

1 **Self-similar Mesocrystals Form Via Interface-Driven Nucleation and**
2 **Assembly**

3 Guomin Zhu^{1,2}, Maria L. Sushko¹, John S. Loring¹, Ben Legg^{1,2}, Miao Song¹, Jennifer A. Soltis¹,
4 Xiaopeng Huang¹, Kevin M. Rosso¹, and James J. De Yoreo^{1,2,*}

5 1 Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354,
6 USA.

7 2 Department of Materials Science and Engineering, University of Washington, Seattle, WA
8 98195, USA.

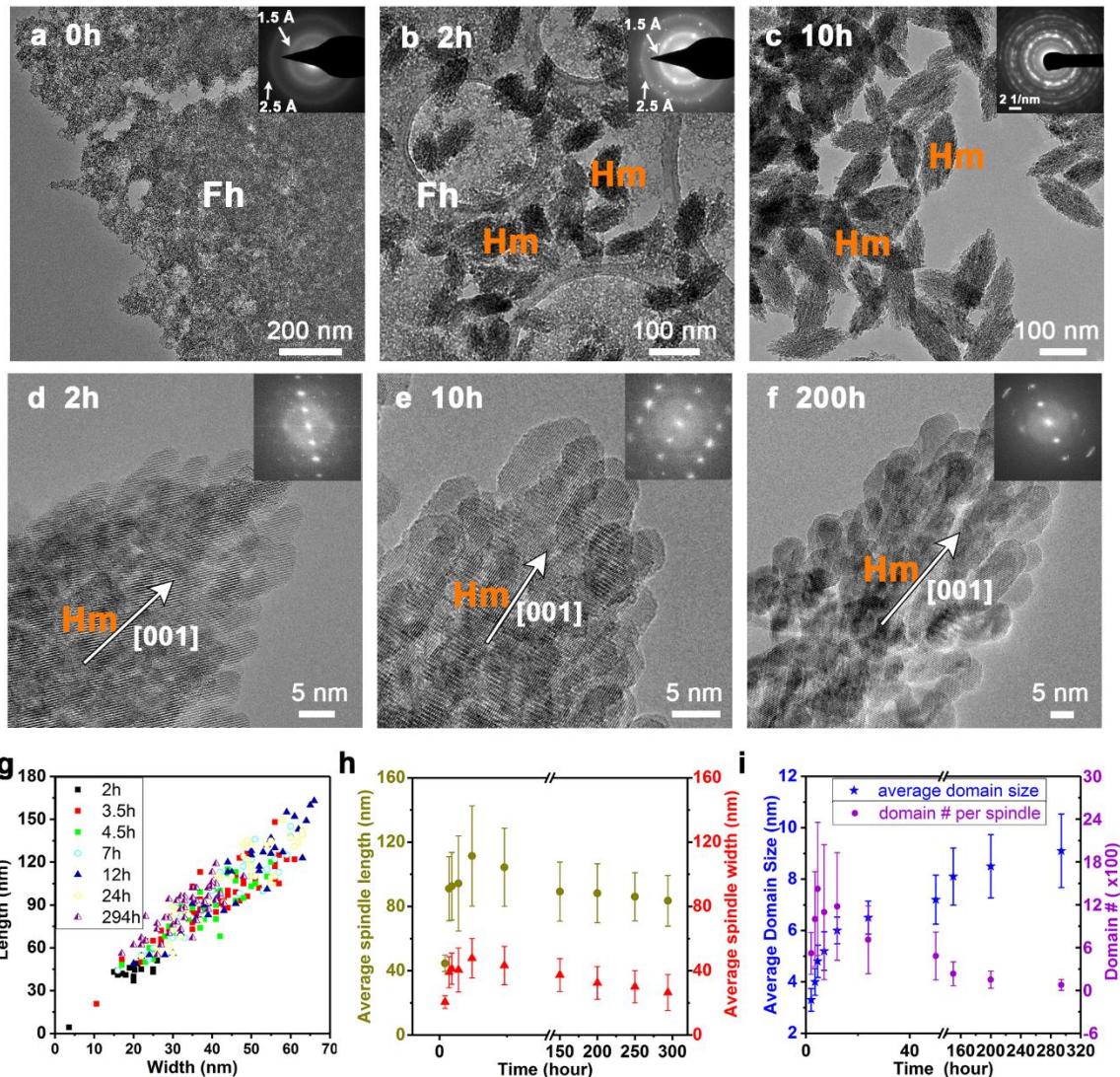
9 * Correspondence to: Email: james.deyoreo@pnnl.gov.

10

11 **Crystallization by particle attachment (CPA), which is a common mechanism of colloidal**
12 **crystallization resulting in hierarchical morphologies¹⁻⁴, has been both exploited to create**
13 **nanomaterials with unique, emergent properties⁴⁻⁶ and implicated in the development of**
14 **complex mineral textures^{1,7}. Oriented attachment (OA)^{7,8}, a form of CPA in which crystalline**
15 **primary particles align and attach along specific crystallographic directions, produces**
16 **structures — typically referred to as mesocrystals — that diffract like single crystals, even**
17 **though the constituent particle domains are still discernable^{2,9}. While the existence of**
18 **mesocrystals has been well documented in a wide range of crystal systems¹⁻⁹ and individual**
19 **particle attachment events have been directly visualized¹⁰, the mechanism by which these**
20 **seemingly random events lead to well-defined, self-similar morphologies remains a mystery,**
21 **as does the role of organic ligands, which are ubiquitous in nanoparticle systems^{3,9,11}.**

22 **Combining *in situ* TEM at 80°C with “freeze-and-look” TEM using indexed grids, we**
23 **tracked formation of hematite (Hm) mesocrystals in the presence of oxalate and interpreted**
24 **the results using classical density functional theory. The results show that formation of**
25 **isolated Hm particles rarely occurs. However, once formed, interfacial gradients created by**
26 **hematite-bound oxalate drive new hematite particles to repeatedly nucleate about 2 nm away**
27 **from the new interface and then immediately undergo OA. Because Hm nucleation rates are**

28 **statistically deterministic and direction-specific, the resulting mesocrystals are self-similar.**
29 **Comparison to natural and synthetic systems suggests interface-driven pathways are**
30 **widespread.**

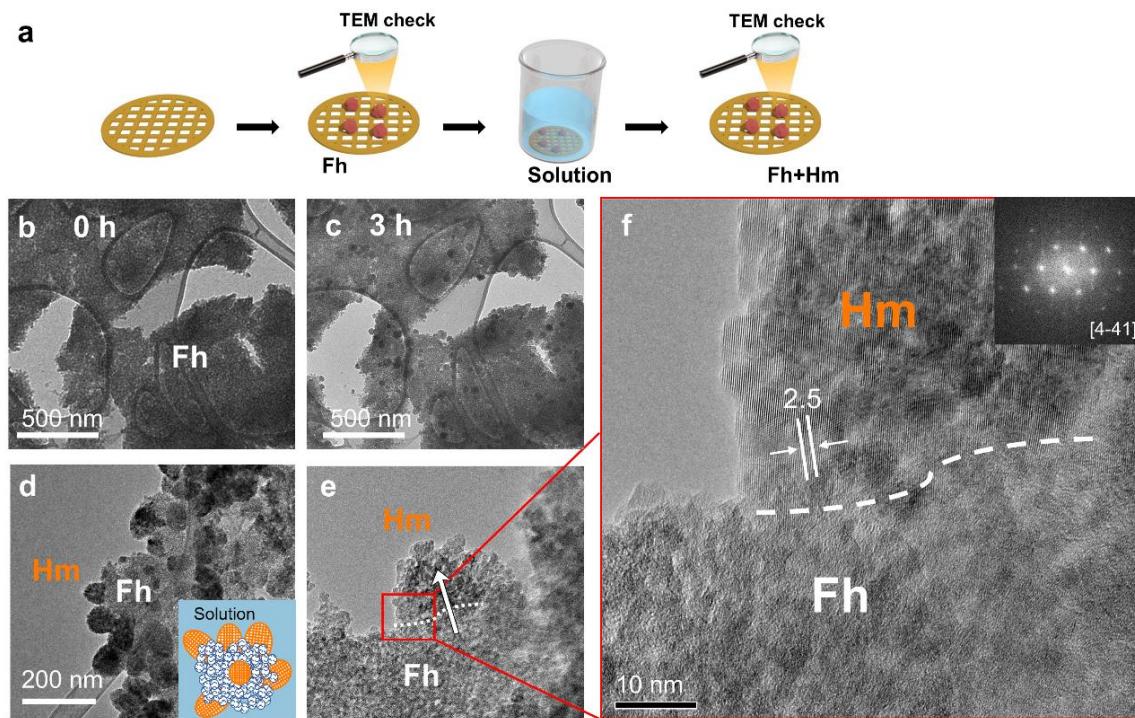

31 The conventional view of OA is that nucleation and particle assembly are distinct events. That is,
32 nucleation provides a supply of primary particles, which encounter other primary particles or
33 particle aggregates via Brownian motion biased locally by attractive interparticle potentials.
34 However, many mesocrystals exhibit highly regular morphologies and uniform size distributions,
35 with shapes that appear similar irrespective of size or location, which calls into question how a
36 random nucleation, diffusion and aggregation process can underlie their formation. (Random
37 cluster-cluster aggregation is predicted to produce power-law cluster size distributions¹².)

38 Attempts to understand how the initial nuclei evolve to a mesocrystal via OA have been
39 complicated by the fact that, in many mineral systems, the first particles to form during
40 crystallization are often of a distinct phase from that of the stable bulk phase^{1,13,14}. Consequently,
41 OA often occurs in concert with a phase transformation such that the resulting mesocrystal consists
42 of the bulk phase instead of the primary phase. Little is known about the role of starting primary
43 phase, how or when phase transformation and ordering takes place. While some studies have
44 proposed that particles convert before attachment¹⁵, others have attributed conversion to the
45 attachment process itself¹⁶ and still others have concluded that transformation occurs after the
46 mesocrystal exceeds a characteristic size^{14,17}. Still further confounding attempts to develop a
47 predictive understanding of OA is the fact that nanoparticles, whether synthetic or natural, are
48 typically coated with surface-bound ligands¹⁸ and thus studies on bare nanoparticles provide
49 limited insight into the vast majority of OA systems⁹. While all but a few of the above studies

50 based their conclusions on morphological and structural data obtained post-synthesis, they
51 nonetheless highlight the key knowledge gaps in understanding of OA mechanisms and pathways.
52 To address these gaps, we investigated mesocrystal formation of iron oxides, which are amongst
53 the most important colloidal phases in natural environments^{19,20}. Iron oxides present classic
54 examples of systems that both form ubiquitous precursor phases and undergo OA accompanied by
55 phase transformations to more stable forms^{15,20-22}. Moreover, in soils, where iron oxides are
56 amongst the most common mineral phases, organic constituents, such as oxalate (Ox), are
57 abundant and commonly associate with mineral surfaces, thus the role of organic adsorbates is of
58 particular importance²³.

59 We started with a precursor consisting of aggregates of poorly crystalline two-line ferrihydrite
60 ($\text{Fe}_2\text{O}_3 \cdot x\text{H}_2\text{O}$, Fh)²⁰, as verified by the electron diffraction, which exhibited the two characteristic
61 diffuse rings at approximately 1.5 Å and 2.5 Å (Fig. 1a) (see SI for details on preparing Fh). In the
62 absence of additives, single crystals of Hm (Fe_2O_3) with well faceted surfaces formed within 10
63 hours (Fig. S1a-c). However, upon addition of 2 mM sodium oxalate (NaOx), after two hours,
64 spindle-shaped Hm began to appear within the Fh aggregates (Fig. 1b). By 10 hours, all Fh
65 disappeared, and only spindle-shaped Hm mesocrystals remained. (Fig. 1c and Fig. S1d-f) Cryo
66 TEM at similar time points confirmed these *ex situ* results (Fig. S2). HRTEM shows that all
67 spindles consisted of assemblages of crystallographically aligned primary Hm particles (Fig. 1d-
68 f) and were elongated along the [001] axis (see SI for identifying the elongation). We used an
69 ultramicrotome to make cross sectioned TEM samples of the spindles. The cross sectional TEM
70 (Fig. S3), together with the 3D tomography (Movie M1) confirmed the structure of the spindles
71 and showed that they contained many nm-scale pores.

72 Dimensional analysis of the spindles showed that the size of the primary particles increased from
 73 about 3.5 nm at 2 hours, (Fig. 1d) to 6.5 nm at 10 hours (Fig. 1e) to 9.5 nm at 200 hours (Fig. 1f).
 74 A plot of spindle length vs. width revealed a constant aspect ratio of about 2.15 ± 0.08 for all


Fig. 1 Formation of spindle-shaped Hm mesocrystals from Fh nanoparticles. **a** Ex situ TEM image of Fh aggregate, with selected area electron diffraction (SAED) showing two diffuse rings. **b** Spindle-shaped Hm appeared in 2 hours. **c** Transformation of all the Fh to Hm occurred by 10 hours. **d-f** HRTEM images of spindle-shaped Hm exhibiting crystallographically coaligned domains whose sizes increase with time. Insets: FFTs performed on whole images. **g** Spindle length vs. width, showing constant aspect ratio. **h** Plots of average spindle length (green color) and width (red color) as a function of time. **i** Plots of average domain size (blue color) and domain number per spindle (purple color) as a function of time. (After about 10 hours, the product of average domain volume and number is approximately constant.)

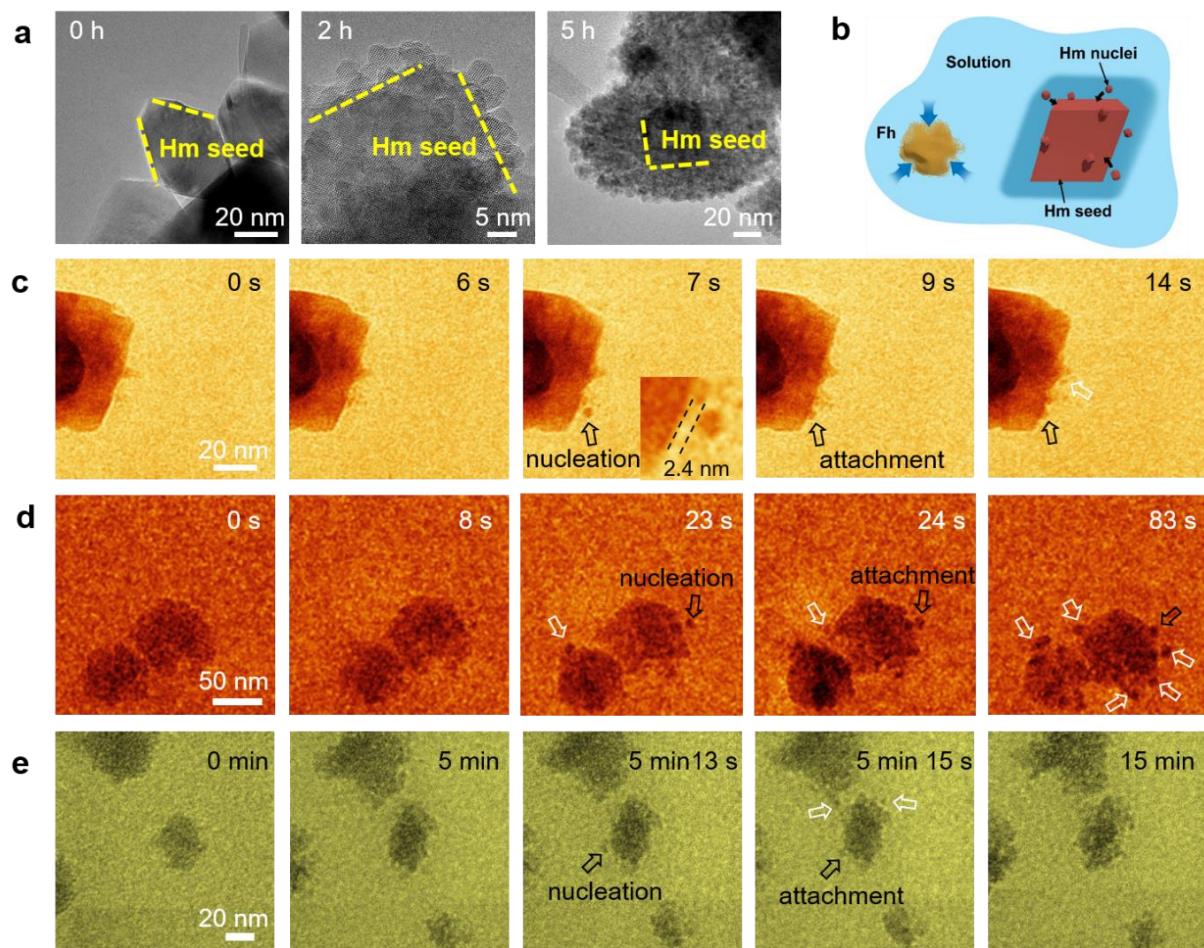
75 spindles and all times in multiple experiments, demonstrating the deterministic nature of spindle
76 growth. Because the primary particles are approximately spherical and uniformly distributed, this
77 constant aspect ratio implies the particle addition rate was ~ 2.2 times faster along the [001] than
78 along the [hk0] directions. Moreover, this consistency was maintained even though the average
79 spindle length and width both increased for the first 12 hours and decreased thereafter (Fig. 1g and
80 h, Table S1). **In contrast to the aspect ratio, the sizes of the spindles varied greatly at any given**
81 **time. For example, at 3.5 hours, spindle length and width varied from 10 nm to 60 nm and 20 nm**
82 **to 140 nm, respectively. This factor of 6 to 7 spread in sizes reflects the slow but continuous birth**
83 **of new spindles as long as Fh is present in the solution.**

84 The analysis also shows that spindle development proceeded in two stages: During the first stage,
85 spindles grew in length, width and particle number. During the second stage, spindle size
86 decreased, but the average primary particle size continued to grow while the total number of
87 discernable particles decreased so that the total volume particles in a spindle remained nearly
88 constant (Fig. 1i), **while the exposed particles slowly grew (Fig. 1i) and developed facets (Fig. 1e**
89 **and 1f).** The transition from the first to second stage correlated with disappearance of the Fh (Fig.
90 1c and i). These results imply that the first stage is dominated by spindle growth through continual
91 addition of Hm particles that form at a solution saturation state set by the more soluble Fh, which
92 gradually decreases in mass. In contrast, the second stage is dominated by particle coarsening in a
93 solution at equilibrium with respect to Hm and devoid of Fh.

94 To track the evolution of Fh and Hm over time, we used a “freeze and look” method by loading
95 indexed TEM grids with Fh and imaged the grids over time. The Fh-loaded grids were then placed
96 into Ox-containing solution at 90 °C (see SI for details). The grids were returned to the TEM for
97 imaging in the same regions after a few hours of reaction (Fig. 2a and Fig. S4). Fh on the indexed

98 TEM grid was observed to consist initially of large aggregates (Fig. 2b). After 3 hours, the overall
 99 morphology of the Fh aggregates was preserved and the first Hm particles began to appear, but
 100 were only found amongst the Fh aggregates (Fig. 2c). Given that the solution must be in
 101 equilibrium with Fh, the fact that Hm only exists in association with the Fh implies that the initial
 102 Hm particles must form either through transformation of Fh or heterogeneous nucleation at the
 103 Fh/solution interface.

Fig. 2 Relationship between developing Hm spindles and Fh precursor. **a** Schematic of experimental approach using indexed TEM grids to follow the reaction at a given location over time. **b** Aggregates of Fh deposited on an indexed lacy carbon TEM grid. **c** Appearance of Hm particles among the Fh aggregates after 3 hours. **d** Representative images of Hm particles and half-spindles on the edge of the Fh aggregates. Inset illustrates the aggregates of Fh (blue) with half spindles (red) growing on the top and pointing towards the solution. **e, f** TEM images of a half-spindle Hm pointing away from the Fh and into the solution, with crystallographically coaligned domains. The Fh-Hm boundary is marked by the dashed line. The half spindle is elongated along the [001] axis denoted by the white arrow.


104 A closer examination of the Hm particles showed that they exhibited a half-spindle shape with all
 105 of the Hm half-spindles pointing towards solution rather than into the Fh aggregate (Fig. 2d).
 106 HRTEM near the spindle-Fh interface (Fig. 2e and f) shows the primary Hm particles are

107 crystallographically coaligned (see inset FFT pattern) and spindles formed in this manner are also
108 elongated along the c axis. If the Hm spindles were growing through direct addition of Fh, which
109 then transformed to Hm, we would expect the spindle to be growing into the aggregate of Fh
110 particles, i.e., the tip of the spindle would advance toward the source of the Fh particles. The fact
111 that the spindle tip advances towards the Fh source and into the bulk solution implies that the Hm
112 primary particles are instead **forming and adding** from the surrounding solution. (This process did
113 **not occur on the Fh side of the spindle, which was a fixed, dense mass of Fh nanoparticles, showing**
114 **that direct Fh transformation to Hm is not the source of the Hm primary particles in the spindles).**"

115 If the Hm particles come from the solution surrounding the forming spindles, the implication of a
116 **time-independent** spindle **shape and aspect ratio** is that the first formed Hm particles determine the
117 rate of production and attachment of subsequent particles. To further explore this possibility, well
118 faceted single crystal seeds of Hm, which have exposed (001) and (012) facets, were added to
119 sodium Ox containing solutions of Fh precursor particles. The number density of seeds was
120 negligible compared to the Fh, mimicking the situation early in stage 1. The results show that Hm
121 spindles indeed grew around these Hm seeds. After incubating for 5 hours, Hm primary particles
122 had formed and attached to the Hm seeds in crystallographic coalignment with the seeds to create
123 spindles for which the ratio of the added length to the added width was again 2.2. (Fig. 3a; see SI
124 for details, and Fig. S5 for more examples) Thus seeded Hm growth follows the same
125 crystallization pathway as unseeded growth, with the seed providing a template for the
126 organization of the new Hm particles. When the reverse experiment was run and Hm spindles were
127 added to Fh containing solutions free of Ox, Hm with well faceted surfaces grew over the Hm
128 spindles. Moreover, the well faceted Hm was crystallographically coaligned with the encapsulated
129 Hm spindle. (Fig. S6).

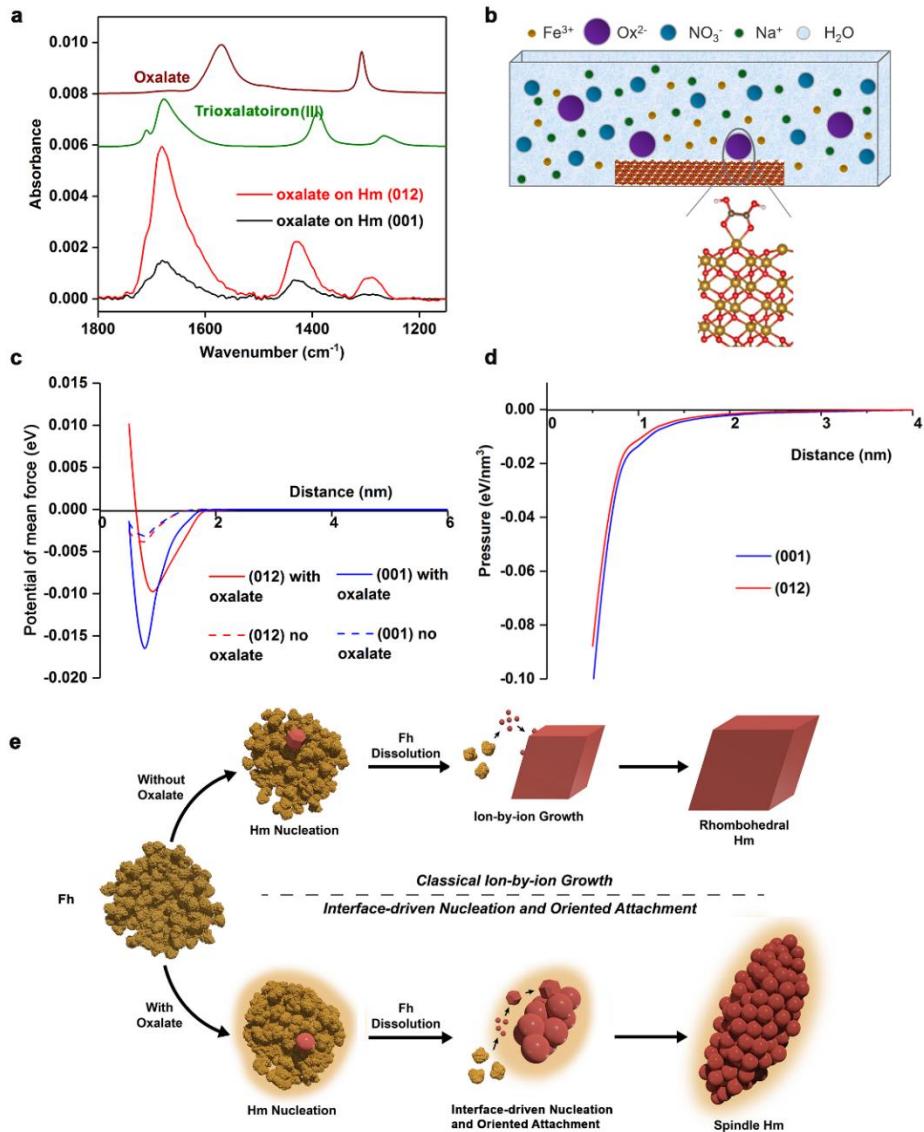
130 The above observations suggest that, once Hm particles are present in solutions of Fh and sodium
131 Ox — whether through nucleation of Hm from solution, on the Fh, or by seeding — the Fh then
132 serves only as a source of solute and all subsequent Hm particles form from the solution that
133 surrounds existing Hm crystals. These new particles must nucleate either directly on the initial Hm
134 crystals in crystallographic coalignment or in the solution near the Hm crystals and then attach in
135 a coaligned fashion. To test this hypothesis and determine where the new Hm particles formed, we
136 exploited the ability to grow spindles on existing Hm seeds by using *in situ* liquid phase TEM with
137 a heating holder operating at 80°C²⁴⁻²⁶.

138 In TEM mode, initially, the Hm seeds were clearly resolved, but the Fh particles were difficult to
139 see due to their low contrast (Fig. 3c and Movie M2). However, STEM imaging simultaneously
140 resolved both the Hm seeds and the Fh particles (Fig. S7 and movie M3). The combined results
141 show that the Fh gradually dissolves, while new Hm particles nucleate adjacent to — but not on
142 — the surface of the Hm seeds and then attach to the seeds (arrows in Fig. 3c-e). Moreover, the
143 spheroidal shape of the nuclei and large contact angles of over 90° between seed and nucleus are
144 inconsistent with heterogeneous nucleation on the seed surface, where nucleation would only be
145 preferred if the interfacial energy, and hence the contact angle, was low. In addition, the flat faces
146 of the seed away from the locations of the attached particles do not grow significantly and do not
147 develop roughness at the scale of a nm or more. This is consistent with the observation that, during
148 late-stage coarsening, the exposed particle surfaces develop facets (Figs. 1e and 1f). When the
149 experiment was allowed to progress for extended periods of time during which the beam was
150 blocked between collection of multiple short image series (Fig. 3e and Movie M6 and M7), the

Fig. 3 Liquid phase TEM observation of Hm nucleation close to the Hm-solution interface and subsequent attachment to form Hm spindles. **a** Hm seeds with initial smooth surfaces are covered with primary particles after 2 hours and develop into fully-formed spindles by 5 hours, as confirmed by *ex situ* TEM. **b** Cartoon showing the dissolution of Fh, and near-interface Hm nucleation and attachment to Hm seeds. **c** and **d** Sequential *in situ* TEM images from movie M5 and M2 collected at 80°C showing Hm nucleation close to Hm-solution interface followed by attachment to the seed. The black arrows highlight particles that nucleate and then attach to the seed. For the series in **c**, a surface-to-surface gap of 2.4 nm is measured at 7s (inset), the spheroidal particle is attached to the seed with a contact angle over 90° at 9s and coarsens to eliminate the negative curvature created by the attachment event by 14s. Additional nucleation events are indicated by the white arrows. **e** Sequential TEM images from movie M6 showing the growth of multiple Hm spindles from Hm seeds, like those in **b** and **c**, over a time period of about 15 minutes. The electron beam was blocked for most of time course of the experiment, with beam exposure only occurring for collection of short image series in the middle of the experiment. The black arrows highlight near-interface nucleation at about 5min 13s, and attachment to the mother particle near 5min 15s, featured by the black arrow. Additional near-interface nucleation events are highlighted by the white arrows.

152 particles to the growing spindles could be directly followed. Analysis of the liquid cell contents
153 after *in situ* heating for 8 hours showed that the final products were indistinguishable from the
154 spindles formed *ex situ* (Fig. S8 vs. Fig. 1c), thus confirming the fidelity of heated liquid phase
155 TEM experiments to the experiments done in bulk solution, as well as those using indexed TEM
156 grids.

157 The *in situ* TEM results provide clear evidence that Fh acts as a buffer to provide the source and
158 set the concentration of solute ions from which new Hm primary particles form. As long as Fh
159 particles are present, the solute concentration remains fixed at the solubility of Fh ensuring that
160 the Hm particles form at constant supersaturation as the Fh dissolves to replace the ions taken up
161 by the growing Hm. However, these new Hm particles nucleate **near** the Hm-solution interface,
162 **exhibiting an intervening edge-to-edge gap of about 1-3 nm** before attaching to build the spindle-
163 shaped Hm monocrystals, though the 2D nature of TEM imaging **and resolution limits** preclude a
164 precise determination of the initial separation (see SI for a detailed analysis, Fig. S9). **The fact that**
165 **all new Hm particles attach to the parent seed or spindle and none are found diffusing into the bulk**
166 **solution far from the seed (or spindle), is a clear reflection of motion within a potential that attracts**
167 **the daughter particles to the parent seed or spindle around which they nucleate. However, we**
168 **cannot discern from these experiments** whether the new Hm particles are coaligned upon
169 nucleation, align during attachment, or **whether they exhibit other styles of OA¹** including
170 attachment with some misalignment followed by elimination of defects,^{10,27} or, **perhaps in some**
171 **instances, attachment via formation of neck in the intervening gap.**^{28,29}


172 What is the role of Ox then? In solution, Ox binds with Fe³⁺ to make Ox complexes the dominant
173 Fe-species down to pH values well below those used here³⁰. Ox is therefore capable of accelerating
174 Fh dissolution, though it does not appreciably shift the bulk Fe³⁺ activity, which still remains fixed

175 at the solubility of Fh. However, the difference in Hm growth with and without Ox shows it also
176 acts at the Hm surface: In the absence of Ox, Hm forms large faceted crystals (Fig. 3a and S1a),
177 while in its presence **approximately** spheroidal particles **are formed, which presumably grow ion-**
178 **by-ion but only grow very slowly once they reach about** $\sim 5\text{nm}$ **in diameter.** Consequently, one
179 role of Ox is to stabilize Hm nanoparticles and inhibit their growth. Moreover, in the absence of
180 Ox, we find no evidence for aggregation of Hm particles, suggesting that Ox resides at the Hm
181 particle surface and biases the local chemistry to promote Hm nucleation and possibly assist in
182 OA.

183 To test the above hypothesis, we first measured the degree to which Ox binds to the common (001)
184 and (012) faces of Hm using attenuated total reflection Fourier transform infrared (ATR-FTIR)
185 spectroscopy and ion chromatography³¹. The results show that the Hm (001) and (012) surfaces
186 develop high Ox coverages of 4.38 and 12.17 Ox molecules per nm^2 , (respectively Fig. 4a, and
187 Table S2). Calculations using plane wave density functional theory (see SI for details) gave similar
188 results of 4.30 and 13.92 Ox anions per nm^2 at full coverage with Ox exhibiting strong bidentate
189 end-on mononuclear binding on both Hm faces (Fig. S11 and Table S2) consistent with prior
190 analyses^{32,33}.

191 We then performed classical density functional theory (cDFT) calculations, which are ideal for
192 modeling the chemical potential of ions within complex multicomponent electrical double layers,
193 to determine the impact of Ox on the Fe^{3+} concentrations near the interface, as well as the
194 corresponding Hm-Hm interparticle forces (Fig. 4b). Following an approach that separates
195 contributions to the total chemical potential describing entropy of mixing (ideal chemical
196 potential) and all interfacial interactions (potential of mean force) (See SI for details), our cDFT
197 analyses show that the driving forces for Fe^{3+} accumulation at the surface of a Hm particle exhibit

198 a qualitative difference in Fe^{3+} potential of mean force with and without Ox in solution. Without
199 Ox, potential of mean force is dominated by the short-range Fe/surface interactions and the shape

Fig. 4 Structure and thermodynamics of Hm-solution interface. **a** ATR-IR spectra of Ox adsorbed on Hm (001) vs. Hm (012). The offset spectra of trioxalatoiron (III) and the aqueous Ox anion are models for inner-sphere bidentate-mononuclear and outer-sphere water-separated binding, respectively (24). Comparison of the spectra of adsorbed Ox to these reference spectra indicates that Ox is predominantly bound to Hm through direct surface Fe (III) coordination in a bidentate mononuclear fashion. **b** Schematic of the solution speciation and simulation set-up. **c** Average potential of mean force of Fe ions vs. distance away from the surface with and without Ox. **d** Distance dependence of particle-particle interaction showing barrier free attraction, which biases the aggregation. **e** Schematic of ion-by-ion growth vs. interface driven nucleation and oriented attachment, without oxalate and with oxalate, respectively. In the latter case, the process is as follows: Hm first nucleates within the Fh aggregate leading to depletion of solute ions in the solution. Thus Fh begins to dissolve to maintain the equilibrium solution speciation. The oxalate/Hm/solution interface then drives nucleation of new Hm particles near interface and the newly formed particles, which initially grow ion-by-ion to about 5 nm, undergo OA to attach to the growing spindle, while. Fh continues to dissolve to maintain equilibrium. After all the Fh is consumed, the Hm particles in the spindle continues to coarsen through slow ion-by-ion growth.

201 of its distance dependence predicts a barrier-free process of ion addition. In contrast, in the
202 presence of Ox surface complexes, which create a layer of negatively charged discrete sites, the
203 potential of mean force of Fe^{3+} is dominated by the entropic ion correlation interactions, which
204 stabilize the interfacial diffuse layer of solvated Fe^{3+} hindering diffusion and deposition on the
205 surface. Solvation interactions contribute to the chemical potential barrier (Fig. S11c). These two
206 factors lead to Fe^{3+} accumulation approximately 1 nm away from the surface, which is
207 approximately the same region in which nucleation of new Hm particles is observed (Fig. 4c).
208 While the chemical potential of Fe^{3+} relative to bulk hematite must be constant throughout a well-
209 mixed system, these results predict that the solution chemistry in the interfacial region differs from
210 that of the bulk and the greatest difference occurs about 1 nm from the surface.

211 Nucleation rates in the interfacial region may be enhanced for both kinetic and thermodynamic
212 reasons. Kinetic effects should only scale linearly with the concentration of precursor species. For
213 Fe^{3+} , the concentration enhancements predicted by cDFT would have a negligible effect on the
214 kinetic pre-factor, although some other Fe-oxalate complexes may be more significantly
215 influenced (See SI for details). Thermodynamic barriers, however, may be dramatically affected.
216 For homogenous nucleation of spherical nuclei, the energy of forming a critical nucleus is typically
217 estimated as $\Delta G^{crit} = -\frac{16}{3}\pi\omega^2\alpha^3/kT\Delta\mu^2$ where ω is the volume per growth molecule in the
218 solid, α is the interfacial free energy, and $\Delta\mu$ is difference in chemical potential between the
219 solution and the bulk solid. The absence of nucleation in the bulk solution indicates that this barrier
220 is very high; indeed we estimate the value to be on $\sim 80\text{kT}$ (see SI). However, models of
221 heterogeneous nucleation³⁴, have shown that such barriers can be dramatically reduced if clusters
222 have favorable interactions with interfaces due to reductions in α . Such treatments are probably
223 oversimplified, since clusters interact with surfaces in diverse ways that may cause the form of the

224 energy landscape to deviate from classical scaling laws. A reduction of the effective interfacial
225 free energy of just 5% would enhance nucleation rates by a factor of $e^{19.6} = 3.3E8$ (see SI for
226 details).

227 Other evidence suggests that solubilities are altered in confined spaces, thin solution layers and
228 near organic interfaces, resulting in necking between nanoparticles and the deposition of
229 crystalline films^{35,36}. A reduced hematite solubility would lead to an increased value of $\Delta\mu$ near
230 the interface; a reduction by just 10% would increase the predicted rate by $e^{10} = 2.2E4$.

231 Remarkably, the TEM evidence suggests that nucleation is most favored roughly a couple of
232 nanometers from the hematite surface, rather than directly on the surface, indicating that the barrier
233 to nucleation is smallest in this region. This is consistent with the predictions of the cDFT
234 simulations that Fe^{3+} species are most concentrated roughly 1 nm from the oxalate-covered Hm
235 surfaces. Moreover, because the oxalate coverage differs on distinct crystallographic faces (Figure
236 4a,c) — as should the structure of the hydration layers³⁷ — we can expect direction dependent
237 nucleation rates, which will generate anisotropic mesocrystal morphologies, such as the spindle-
238 shape crystals obtained here. Following nucleation and growth of the new Hm particles, the cDFT
239 calculations of corresponding interparticle forces predict that they should attach to the primary
240 particles along a barrier-free attractive inter-particle potential, which is mainly due to van der
241 Waals interactions, with weak facet specificity of the attractive inter-particle pressure arising from
242 ion correlation interactions (Fig. 4d and S11e and f).

243 The collective findings reported here converge on an important new pathway of CPA that resolves
244 some key questions about mesocrystal formation (Fig. 4e). Ligands associated with nanocrystal
245 surfaces can bias nucleation to occur in the interfacial region near the surface where attractive
246 interactions then drive attachment. Thus, the processes of nucleation and particle aggregation that

247 have been traditionally viewed as separate are instead inherently linked and bias the growth
248 pathway away from conventional ion-by-ion growth towards OA. Moreover, one of the key
249 characteristics of Hm spindle-shaped particles, namely the self-similar **morphology of branched**
250 **nanoparticle aggregates with uniform aspect ratio**, can now be understood as arising naturally from
251 this interface-driven process of nucleation and OA. Given that the system investigated here
252 presents typical characteristics of nanoparticle systems — i.e., the particles form from an initial
253 metastable phase, they are stabilized by organic ligands, and they exhibit attractive interactions at
254 short range — this proposed pathway may be able to account for numerous occurrences of
255 mesocrystal formation, which include, for example, BaCO₃, BaSO₄, TiO₂, CuO, and ZnO, etc.^{2,9,38},
256 many of which also occur in spindle-shaped morphologies (Fig. S12)^{9,39,40}. Moreover, these results
257 point towards a strategy for synthesizing mesocrystalline materials with control over size, shape
258 and uniformity. The phenomenon observed here suggests mixtures of ligands that exhibit face-
259 specificity of binding can be used to drive nucleation of new particles adjacent to the surfaces of
260 seed crystals with similar face-specificity. Thus, with the proper choice of bulk supersaturation,
261 ligand coverage, and ligand chemistry, one could presumably control the direction-specific rate of
262 particle generation and attachment.

263 Evidence for interfacially driven nucleation due to local chemical gradients has been reported for
264 other systems. An investigation of Au nanoparticle growth concluded that when these pH sensitive
265 chemical gradients become comparable, near-surface nucleation followed by particle attachment
266 becomes the dominant growth pathway²⁸. The effect of organic films at mineral interfaces on
267 concentrating cations was also invoked to explain the formation of barite in the oceans, which are
268 globally undersaturated with respect to the mineral³⁵. Nucleation and growth of barite
269 nanoparticles was shown to occur in slightly undersaturated solutions on COOH- and SH-

270 terminated films due to concentration of Sr^{2+} at the charged organic interface. A number of other
271 studies have attributed heterogeneous nucleation due to chemical transformations of precursors
272 near the interface, including reduction of Au and Pd during seeded nanoparticle synthesis⁴¹ and
273 Ni films during electrodeposition from NiCl solutions⁴².

274 Our results also provide a possible explanation for unusual morphologies of naturally occurring
275 iron oxides. The most obvious examples are the strikingly similar spindle-shaped mesocrystalline
276 Hm recently discovered in the classic Precambrian banded iron formations of Australia⁴³ (Fig.
277 S12), as well as the so called, “rainbow Hm”, whose name reflects the natural iridescence of the
278 mineral, is composed of spindle-shaped Hm 200-300 nm in length and 50-60nm in width⁴⁴. Other
279 studies on iron oxide-rich tropical soils reported Hm and goethite consisting of nanoparticle
280 aggregates, including spindles of similar dimensions⁴⁵. In our study, spindle-shaped Hm formed
281 at temperatures as low as 40°C, suggesting that the process observed here is feasible in these
282 natural settings, where organic constituents, including oxalate, are abundant.

283 Understanding the mechanisms and dynamics of CPA in natural systems is critical to developing
284 quantitative models for biogeochemical cycling of nutrients and metals, environmental
285 remediation, climate reconstruction based on isotopic and impurity signatures, and the enigmatic
286 textures and compositions of many mineral deposits^{1,7,43,46}. Learning to deterministically
287 manipulate CPA will enable advances in nanomaterials design and synthesis for applications in
288 thermoelectrics, photonics, catalysis, and photovoltaics^{2-6,47}. Taken together, the findings reported
289 here and the comparisons to other systems suggest that an interface-driven process of CPA may
290 be a widespread phenomenon in both synthetic and natural environments.

291

292

293

294 **ACKNOWLEDGMENTS**

295 This material is based upon work supported by the US Department of Energy (DOE), Office of
296 Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences
297 Division, Geosciences Program at Pacific Northwest National Laboratory (PNNL). High
298 resolution TEM and STEM imaging and DFT simulations were performed in the Environmental
299 and Molecular Sciences Laboratory, a DOE Office of Science User Facility at PNNL sponsored
300 by the Office of Biological and Environmental Research. PNNL is a multiprogram national
301 laboratory operated for DOE by Battelle under Contract No. DE-AC05-76RL01830.

302 **Data availability**

303 The data supporting the findings of this study are available from the corresponding
304 authors upon request.

305 **Code availability**

306 The codes used for the findings of this study are available from the corresponding
307 author upon request.

308

309 **REFERENCES**

310 1 De Yoreo, J. J. *et al.* CRYSTAL GROWTH. Crystallization by particle attachment in synthetic,
311 biogenic, and geologic environments. *Science* **349**, aaa6760, doi:10.1126/science.aaa6760
312 (2015).

313 2 Sturm , E. V. & Cölfen, H. Mesocrystals: Past, Presence, Future. *Crystals* **7**, 207 (2017).

314 3 Cho, K. S., Talapin, D. V., Gaschler, W. & Murray, C. B. Designing PbSe nanowires and nanorings
315 through oriented attachment of nanoparticles. *J. Am. Chem. Soc.* **127**, 7140-7147,
316 doi:10.1021/ja050107s (2005).

317 4 Yang, J. *et al.* Formation of two-dimensional transition metal oxide nanosheets with
318 nanoparticles as intermediates. *Nat. Mater.* **18**, 970-976, doi:10.1038/s41563-019-0415-3
319 (2019).

320 5 Whitham, K. *et al.* Charge transport and localization in atomically coherent quantum dot solids.
321 *Nat. Mater.* **15**, 557-563, doi:10.1038/nmat4576 (2016).

322 6 Boneschanscher, M. P. *et al.* Long-range orientation and atomic attachment of nanocrystals in
323 2D honeycomb superlattices. *Science* **344**, 1377-1380, doi:10.1126/science.1252642 (2014).

324 7 Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T. & Penn, R. L. Aggregation-based crystal growth
325 and microstructure development in natural iron oxyhydroxide biomineralization products.
326 *Science* **289**, 751-754, doi:10.1126/science.289.5480.751 (2000).

327 8 Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: dislocation generation in defect-free
328 nanocrystals. *Science* **281**, 969-971, doi:10.1126/science.281.5379.969 (1998).

329 9 Cölfen , H. & Antonietti, M. Mesocrystals and nonclassical crystallization.
330 doi:10.1002/9780470994603 (2008).

331 10 Li, D. *et al.* Direction-specific interactions control crystal growth by oriented attachment. *Science*
332 **336**, 1014-1018, doi:10.1126/science.1219643 (2012).

333 11 Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface.
334 *Nature* **437**, 664-670, doi:10.1038/nature04165 (2005).

335 12 Sposito, G. Scaling invariance of the von Smoluchowski rate law. *Colloids Surf. A* **120**, 101-110,
336 doi:10.1016/S0927-7757(96)03718-1 (1997).

337 13 Nielsen, M. H., Aloni, S. & De Yoreo, J. J. In situ TEM imaging of CaCO(3) nucleation reveals
338 coexistence of direct and indirect pathways. *Science* **345**, 1158-1162,
339 doi:10.1126/science.1254051 (2014).

340 14 Van Driessche, A. E. *et al.* The role and implications of bassanite as a stable precursor phase to
341 gypsum precipitation. *Science* **336**, 69-72, doi:10.1126/science.1215648 (2012).

342 15 Yuwono, V. M., Burrows, N. D., Soltis, J. A. & Penn, R. L. Oriented aggregation: formation and
343 transformation of mesocrystal intermediates revealed. *J. Am. Chem. Soc.* **132**, 2163-2165,
344 doi:10.1021/ja909769a (2010).

345 16 Baumgartner, J. *et al.* Nucleation and growth of magnetite from solution. *Nat. Mater.* **12**, 310-
346 314, doi:10.1038/nmat3558 (2013).

347 17 Navrotsky, A., Mazeina, L. & Majlazan, J. Size-driven structural and thermodynamic complexity in
348 iron oxides. *Science* **319**, 1635-1638, doi:10.1126/science.1148614 (2008).

349 18 Boles, M. A., Engel, M. & Talapin, D. V. Self-Assembly of Colloidal Nanocrystals: From Intricate
350 Structures to Functional Materials. *Chem. Rev.* **116**, 11220-11289,
351 doi:10.1021/acs.chemrev.6b00196 (2016).

352 19 Cornell, R. M. & Schwertmann, U. The iron oxides: structure, properties, reactions, occurrences
353 and uses, second edition. doi:10.1002/3527602097 (2003).

354 20 Fischer, W. R. The Formation of Hematite from Amorphous Iron(III)Hydroxide. *Clays and Clay*
355 *Miner.* **23**, 33-37, doi:10.1346/ccmn.1975.0230105 (1975).

356 21 Frandsen, C. *et al.* Aggregation-induced growth and transformation of β -FeOOH nanorods to
357 micron-sized α -Fe₂O₃ spindles. *CrystEngComm* **16**, 1451-1458, doi:10.1039/c3ce40983j (2014).

358 22 Sugimoto, T., Itoh, H. & Mochida, T. Shape Control of Monodisperse Hematite Particles by
359 Organic Additives in the Gel-Sol System. *J. Colloid Interface Sci.* **205**, 42-52,
360 doi:10.1006/jcis.1998.5588 (1998).

361 23 Graustein, W. C., Cromack, K., Jr. & Sollins, P. Calcium oxalate: occurrence in soils and effect on
362 nutrient and geochemical cycles. *Science* **198**, 1252-1254, doi:10.1126/science.198.4323.1252
363 (1977).

364 24 Tan, S. F. *et al.* In Situ Kinetic and Thermodynamic Growth Control of Au-Pd Core-Shell
365 Nanoparticles. *J Am Chem Soc* **140**, 11680-11685, doi:10.1021/jacs.8b05217 (2018).

366 25 Smith, B. J. *et al.* Colloidal Covalent Organic Frameworks. *ACS Cent. Sci.* **3**, 58-65,
367 doi:10.1021/acscentsci.6b00331 (2017).

368 26 Xin, H. L. & Zheng, H. In situ observation of oscillatory growth of bismuth nanoparticles. *Nano*
369 *Lett.* **12**, 1470-1474, doi:10.1021/nl2041854 (2012).

370 27 Nielsen, M. H. *et al.* Investigating Processes of Nanocrystal Formation and Transformation via
371 Liquid Cell TEM. *Microsc. Microanal.* **20**, 425-436, doi:10.1017/S1431927614000294 (2014).

372 28 Cheng, Y. *et al.* Near surface nucleation and particle mediated growth of colloidal Au
373 nanocrystals. *Nanoscale* **10**, 11907-11912, doi:10.1039/c8nr03408g (2018).

374 29 Liu, L. *et al.* Connecting energetics to dynamics in particle growth by oriented attachment using
375 real-time observations. *Nat. Commun.* **11**, 1045, doi:10.1038/s41467-020-14719-w (2020).

376 30 Lee, S. O., Tran, T., Jung, B. H., Kim, S. J. & Kim, M. J. Dissolution of iron oxide using oxalic acid.
377 *Hydrometallurgy* **87**, 91-99, doi:10.1016/j.hydromet.2007.02.005 (2007).

378 31 Loring, J. S., Simanova, A. A. & Persson, P. Highly mobile iron pool from a dissolution-
379 readsorption process. *Langmuir* **24**, 7054-7057, doi:10.1021/la800785u (2008).

380 32 Zhang, Y., Kallay, N. & Matijevic, E. Interaction of metal hydrous oxides with chelating agents. 7.
381 Hematite-oxalic acid and -citric acid systems. *Langmuir* **1**, 201-206, doi:10.1021/la00062a004
382 (1985).

383 33 Situm, A., Rahman, M. A., Allen, N., Kabengi, N. & Al-Abadleh, H. A. ATR-FTIR and Flow
384 Microcalorimetry Studies on the Initial Binding Kinetics of Arsenicals at the Organic-Hematite
385 Interface. *J. Phys. Chem. A* **121**, 5569-5579, doi:10.1021/acs.jpca.7b03426 (2017).

386 34 Hu, Q. *et al.* The thermodynamics of calcite nucleation at organic interfaces: Classical vs. non-
387 classical pathways. *Faraday Discuss.* **159**, 509, doi:10.1039/c2fd20124k (2012).

388 35 Deng, N. *et al.* Organic-mineral interfacial chemistry drives heterogeneous nucleation of Sr-rich
389 (Ba_x, Sr_{1-x})SO₄ from undersaturated solution. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 13221-13226,
390 doi:10.1073/pnas.1821065116 (2019).

391 36 Jin, B., Sushko, M. L., Liu, Z., Jin, C. & Tang, R. In Situ Liquid Cell TEM Reveals Bridge-Induced
392 Contact and Fusion of Au Nanocrystals in Aqueous Solution. *Nano Lett.* **18**, 6551-6556,
393 doi:10.1021/acs.nanolett.8b03139 (2018).

394 37 Songen, H. *et al.* Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-
395 Dimensional Atomic Force Microscopy. *Phys. Rev. Lett.* **120**, 116101,
396 doi:10.1103/PhysRevLett.120.116101 (2018).

397 38 Liu, Z. *et al.* Intrinsic dipole-field-driven mesoscale crystallization of core-shell ZnO mesocrystal
398 microspheres. *J. Am. Chem. Soc.* **131**, 9405-9412, doi:10.1021/ja9039136 (2009).

399 39 Zhang, Z. *et al.* Three-Dimensionally Oriented Aggregation of a Few Hundred Nanoparticles into
400 Monocrystalline Architectures. *Adv. Mater.* **17**, 42-47, doi:10.1002/adma.200400401 (2005).

401 40 Ye, J. *et al.* Nanoporous anatase TiO₂ mesocrystals: additive-free synthesis, remarkable
402 crystalline-phase stability, and improved lithium insertion behavior. *J. Am. Chem. Soc.* **133**, 933-
403 940, doi:10.1021/ja108205q (2011).

404 41 Laramy, C. R. *et al.* Understanding nanoparticle-mediated nucleation pathways of anisotropic
405 nanoparticles. *Chem. Phys. Lett.* **683**, 389-392, doi:10.1016/j.cplett.2017.01.050 (2017).

406 42 Chen, X., Noh, K. W., Wen, J. G. & Dillon, S. J. In situ electrochemical wet cell transmission
407 electron microscopy characterization of solid–liquid interactions between Ni and aqueous NiCl₂.
408 *Acta Mater.* **60**, 192-198, doi:10.1016/j.actamat.2011.09.047 (2012).

409 43 Eglseder, M. S. *et al.* Tiny particles building huge ore deposits – Particle-based crystallisation in
410 banded iron formation-hosted iron ore deposits (Hamersley Province, Australia). *Ore Geol. Rev.*
411 **104**, 160-174, doi:10.1016/j.oregeorev.2018.10.001 (2019).

412 44 Lin, X., Heaney, P. & E. Post, J. Iridescence in Metamorphic "Rainbow" Hematite. *Gems*
413 *Gemology* **54**, doi:10.5741/GEMS.54.1.28 (2018).

414 45 Anand, R. R. & Gilkes, R. J. Variations in the properties of iron oxides within individual specimens
415 of lateritic duricrust. *Soil Res.* **25**, 287-302 (1987).

416 46 Grotzinger, J. P. & Knoll, A. H. Stromatolites in Precambrian carbonates: evolutionary mileposts
417 or environmental dipsticks? *Annu. Rev. Earth Planet. Sci.* **27**, 313-358,
418 doi:10.1146/annurev.earth.27.1.313 (1999).

419 47 Zhou, L. & O'Brien, P. Mesocrystals: a new class of solid materials. *Small* **4**, 1566-1574,
420 doi:10.1002/smll.200800520 (2008).

421

422

423

424