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3 BRINE AVAILABILITY TEST IN SALT (BATS)

BATS Goal:

o Monitoring brine distribution, inflow, and chemistry from heated salt using geophysical
methods and direct liquid & gas sampling

Why Salt?

o Salt long-term (104 — 106 yrs.) benefits at km-scale

o Low porosity and permeability

o High thermal conductivity

o No flowing groundwater

o Creep closure

Salt Complexities
O Brine and salt are corrosive

o Evaporites are very soluble in water

o Salt creep requires drift maintenance

o Excavation Damaged Zone (EDZ)
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4 BACKGROUND ON BRINE IN SALT

• Water types in bedded salt
1. Disseminated clay (< 5 vol-% total; —25 vol-% brine)

2. Intragranular brine (fluid inclusions; 1 — 2 vol-%)

3. Hydrous minerals (e.g., polyhalite, bischofite, epsomite)

4. Intergranular brine (between salt crystals; << 1 vol-%)

• These water types:
o respond differently to heat & pressure

o have varying chemical composition

o differ in stable water isotope makeup

WIPP fluid inclusions, 2 mm scale bar

(Caporuscio et al., 2013)

• EDZ increases intergranular (/) primary flow path

Q: How do water types contribute to Brine Availability?

Polyhalite
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10.1 cm diameter core CT data (Betters et al., 2020)



s QUESTIONS BATS EXPERIMENT SEEKS TO ANSWER

• Understand and predict THMC processes impacting brine availability

o How much of each water type in bedded salt?

o Water response to pressure (0p), stress (0a), and temperature (AT)?

How does EDZ control migration of water (0, k, relative perm. kr)?

o How does EDZ evolve with Ap, Acr, and AT?

o Is two-phase flow in EDZ important for predictions?

• How to best simulate brine pulse after heating?

OBJECTIVE: Utilize PFLOTRAN and TOUGH numerical

modeling codes to match the most recent heating/cooling

cycle at XVIPP.
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6 WASTE ISOLATION PILOT PLANT (WIPP) CONTEXT
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(Drift layout drawing by WIPP TCO)
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8 JANUARY - MARCH 2020 BATS TEST DATA
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9 UTILIZING I -D MODELS TO MATCH FIELD TEST

1D radially symmetric
O 121 grid cells
O 1 km total model domain (0.03 — 150 m)
o DRZ 0.03 — 1.75 m

Heater in contact with salt
O air causes issues with matching field data (radiative
heating)

Simulate 29 days of heating and 13
O Incorporates the on/off cycles in early time and gradual
lowering of energy input

Match temperatures measured at 3 thermocouples in-
plane with heater
o HE1 — TC3 — 0.4m
o HT2 — TC8 — 0.68 m
o HT1 — TC8 — 1.01 m
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RESERVOIR PARAMETERS

Pt= 0.1 - 12.4 MPa

T = 29.5 °C

k = 10-17 - 10-22 m2

cp = 0.001 - 0.01

K = 2.0 - 7.0 W/m °C

c = 366 - 1000 J/kg °C
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io EXCAVATED DAMAGED ZONE (EDZ) STRONGLY CONTROLS
TEMPERATURE PROFILE
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3-D MODELING OF FIELD TEST

Preliminary Results/Workflow

o Well geometry 4 LaGriT 4 Voronoi
0 Outputs Voronoi mesh for TOUGH and PFLOTRAN

o 10mx10mx10m
0 -650,000 grid cells

o Include open-air boreholes

Refinement around wells

2

VOROCRUST

• Code developed at Sandia

o Voronoi cells

o Test discretization
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I 2 FUTURE WORK

Can we use 1-D models to map the 1,DZ to incorporate into more complex 3-D models?

Constrain reservoir parameters via laboratory experiments

o Thermal conductivity vs. temperature

o Heat capacity vs. temperature

Instead of a distinct separation of the Fi',DZ and intact salt, have reservoir parameters decay as a

function of distance from borehole and drift?

Match brine inflow into borehole.

How to incorporate permeability as a function of temperature?

•
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