e> rotate the qubit state
counterclockwise by an arbitrary angle around the x, y,
or z axis respectively.

1A11 angles in Jaqal commands are specified as 64-bit floating point
numbers, but are converted by QSCOUT 1.0 hardware to a number between
—27r and 27r, inclusive, to 40 bits of precision.

. Px <qubit>, Py <qubit>, and Pz <qubit> rotate
the qubit state by 7 around the respective axes.

• Sx <qubit>, Sy <qubit>, and Sz <qubit> rotate
the qubit state by 7r/ 2 counterclockwise around the
respective axes.

. Sxd <qubit>, Syd <qubit>, and Szd <qubit>
rotate the qubit state by 7r/ 2 clockwise around the re-
spective axes.

• MS <qubit> <qubit> <phi> <theta> is the
general two-qubit Mplmer-Sprensen gate [4]

exp (9
—i (—) (cos coX + sin yoY)®2) .

2

. Sxx <qubit> <qubit> is the XX-type Mplmer-
Sorensen gate with cp = 0 and B = 7.

We also include idle gates with the same duration as
each single- and two-qubit gate. While it is not necessary
to explicitly insert idle on idling qubits in a parallel block,
these explicit idle gates give the user even more control of the
scheduling of gate execution, and are meant to be used for
performance testing and evaluation.

III. IAQAL SYNTAX

A Jaqal file consists of gates and metadata making those
gates easier to read and write. The gates that are run on the
machine can be deterministically computed by inspection of
the source text. This implies that there are no conditional
statements at this level. This section will describe the workings
of each statement type.

Whitespace is largely unimportant except as a separator
between statements and their elements. If it is desirable to
put two statements on the same line, a ̀ ;' separator may be
used. In a parallel block, the pipe (' V) must be used instead of
the ̀ ;'. Like the semicolon, however, the pipe is unnecessary
to delimit statements on different lines. Both Windows and
Linux newline styles will be accepted.

A. Identifiers

Gate names and qubit names have the same character
restrictions. Similar to most programming languages, they may
contain, but not start with, numerals. They are case sensitive
and may contain any non-accented Latin character plus the
underscore. Identifiers cannot be any of the keywords of the
language.

B. Comments

C/C++ style comments are allowed and treated as whites-
pace. A comment starting with 'IP runs to the end of the
current line, while a comment with `/*' runs until a 'V is
encountered. These comments do not nest, which is the same
behavior as C/C++.

C. Header Statements

A properly formatted Jaqal file comprises a header and body
section. All header statements must precede all body state-
ments. The order of header statements is otherwise arbitrary
except that all objects must be defined before their first use.

1) Register Statement: A register statement serves to de-
clare the user's intention to use a certain number of qubits,
referred to in the file with a given name. If the machine cannot
supply this number of qubits then the entire program is rejected
immediately.
The following line declares a register named q which holds

7 qubits.

register q[7]

2) Map Statement: While it is sufficient to refer to qubits by
their offset in a single register, it is more convenient to assign
names to individual qubits. The map statement effectively
provides an alias to a qubit or array of qubits under a different
name. The following lines declare the single qubit q [0] to
have the name ancilla and the array qubits to be an alias
for q. Array indices start with O.

register q[3]

map ancilla q[0]

map qubits q

The map statement will also support Python-style slicing.
In this case, the map statement always declares an array alias.
In the following line we relabel every other qubit to be an
ancilla qubit, starting with index 1.

register q [7]

map ancilla q [1: 7 : 2]

After this instruction, an cilla[0] , ancilla [1], and
an cilla [2] correspond to q [1], q [3] , and q [5] , re-
spectively.
3) Let Statement: We allow identifiers to replace integers

or floating point numbers for convenience. There are no
restrictions on capitalization. An integer defined in this way
may be used in any context where an integer literal is valid and
a floating point may similarly be used in any context where a
floating point literal is valid. Note that the values are constant,
once defined.
Example:

let total_count 4

let rotations 1.5

D. Body Statements

1) Gate Statement: Gates are listed, one per statement,
meaning it is terminated either by a newline or a separator.
The first element of the statement is the gate name followed by
the gate's arguments which are whitespace-separated numbers
or qubits. Elements of quantum registers, mapped aliases,
and local variables (see section on Macros) may be freely
interchanged as qubit arguments to each gate. The names of the
gates are fixed but determined in the Gate Pulse File, except
for macros. The number of arguments ("arity") must match
the expected number. The following is an example of what a
2-qubit gate may look like.

register q [3]

map ancilla q [1]

Sxx q[0] ancilla

The invocation of a macro is treated as completely equiva-
lent to a gate statement.
2) Gate Block: Multiple gates and/or macro invocations

may be combined into a single block. This is similar, but not
completely identical, to how C or related languages handle
statement blocks. Macro definitions and header statements are
not allowed in gate blocks. Additionally, statements such as
macro definitions or loops expect a gate block syntactically
and are not satisfied with a single gate, unlike C.
Two different gate blocks exist: sequential and parallel.

Sequential gate blocks use the standard C-style `{}' brackets
while parallel blocks use angled `<>' brackets, similar to
C++ templates. This choice was made to not conflict with
`H' brackets, which are used in arrays, and to reserve `0'
for possible future use. In a sequential block, each statement,
macro, or gate block waits for the previous to finish before
executing. In a parallel gate block, all operations are executed
at the same time. It is an error to request parallel operations
that the machine is incapable of performing, however it is not
syntactically possible to forbid these as they are determined
by hardware constraints which may change with time.
The Jaqal language does not have a barrier statement, as

many other quantum assembly languages do, that specifies
to the execution environment which gates should not be re-
ordered to be executed simultaneously. Jaqal gates will be
executed simultaneously if and only if the user places them
in a parallel block with each other, with no re-ordering at
runtime, so no such statement is necessary.

are allowed inside sequential blocks, but
not inside parallel blocks. Blocks may be arbitrarily nested so
long as the hardware can support the resulting sequence of
operations. Blocks may not be nested directly within other
blocks of the same type.
The following statement declares a parallel block with two

gates.

< Sx q[0] l Sy q[1] >

This does the same but on different lines.

I-ooping statements

Sx q[0]

Sy q[1]

Here is a parallel block nested inside a sequential one.

Sxx q[0] q[1] ; < Sx q[0] l Sy q[1] >; }

And sequential blocks may be nested inside parallel blocks.

< Px q[0] I { Sx q[1] ; Sy q[1] 1 >

3) Timing within a parallel block: If two gates are in a
parallel block but have different durations (e.g., two single-
qubit gates of different length), the default behavior is to start
each gate within the parallel block simultaneously. The shorter
gate(s) will then be padded with idles until the end of the gate
block. For example, the command

< Rx q[1] 0.1 l Sx q[2] >

results in the Rx gate on q [1] with angle 0.1 radians and
S x gate on q [2] both starting at the same time; the Rx gate
will finish first and q [1] will idle while the Sx gate finishes.
GPF files will allow users to define their own scheduling
within parallel blocks (e.g., so that gates all finish at the same
time instead).
4) Macro Statement: A macro can be used to treat a

sequence of gates as a single gate. Gates inside a macro can
access the same qubit registers and mapped aliases at the
global level as all other gates, and additionally have zero or
more arguments which are visible. Arguments allow the same
macro to be applied on different combinations of physical
qubits, much like a function in a classical programming
language.
A macro may use other macros that have already been

declared. A macro declaration is complete at the end of its
code block. This implies that recursion is impossible. It also
implies that macros can only reference other macros created
earlier in the file. Due to the lack of conditional statements,
recursion always creates an infinite loop and is therefore never
desirable.
A macro is declared using the macro keyword, followed

by the name of the macro, zero or more arguments, and a code
block. Unlike C, a macro must use a code block, even if it
only has a single statement.
The following example declares a macro.

macro foo

Sx a

Sxx a

Sxx b

1

a b

q[0]

q[0]

To simplify parsing, a line break is not allowed before the
initial T, unlike C. However, statements may be placed on
the same line following the T.
5) Loop Statement: A gate block may be executed for a

fixed number of repetitions using the loop statement. The
loop statement is intentionally restricted to running for a fixed
number of iterations. This ensures it is easy to deterministi-
cally evaluate the runtime of a program. Consequently, it is
impossible to write a program which will not terminate.
The following loop executes a sequence of statements seven

times.

loop 7 {

Sx q[0]

Sz q[1]

Sxx q[0] q[1]

1

The same rules apply as in macro definitions: T must
appear on the same line as loop, but other statements may
follow on the same line.
Loops may appear in sequential gate blocks, but not in

parallel gate blocks.

IV. EXTENSIBILITY

As Jaqal, and the QSCOUT project more broadly, have
extensibility as stated goals, it is important to clarify what is
meant by this term. Primarily, Jaqal offers extensibility in the
gates that can be performed. This will occur through the Gate
Pulse File and the use of macros to define composite gates
that can be used in all contexts a native gate can. Jaqal will
be incrementally improved as new hardware capabilities come
online and real-world use identifies areas for enhancement.
The language itself, however, is not intended to have many
forms of user-created extensibility as a software developer
might envision the term. Features we do not intend to support
include, but are not limited to, pragma statements, user-defined
syntax, and a foreign function interface (i.e., using custom C
or Verilog code in a Jaqal file).

V. DATA OUTPUT FORMAT

When successfully executed, a single Jaqal file will generate
a single ASCII text file (Linux line endings) in the following
way:

1. Each call of measure all at runtime will add a new
line of data to the output file. (If me a s u r e_a11 occurs
within a loop (or nested loops), then multiple lines of
data will be written to the output file, one for each call
of measure_all during execution.)

2. Each line of data written to file will be a single bit-
string, equal in length to the positive integer passed to
regist e r at the start of the program.

3. Each bitstring will be written in least-significant bit
order (little endian).

For example, consider the program:

register q[2]

loop 2 f
prepare_all
Px q [0]
measure all

loop 2 f
prepare_all
Px q [1]
measure_all

Assuming perfect execution, the output file would read as:

10
10
01
01

While this output format will be "human-readable, it may
nevertheless be unwieldy to work with directly. To help
with this, we are developing a Python-based parser in our
metaprogramming package to aid users in manipulating output
data.

VI. METAPROGRAMMING

A. Compile-Time Classical Computation

Performing classical computations at compile-time, before
the program is sent to the quantum computer, can vastly
increase the expressiveness of the language. We provide three
examples of this here.
1) Calculating Gate Angles: Jaqal does not have built-in

arithmetic functions, meaning that gate parameters cannot be
calculated by a Jaqal program itself. For example, consider the
following program, which is not currently legal Jaqal code:

register q[1]

let pi 3.1415926536

loop 100 f
prepare_all; Ry q[0] pi/32; measure_all
prepare_all; Ry q[0] pi/16; measure_all
prepare all; Ry q[0] pi/8; measure all

If writing such a Jaqal program by hand, you can define
constants as needed to store the computed values:

register q[1]

1 e t
1 e t
1 e t

pi_32
pi_16
pi 8

0.09817477042
0.1963495408
0.3926990817

loop 100 f
prepare_all; Ry q[0] pi_32; measure_all
prepare_all; Ry q[0] pi_16; measure_all
prepare_all; Ry q[0] pi_8; measure_all

However, if you're generating a Jaqal program via a high-
level language, then you can include the calculations inline and
have the metaprogram automatically substitute the results, as
in the following pseudocode block:

q = register ("q", 1)
loop (100, gate ("prepare_all") ,

gate ("Ry", q [0] , pi/32) ,
gate ("measure all") ,
gate () , . . .)

Assuming suitable definitions of the register, loop, and
gate calls in the metalanguage environment, running that
metaprogram would then generate a Jaqal program:

register q[1]

loop 100 f
prepare all;
Ry q[0] 0.09817477042;
measure_all;

2) Macro Definition: Another example of a case where
compile-time classical computation could be useful is in macro
definitions. For example, if you wished to define a macro for a
controlled z rotation in terms of a (previously-defined) CNOT
macro, the following otherwise correct circuit would not be
legal Jaqal:

• • •

macro CNOT control target { 1

macro CRz control target angle {
Rz target angle/2
CNOT control target
Rz target -angle/2
CNOT control target

1

CRz q[0] q[1] 0.7853981634;
• . •

This is because both angle/2 and —angle/2 are clas-
sical computations that are not permitted in Jaqal. Instead of
defining a Jaqal macro, users could write the relevant gate
sequence manually:

Rz q[1] 0.3926990817;
CNOT q[0] q[1];
Rz q[1] -0.3926990817;
RNOT q[0] q[1];

However, this makes for unexpressive code. Instead, a user
could define the controlled Z-rotation using a metalanguage,
similarly to the following pseudocode:

procedure CRz (ctrl,
gate ("Rz", target,
gate ("CNOT", ctrl,
gate ("Rz", target,
gate ("CNOT", ctrl,

target, angle) {
angle/2)
target)
-angle/2)
target)

1

CRz(q[0], q[1], 0.7853981634)
• • •

3) Randomized Algorithms: Another relevant use of classi-
cal computation is to generate random numbers to determine
the sequence of gates. Applications of randomized quantum
programs include hardware benchmarking, error mitigation,
and some quantum simulation algorithms. This, too, can be
done in this generative programming paradigm, pre-generating
all the random values and automatically producing Jaqal code
to execute the random circuit selected.

B. Run-Time Classical Computation

Users may also wish to do classical computations while
a Jaqal program is running, based on the results of mea-
surements. For example, in hybrid variational algorithms, a

classical optimizer may use measurement results from one
circuit to choose rotation angles used in the next circuit. In
error-correction experiments, a decoder may need to compute
which gates are necessary to restore a state based on the results
of stabilizer measurements. Adaptive tomography protocols
may need to perform statistical analyses on measurement
results to determine which measurements will give the most
information.
As can be seen from the above examples, run-time classi-

cal computation falls into two main categories; determining
which circuits to run based on measurement results from
former circuits, and determining the gate sequence of a circuit
based on intermediate measurements in a circuit. Currently,
the measurement operation of the QSCOUT hardware acts
on all ions in the trap, destroying their quantum state and
taking them out of the computational subspace. Future ver-
sions of the QSCOUT hardware will allow for the isolation
and measurement of a subset of qubits with a command of
the form measure_subset <qubit> Similarly, a
prepare subset <qubit> . . . operation will allow
the reuse of measured qubits without destroying the quantum
state of the remainder. Once subset measurement is imple-
mented, Jaqal will be extended to support some run-time
classical computation.

However, use cases like adaptive tomography and vari-
ational algorithms are possible with the current hardware,
and can be implemented via metaprogramming techniques.
After running a Jaqal program on the QSCOUT hardware,
a metaprogram can parse the Measurement results, then use
that information to generate a new Jaqal program to run. This
allows for adaptive and hybrid algorithms to be run without
having to execute a numerical optimization routine or similar
such tool on the classical control circuitry of QSCOUT.

ACKNOWLEDGMENT

Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International, Inc., for DOE's National Nuclear
Security Administration under contract DE-NA0003525.

REFERENCES

[1] R. J. Blume-Kohout, et. al, "Robust, self-consistent, closed-form to-
mography of quantum logic gates on a trapped ion qubit," 2013,
arXiv:1310.4492, unpublished.

[2] Cirq: A Python framework for creating, editing, and invoking Noisy
Intermediate Scale Quantum (NISQ) circuits, https://github.com/Cirq.

[3] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, "Open
quantum assembly language," 2017, arxiv:1707.03429, unpublished.

[4] K. Molmer and A. Sorensen, "Multiparticle entanglement of hot trapped
ions." Phys. Rev. Lett., vol. 82, no. 9, p. 1835, 1999.

[5] D. McKay et. al, "Qiskit backend specifications for OpenQASM and
OpenPulse experiments," 2018, arXiv:1809.03452, unpublished.

[6] M. A. Nielsen and I. L. Chuang, Quantum information and quantum
computation. Cambridge: Cambridge University Press, 2000.

[7] R. S. Smith, M. J. Curtis, and W. J. Zeng, "A practical quantum
instruction set architecture," 2016, arxiv:1608.03355, unpublished.

[8] The Q# programming language, https://docs.microsoft.com/en-
us/quantum/language/?view=qsharp-preview.

