
LA-UR-21-20936 (Accepted Manuscript)

A scalable algorithm for the optimization of neural network
architectures

Li, Ying Wai
Lupo Pasini, Massiniliano
Yin, Junqi
Eisenbach, Markus

Provided by the author(s) and the Los Alamos National Laboratory (2021-04-26).

To be published in: Parallel Computing

DOI to publisher's version: 10.1016/j.parco.2021.102788

Permalink to record: http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-21-20936

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or
to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work
performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a
researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical
correctness.

h

T
a
v
i
P
c

©

Journal Pre-proof

A scalable algorithm for the optimization of neural network architectures

Massimiliano Lupo Pasini, Junqi Yin, Ying Wai Li, Markus Eisenbach

PII: S0167-8191(21)00043-0
DOI: https://doi.org/10.1016/j.parco.2021.102788
Reference: PARCO 102788

To appear in: Parallel Computing

Received date : 12 November 2020
Revised date : 19 April 2021
Accepted date : 20 April 2021

Please cite this article as: M.L. Pasini, J. Yin, Y.W. Li et al., A scalable algorithm for the
optimization of neural network architectures, Parallel Computing (2021), doi:

ttps://doi.org/10.1016/j.parco.2021.102788.

his is a PDF file of an article that has undergone enhancements after acceptance, such as the
ddition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
ersion of record. This version will undergo additional copyediting, typesetting and review before it
s published in its final form, but we are providing this version to give early visibility of the article.
lease note that, during the production process, errors may be discovered which could affect the
ontent, and all legal disclaimers that apply to the journal pertain.

2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.parco.2021.102788
https://doi.org/10.1016/j.parco.2021.102788

A scalable algorithm for the optimization

aOa
b

Abstract

We propose a m, called
Greedy Search that is at
least as perfo terms of
accuracy and r method
outperforms s selected
neural network

Keywords: de
algorithms, ad

This manuscript
tract DE-AC05-0
US government r
tion, acknowledge
revocable, worldw
manuscript, or all
provide public ac
dance with the DO
doe-public-ac

Introduction

Deep neur
approximate u
[1, 2, 3, 4].
complex struc
complex relati
puts of the mo
is a directed ac
are organized
ferent layers i
ics between in
the graph is m
graph, the num
between node

The perfo
of the architec
ture strongly i

∗Correspondin
Email addres

t outputs
t are too
plex re-

high bias
architec-
acts such
and high
e compu-
in layers
ations to
entifying
n heavily
learning
f the DL
architec-

e number
of layers,
between

rature for
1, 12, 13,
that out-
l Model-
tegory of
Bayesian
ant Tree-
available
odels to

ormation
ural net-
sessment
city. The

Preprint submitte ril 19, 2021

Manuscript File Click here to view linked References

Journal Pre-proof
of neural network architectures

Massimiliano Lupo Pasinia,∗, Junqi Yinb, Ying Wai Lic, Markus Eisenbachb

k Ridge National Laboratory, Computational Sciences and Engineering Division, 1 Bethel Valley Road, Oak Ridge, TN, USA, 37831
Oak Ridge National Laboratory, National Center for Computational Sciences, 1 Bethel Valley Road, Oak Ridge, TN, USA, 37831
cLos Alamos National Laboratory, Computer, Computational, and Statistical Sciences Division, Los Alamos, NM, 87545, USA

new scalable method to optimize the architecture of an artificial neural network. The proposed algorith
for Neural Network Architecture, aims to determine a neural network with minimal number of layers

rmant as neural networks of the same structure identified by other hyperparameter search algorithms in
computational cost. Numerical results performed on benchmark datasets show that, for these datasets, ou
tate-of-the-art hyperparameter optimization algorithms in terms of attainable predictive performance by the

architecture, and time-to-solution for the hyperparameter optimization to complete.

ep learning, hyperparameter optimization, neural network architecture, random search, greedy constructive
aptive algorithms

has been authored in part by UT-Battelle, LLC, under con-
0OR22725 with the US Department of Energy (DOE). The
etains and the publisher, by accepting the article for publica-
s that the US government retains a nonexclusive, paid-up, ir-
ide license to publish or reproduce the published form of this
ow others to do so, for US government purposes. DOE will
cess to these results of federally sponsored research in accor-

E Public Access Plan (http://energy.gov/downloads/
cess-plan).

al networks (NN) are nonlinear models used to
nknown functions based on observational data
Their broad applicability is derived from their
ture, which allows these techniques to reconstruct
ons between quantities selected as inputs and out-
del [5]. From a mathematical perspective, a NN
yclic graph where the nodes (also called neurons)
in layers. The type of connectivity between dif-
s essential for the NN to model complex dynam-
puts and outputs. The structure or architecture of
ainly summarized by the number of layers in the
ber of nodes at each layer and the connectivity

s of adjacent layers.
rmance of a NN is very sensitive to the choice
ture for multiple reasons. Firstly, the architec-

mpacts the prediction computed by a NN. Indeed,

g author
s: lupopasinim@ornl.gov (Massimiliano Lupo Pasini)

NN’s with different structures may produce differen
for the same input. On the one hand, structures tha
simple may not be articulate enough to reproduce com
lations. This may result in underfitting the data with
and low variance in the predictions. On the other hand,
tures that are too complex may cause numerical artif
as overfitting, leading to predictions with low bias
variance. Secondly, the topology of a NN affects th
tational complexity of the model, because an increase
and nodes leads to an increase in floating point oper
train the model and to make predictions. Therefore, id
an appropriate architecture is an important step that ca
impact the computational complexity to train a deep
(DL) model and the final attainable predictive power o
model itself. However, the parameter space of NN
tures is too large for an exhaustive search. In fact, th
of architectures grows exponentially with the number
the number of neurons per layer and the connections
layers.

Several approaches have been proposed in the lite
hyperparameter optimization (HPO) [6, 7, 8, 9, 10, 1
14, 15, 16] with the goal to identify a NN architecture
performs the others in terms of accuracy. Sequentia
Based Optimization (SMBO) algorithms [7] are a ca
HPO algorithm. Examples of SMBO algorithms are
Optimization (BO) [15, 17] and its less expensive vari
Parzen estimator (TPE), which rely on information
from previously trained models to guide the choice of m
build and train in following steps. The use of past inf
generally benefits the reduction of the number of ne
works to train in the next iterations, and provides an as
of uncertainty by incorporating the effect of data scar

d to Elsevier Ap

Jo
ur

na
l P

re
-p

ro
of

efficacy of the results obtained with BO is highly sensitive to the
choice of the prior distribution on the hyperparameter space as
well as the acq
in the hyperpa
is represented
and evolution
topology of a
and connectio
els. Incremen
rithms [27, 28
tionally conve
of NN models
cremental app
dients [30, 31]
estimate, but t

Several sc
been proposed
sweep, search
perparameters
in the search sp
for continuous
discretization
wardly paralle
terms of comp
hyperparamete
from GS main
cally instead o
terms of time-
number of hyp
DL model. T
used by GS an
of parallelizat
and RS requir
parameter sea

We presen
computational
that performs
to-solution, as
other hyperpa
budget is an im
tant reasons: t
of time when t
imposes obvio
portant when c
accurate mann
for NN Archit
ments the num
other increme
ture [34, 35, 3
(sliced) RS res
stratified RS is
and previous m
by the validat
the predictive
first layer, a ra
instantiations
ber of neuron

associated DL model. Random search would identify the hyper-
parameters for each of the instantiations, and the performance

f neurons
rforming
the next

evaluated
stratified
ough (al-
ion land-
ons at lo-
tion, our
because
p.
itectures:

models
evaluated
d with its
e method
model on
the same

troduces
optimiza-
tion 3 de-
erical ex-
specifics
nsidered,
Section 4
e perfor-

ation and
sults pre-
ue.

and out-

(1)

eural net-
redictive
compos-

(2)

. . , L + 1.
the com-
tion f in
directed

posed to-
ty of the

the NN.
= 0. The
tarts with
of L hid-
umber of
ides with

Journal Pre-proof
uisition function to select new points to evaluate
rameter space. Another class of HPO methods
by genetic algorithms [18, 19, 20, 21, 22, 23]

ary algorithms (EA) [24, 25], which evolve the
NN by alternatively adding or dropping nodes

ns based on results attained by previous NN mod-
tal, adaptive approaches [26] and pruning algo-
] or random dropout [29] can also be computa-
nient because they tend to minimize the number

built and trained. All the SMBO, EA and in-
roaches described above adopt theoretical expe-
to reduce the uncertainty of the hyperparameter

his comes at the price of not being scalable.
alable algorithms for hyperparameter search have

in the literature. Grid Search (GS), or parameter
es exhaustively through a specified subset of hy-
. The subset of hyperparameters and the bounds
ace are specified manually. Moreover, the search
hyperparameters requires a manually prescribed
policy. Although this technique is straightfor-
lizable, it becomes more and more prohibitive in
utational time and resources when the number of
rs increases. Random Search (RS) [32] differs
ly in that it explores hyperparameters stochasti-
f exhaustively. RS is likely to outperform GS in
to-solution [32, 33], especially when only a small
erparameters affects the final predictive power of
he independence of the hyperparameter settings
d RS make these approaches appealing in terms

ion and obtainable scalability. However, both GS
e expensive computations to perform the hyper-
rch.
t a scalable method to determine, within a given

budget, the NN with minimal number of layers
at least as well, in terms of accuracy and time-
NN models of the same structure identified by

rameter search algorithms. The computational
portant aspect of the NN training for two impor-

he available computational power and the period
he computational power is available. The former
us intrinsic limitations, the latter becomes im-
ritical decisions have to be made in a timely and
er. We refer to our method as Greedy Search

ecture (GSNNA). Although our algorithm incre-
ber of hidden layers adaptively, it differs from

ntal, adaptive algorithms proposed in the litera-
6, 37] in that our algorithm performs a stratified
tricted to one hidden layer at each iteration. This
the most important difference between GSNNA
ethods. The selection of the NN models is driven

ion score, which is used as a metric to quantify
performance of the DL models. Starting with the
ndom search is performed in parallel on various
of the DL model, to determine the optimal num-
s on each layer and the hyperparameters of the

of the DL model would determine the best number o
and retain the hyperparameters associated with best pe
model. The same sliced RS procedure is applied to
layers. The recycling of information from previously
models guarantees a fine level of exploitation, and the
RS performed at each iteration still guarantees a thor
beit not exhaustive) exploration of the objective funct
scape in the hyperparameter space to prevent stagnati
cal minima. By performing a stratified RS at each itera
new approach retains a high level of parallelization,
the NN models can be trained concurrently at each ste

In this work we focus on two widely used NN arch
multi-layer perceptrons (MLP) and convolutional NN
(CNN). The performance of the HPO algorithms is
using five standard datasets, each of them is associate
specifically tailored DL model. The validation of th
will be done by comparing the efficiency of the DL
the determined NN architecture with the efficiency of
type of NN identified by other algorithms.

The paper is organized in five sections. Section 1 in
the DL background. Section 2 explains our novel
tion algorithm for the architecture of NN models. Sec
scribes the computational environment where the num
periments are performed, the benchmark datasets, the
of the implementations for the each HPO algorithm co
and the parameter setting for each HPO algorithm.
presents numerical experiments where we compare th
mance of our HPO algorithm with Bayesian Optimiz
Tree-Parzen Estimator. Section 5 summarizes the re
sented and describes future directions to possibly purs

1. Deep learning background

Given an unknown function f that relates inputs x
puts y as follows

y = f (x),

a deep feedforward network, also called feedforward n
work or multilayer perceptron (MLP) [5, 10], is a p
statistical model that approximates the function f by
ing together many different functions such that

f̂ (x) = fL+1(· · · f`+1(f`(f`−1(. . . f0(x))))),

where f̂ : Rp → Rb, and f` : Rp` → Rp`+1 for ` = 0, .
The goal is to identify the proper number L so that
position in Equation (2) resembles the unknown func
(1). The composition in Equation (2) is modeled via a
acyclic graph describing how the functions are com
gether. The number L that quantifies the complexi
composition is equal to the number of hidden layers in
We refer to the input layer as the layer with index `
indexing for hidden layers of the deep NN models s
` = 1. In this section we consider a NN with a total
den layers. The symbol p` is used to denote the n
neurons at the `th hidden layer. Therefore, p0 coinc

2

Jo
ur

na
l P

re
-p

ro
of

the dimensionality of the input, that is p0 = p. The very last
layer with index L + 1 represents the output layer, meaning that
pL+1 = b coin
refer to w ∈ R
Following this
layer of the N
fL+1 that repre
deep feedforw
the non-linea
to describe the
approach can
minimizes the
model and giv

Given a da
the outputs for
as

where the ope

F(x,w)

where ϕ` (`
generate non-l
notation for th

we can rewrite

F(x,w

The composit
products using
the f` used in
Ntot is the tota
This value mu
that is

If the target va
ϕL+1 is usuall
If the target v
be the logit fu
L = 0 and ϕ1
tistical model
the number of
the logit funct
regression mo

In order to
tional kernels
Convolution is
interactions be
same set of re

across the entire data instead of using several sets of regression
coefficients, one specific for each neighbourhood as a standard

nvolution
efficients
regularly
spect this
xploit the
olutional
haracter-

ems from
are the

y inherit
se matrix
s benefits
required
mory re-

rs

e, within
l number
tasets, in
ls of the
rch algo-
rameters
e consid-
e number
e type of
the batch
zation al-
replaced
onal ker-
as well.

region of
e that the
et for the

in that it
cture that

at hand.
and a test
iated NN
alidation
h is used
The test

he finally
e refer to
asure the

ed below,
over NN
at attains
ortion of
rameters
the deep
s and the

Journal Pre-proof
cides with the dimensionality of the output. We
Ntot as the total number of regression coefficients.
notation, the function f0 corresponds to the first

N, f1 is the second layer (first hidden layer) up to
sents the last layer (output layer). In other words,
ard networks are nonlinear regression models and
rity is given by the composition in Equation (2)
relation between predictors x and targets y. This

be reinterpreted as searching for a mapping that
discrepancy between values ŷ predicted by the

en observations y.
taset with m data points, the process of predicting
given inputs via an MLP can thus be formulated

ŷ = F(x,w), (3)

rator F : Rp0 × RNtot → Rb is

= ϕL+1

(∑

kL

wkL+1kLϕL

(∑

kL−1

wkLkL−1ϕL−1

(
. . .

. . . ϕ1

(∑

i=1

wk1ixi

))))
,

(4)

= 1, . . . , L + 1) are activation functions used to
inearity in the predictive model. Using the matrix
e weights connecting adjacent layers as

W`,`−1 ∈ Rp`×p`−1 , (5)

(4) as

) = ϕL+1

(
WL+1,L

(
ϕL

(
. . .

(
ϕ1

(
W1,0x

)))))
. (6)

ion of the activation functions ϕ` with the tensor
matrices W`+1,` at the `th layer corresponds to

Equation (2). The notation in (6) highlights that
l number of regression weights used by the NN.
st account for all the entries in W`,`−1’s matrices,

Ntot =

L+1∑

`=1

p`p`−1. (7)

lues are continuous quantities, the very last layer
y chosen to be linear, i.e., the identity function.
alues are categorical, then ϕL+1 is usually set to
nction. If the number of hidden layers is set to
is set to be the identity function, then the sta-

becomes a classical linear regression model. If
hidden layers is set to L = 0 and ϕ1 is set to be

ion, then the statistical model becomes a logistic
del.

exploit local correlations in the data, convolu-
can be composed with the activation functions ϕi.

a powerful mathematical tool that models local
tween data points. As such, convolution uses the
gression coefficients to model local interactions

MLP architecture would require. The use of the co
thus significantly reduces the dimensionality of the co
needed in DL models to reconstruct local features in
structured data. Well known examples of data that re
geometrical properties are images. NN models that e
data locality for the feature extraction are called Conv
Neural Networks (CNN) [38, 39, 40] and they are c
ized by a sparse connectivity or sparse weights that st
the sparse interaction between data. In essence CNN
nonlinear generalization of kernel regression and the
from the linear case the advantages of replacing den
multiplication with sparse matrix multiplications. Thi
the computation by reducing the number of FLOPS
to perform matrix multiplications, and reduces the me
quirement to store the regression weights.

2. Adaptive selection of the number of hidden laye

The goal of our novel HPO algorithm is to determin
a given computational budget, the NN with minima
of layers that performs at least as well on training da
terms of accuracy and time-to-solution, as NN mode
same structure identified by other hyperparameter sea
rithms. The HPO is performed over a set of hyperpa
which differs according to the type of NN architectur
ered. For MLP models, the HPO is performed over th
of hidden layers, the number of neurons per layer, th
nonlinear activation function at each hidden layer and
size used to train the model with a first-order optimi
gorithm. For CNN models, the number of neurons is
by the number of channels. In addition, the convoluti
nel, the dropout rate and the pooling are optimized
In order for the HPO procedure to be applied, the
the hyperspace explored must be bounded to guarante
exploration is restrained within a computational budg
number of layers and the other NN hyperparameters.

The result of the procedure is dataset dependent,
aims to identify a customized neural network archite
well predicts the input-output relation for the dataset
The dataset is split into a training set, a validation set
set. The training portion is used to train the instant
models. The performance of the DL models over the v
set is used to associate the model with a score, whic
to compare the performance of the NN instantiated.
set is used to quantify the predictive performance of t
selected NN model by computing the test score. W
Section 4.1 for details about the metrics used to me
performance of a NN.

The pseudo-code that describes GSNNA is present
in Algorithm 1. The method starts by performing RS
models with one hidden layer and it selects the NN th
the best predictive performance over the validation p
the dataset. The random search identifies the hyperpa
for each of the instantiations and the performance of
learning model determines the best number of neuron

3

Jo
ur

na
l P

re
-p

ro
of

hyperparameters associated with best performing model on the
respective datasets to retain. The procedure continues by freez-
ing the numbe
vious hidden l
the sliced RS
last hidden la
proceeds until
threshold or th
An illustration
Figure 1. The
to layer in ord
racy. It is thu
expand and co
the nonlinear r
allows this, as
a stratified RS

Algorithm 1
tecture (GSN

Input:
• L =

• Nma

laye

• scor
pres

• mod
itera

Output: b
Set numbe
Set best m

problems
problems

Compute s
while scor

Build m
layer

Set nu
(` − 1

Perfor
last h
hyper

Select
Retriev

nodes
` = ` +

end
return bes

The stratifi
GSNNA and p
with respect to
in increasing t
ers are added

the model increases, but with this also the computational cost
for training. Previous methods treat the number of hidden lay-

metimes
teps, and
. By per-
n layers,
very ex-
iate steps,
ion. The

the effi-
ture with
by other

rchitecture
is enriched
one hidden

sen via RS.
ation set is
led in red).
user, the al-
rparameters
odels built
n layers as
the second
are trained
ith the best
e meets the
erwise, the
dden layers
lace on the

er search

N models
he hyper-
s reduces
e. In this
ments in
ard HPO
sionality

with
s with L.
rons per

f the NN

Journal Pre-proof
r of neurons and the hyperparameters in the pre-
ayers every time a new hidden layer is added, and
is performed only on the hyperparameters of the
yer in the architecture. This iterative procedure

either the validation score reaches a prescribed
e maximum number of hidden layers is reached.
that explains how GSNNA proceeds is shown in
number of neurons needed may vary from layer
er for a NN architecture to attain a desired accu-
s possible that the NN may have to alternatively
ntract across the hidden layers to properly model
elations between input and output data. GSNNA
the number of neurons at each selected through
may vary for each hidden layer.

: Greedy Search for Neural Network Archi-
NA)

maximum number of hidden layers

x nodes = maximum number of nodes (neurons) per
r

ethreshold = threshold on the final performance
cribed

el eval iter = number of model evaluations per
tion

est model
r of hidden layers ` = 1;
odel as linear regression (for regression
) or logistic regression (for classification
);
core;
e < scorethreshold & ` ≤ L do
odel eval iter NN models with ` hidden

s each;
mber of nodes and activation functions for first
) hidden layers as in best model;

m random search for number of nodes in the
idden layer and for the remaining
-parameters;
best model as the NN with best performance;
e best model and store info about number of
and activation functions per layer;
1;

t model

ed RS is the most important difference between
revious methods. The main contrast of GSNNA
previous methods is the greedy approach adopted

he number of hidden layers. As more hidden lay-
to the NN architecture, the predictive power of

ers as any other hyperparameter, and the methods so
construct expensive neural networks at intermediate s
these NN are later discarded in favor of smaller ones
forming a greedy approach on the number of hidde
GSNNA avoids this type of extreme situations where
pensive NN are trained and discarded through intermed
and this favors a lower computational cost per iterat
validation of the method will be shown by comparing
ciency of the DL model on the determined NN architec
the efficiency of the same type of DL model identified
algorithms.

Figure 1: Illustration of the Greedy Search for Neural Network A
(GSNNA). The illustration explains how the architecture of the NN
at each iteration. The NN models built at iteration (1) have only
layer and the number of neurons inside the hidden layers is cho
Every NN is trained and the predictive performance over the valid
measured. The NN with the best validation score is selected (circ
If the attained accuracy meets the requirements prescribed by the
gorithms stops and returns the selected NN. Otherwise, the hype
of the first hidden layer are transferred to iteration (2). The NN m
at iteration (2) have the same number of neurons in the first hidde
the best NN from iteration (1), whereas the number of neurons at
hidden layer is chosen with another stratified RS. The NN models
and the validation scores from each NN are collected. The NN w
predictive performance is chosen (circled in red). If the performanc
requirements, the algorithms stops and returns the selected NN. Oth
information about the numbers of neurons in the first and second hi
are transferred to iteration (3), so that another stratified RS takes p
number of neurons inside the third hidden layer.

2.1. Reduction of dimensionality in the hyperparamet

Transferring information from smaller to bigger N
across successive iterations and restricting the RS to t
parameters associated only with the last hidden layer
the dimension of the hyperparameter space to explor
section we compare the dimensionality (number of ele
a set) of the hyperparameter space explored by a stand
algorithm (e.g. GS, RS, SMBO, EA) with the dimen
of the hyperparameter space explored by GSNNA.

Denote the maximum number of neuron per layer
Nmax nodes and the maximum number of hidden layer
The number of hidden layers and the number of neu
layer are hyperparameters that affect the structure o

4

Jo
ur

na
l P

re
-p

ro
of

models, whereas all the other hyperparameters affect the train-
ing of the DL model. Because GSNNA differ from state-of-
the-art HPO al
are optimized
in dimensiona
RS in GSNNA
because the n
ations decreas
algorithm) to N
perparameter
over the estim
shown in the n
curacy attaine
of GSNNA ha
tained with BO
with GSNNA

2.2. Computa

Let us refe
uations perfor
L the number
complexity of
for the whole
predictive per
to proceed to
tive, we remin
one iteration o
model evaluat
that is O((CL)
ation of TPE i
evaluations, th
ity, GSNNA t
spect to BO a
per iteration is
the computati
duced from c
pealing for sc
model evaluat
pendent mode
concurrently, a
in Section 4 o

3. Algorithm

In this sec
where the num
of the implem
ered, the benc
each HPO alg

3.1. Hardwar

The nume
[41], a superc
ing Facility (O
mit has a hyb

Name of dataset Nb. attributes Nb. data points
Eggbox 2 4,000

5
0

all con-
ach node
andwidth
plus 800
ffer or as
hput, the
dual-rail

ts in ma-
one, and
e datasets

summa-
nstructed
os(y/2)]5

it is used
n dataset
of a stu-
rsity rat-
ardware

the rela-
memory
website

the prop-
hentic or
classifi-

tegories.
are split
hoice of

the struc-
P models
omputer

eas CNN

ining set,
s used to
s used to
d the test
er of the
Eggbox,
hishing

e remain-
n the per-
ion prob-

Journal Pre-proof
gorithms by the way the number of hidden layers
, this is the only factor that determines a change
lity of the hyperparameter space. The stratified

allows us to avoid the curse of dimensionality,
umber of NN architectures to span at each iter-
es from NL

max nodes (as it is for a standard HPO
max nodes. The reduced dimensionality of the hy-

space leads also to a reduction of the uncertainty
ated attainable predictive performance. This is
umerical experiments in Section 4, where the ac-
d by the NN models selected from multiple runs
s narrower confidence intervals than the ones ob-

and TPE, indicating that the estimates obtained
are more reliable.

tional complexity of GSNNA

r to C as the number of independent model eval-
med in one iteration of an HPO algorithm, and
of HPO iterations performed. The computational
one iteration of GSNNA is O(C) (and hence O(CL)
algorithm), because the algorithm compares the
formance of C models and selects the best one
the next iteration. To put this value in perspec-
d the reader that the computational complexity of
f BO is cubic both in the number of independent
ions and in the number of iterations performed,
3), and the computational complexity of one iter-
s cubic only in the number of independent model
at is O(C3). In terms of computational complex-
hus provides a significant improvement with re-
nd TPE, because the computational complexity
constant with respect to the iteration count, and

onal complexity of one iteration of HPO is re-
ubic to linear. This benefit makes GSNNA ap-
aling purposes with large values of independent
ions C. We also remind the reader that the inde-
l evaluations in each iteration can be performed
s we did in the numerical experiments described

f this work.

implementation

tion we describe the computational environment
erical experiments were performed, the specifics

entations for each of the HPO algorithms consid-
hmark datasets used and the parameter setting for
orithm.

e description

rical experiments were performed using Summit
omputer at the Oak Ridge Leadership Comput-
LCF) at Oak Ridge National Laboratory. Sum-
rid architecture; each node contains two IBM

Graduate admission 7 400
Computer hardware 9 209
Phishing websites 29 11,05

CIFAR-10 - 60,00

Table 1: Description of the datasets.

POWER9 CPUs and six NVIDIA Volta V100 GPUs
nected together with NVIDIA’s high-speed NVLink. E
has over half a terabyte of coherent memory (high b
memory + DDR4) addressable by all CPUs and GPUs
GB of non-volatile RAM that can be used as a burst bu
extended memory. To provide a high rate of I/O throug
nodes are connected in a non-blocking fat-tree using a
Mellanox EDR InfiniBand interconnect.

3.2. Dataset description

The datasets used are standard benchmark datase
chine learning, open source and accessible to every
guarantee reproducibility of the results presented. Th
used for the numerical experiments of this section are
rized in Table 1. The dataset Eggbox is artificially co
by evaluating the function f (x, y) = [2 + cos(x/2) ∗ c
across 4,000 points in the domain square [0, 2π]2 and
as a regression problem. The Graduate admissio

[42] is a regression problem that relates the chances
dent’s admission to GRE score, TOEFL score, unive
ing, and other performance metrics. The Computer h

dataset [43, 44] is a regression problem that describes
tive CPU performance data in terms of its cycle time,
size, and other hardware properties. The Phishing

dataset [44] is a classification problem that describes
erties of different websites and classifies them as aut
fake. The CIFAR-10 dataset [45] requires solving a
cation problem to classify object images into ten ca
The numerical experiments presented in this section
between the use of MLP and CNN models. The c
one type of architecture over the other is dictated by
ture of the dataset used to train the NN models. ML
are used on the Eggbox, Graduate admission, C
hardware, and Phishing website datasets, wher
models are used for the CIFAR-10 dataset.

3.3. Training, validation, and test data

The datasets are split in three components: the tra
the validation set, and the test set. The training set i
train every instantiated DL model, the validation set i
select the best performing model at each iteration an
set is used at the end to measure the predictive pow
NN selected by each HPO algorithm. For the datasets
Graduate admission, Computer hardware, and P

website, the test set is 10% of the original dataset, th
ing portion is partitioned into training and validation i
centage of 90% and 10% respectively. For classificat

5

Jo
ur

na
l P

re
-p

ro
of

lems, a stratified splitting is performed to ensure that the pro-
portion between classes is preserved across training, validation,
and test sets.
and test set for
by the online s

The optim
[46] with an i
the number of
the number of
timization algo
the computatio
tion. For all H
number of epo
equal to n, i.e.
dataset. The a
to be equal to
ing is achieve
the training. If
the neural netw
n is too large,
impose unwan
mitigated by t
and training ti

The cost to
of the dataset,
larger the neur
train the neura
network on a
computational
and this would
algorithms use

We also w
should correla
inputs and out
ily imply need
may have infin
dataset is larg
model to captu

3.4. Setting o
The hyper

defined so as t
fordable comp
get constraint
5. The numbe
1 to the highe
ber of sample
the number of
in DL to avoi
made of the s
bles), the hyp
function (relu
The kernel siz
The discrete ra
est integer to
batches is a re
tioners to cap

The range of search for each hyperparameter is fixed in every
HPO algorithm used for the study. Tables 2 and 3 contain a de-

and CNN
arameter

e

nh, elu }

lue n refers

ge
}

nh, elu }

lue n refers

python

7] which
NN mod-
g

pare the
BO. The
oncurrent
istributed
48]. The
Tune li-
rch and
une used
is set to
5, "xi":
rch, the
the asyn-

he sched-
the vali-
ed as the
parame-
ave been
, is at its

ed to per-
stages of
rison be-
NA over

.

Journal Pre-proof
The partitioning between training/validation set
the CIFAR-10 dataset is performed as suggested
ources where the datasets can be downloaded 6.
izer used to train the model is the Adam method
nitial learning rate of 0.001. We highlight that
epochs to train a neural network is different from
iterations performed by the hyperparameter op-
rithm. In fact, the number of epochs is related to
n needed to perform every single model evalua-

PO methods (GSNNA, TPE, BO), the maximum
chs used to train the neural networks is set to be
the number of samples in the training set for each
ctual number of epochs does not necessarily have
the number n of points in the dataset. If the train-
d before n, an early stopping is in place to finish

the number of epochs reaches n, that means that
ork still benefits from the training. Of course, if

which happens for very large datasets, this may
ted burden on the execution time. But that can be
rying to find a balance between optimal training
me.

train a neural network depends on both the size
and on the size of the neural network itself. The
al network and the datasets, the longer it takes to
l network. The longer time to train a larger neural
larger dataset would translate into an increased
time to perform every single model evaluation,
impact the total time to solution for all the HPO

d.
ant to point out that the size of a neural network
te with the complexity of the relation between
puts. Having a larger dataset does not necessar-
ing a larger neural network. For example, one
itely many points aligned on a straight line. The

e, but the complexity required for the predictive
re the trend is still very low.

f the hyperparameter space
cube that delimits the hyperparameter search is
o restrict the hyperparameter search within an af-
utational budget. Due to the computational bud-
, we limit the maximum number of layers L to
r of neurons (or channels) per layer spans from
st integer smaller than

√
n, where n is the num-

points. The choice of
√

n as the upper bound of
neurons per layer is a common practice adopted

d overfitting. The set of activation functions is
igmoid function (denoted as sigmoid in the Ta-
erbolic tangent (tanh), the rectified linear unit
) and the exponential linear unit function (elu).
e for CNN architecture spans between 2 and 5.
nge for the batch size spans from 10 to the clos-
n

10 . Also choosing n
10 as maximum size of data

asonable recommendation adopted by DL practi-
the computational cost of each training iteration.

scription of the hyperparameters optimized for MLP
architectures with the ranges spanned for each hyperp
during the optimization.

Hyperparameter Search rang
Number of hidden layers {1,2,3,4,5}

Number of neurons per layer [1,
√

n]
nonlinear activation function {relu, sigmoid, ta

batch size [10, n
10]

Table 2: Hyperparameters optimized for MLP architectures. The va
to the size of the dataset.

Hyperparameter Search ran
Number of hidden layers {1,2,3,4,5

Number of channels per layer [1,
√

n]
Dropout rate [0,1]

Pooling {1,2}
nonlinear activation function {relu, sigmoid, ta

batch size [10, N
10]

Table 3: Hyperparameters optimized for CNN architectures. The va
to the size of the dataset.

3.5. Setting of the hyperparameter search algorithms

The code to perform GSNNA is implemented in
3.5, and the NN models are built using Keras.io [4
calls Tensorflow 2.0 backend. The training of the
els is performed using the GPUs on Summit by callin
cudadnn 9.0 for tensor algebra operations. We com
GSNNA described in this paper with the TPE and
version of GSNNA that we implemented performs c
model evaluations for the RS at each step with a d
memory parallelization paradigm that uses mpi4py [
version of TPE and BO used are provided by the Ray
brary [49] through the routines named HyperOptSea

BayesOptSearch respectively. The version of Ray T
is 0.3.1. As to BayesOptSearch, the utility function
utility kwargs="kind": ’ucb’, "kappa": 2.

0.0. For both HyperOptSearch and BayesOptSea

model selection and evaluations are scheduled using
chronous version of HyperBand [50] called
AsyncHyperBandScheduler. The time attribute for t
uler is the training iteration and the reward attribute is
dation score of the NN. The validation score is also us
stopping criterion of the HPO algorithm. Additional
ters for RayTune’s TPE and BO not mentioned here h
left to default value. Our proposed method, GSNNA
first implementation, whereas the RayTune library us
form HPO with TPE and BO has underwent multiple
implementation optimization. Therefore, our compa
tween GSNNA, TPE, and BO does not advantage GSN
the other HPO algorithms in terms of implementation

6

Jo
ur

na
l P

re
-p

ro
of

4. Numerical results

In this sect
benchmark da
suited type of
lected datasets
formance of G
attainable acc
to-solution to

Numerical
ing, meaning
itored for incr
with each con
MPI process
performance o
not included i
applications s
scaling requir
ations and pro
made availabl
ogy, there is a
evaluations an
than the concu
scaling of the
work. When
current model
perform a sing
as currently do
this approach
lelization wou
equally apply
However, mod
tion of the hyp
Therefore, the
differ from th
Moreover, the
size of the ben
model parallel
benefits on the

4.1. Compari
time

The first se
tive power of
to quantify th
problems is th

where yi are t
ŷi are the pred
set and ȳi is th
The metric use
used for classi

where PPV =
true positives

true positives+false negatives is the precision or positive

predicted value and T PR =
true positives is the sensitivity, recall,

itectures,
ion is set
hms. For
architec-
iteration

umber of
iterations
ping cri-

ore equal

ent HPO
lgorithms
luations,
ps every
ever, the
per itera-
the HPO
PO algo-
evaluate,

e Summit
f Summit

least in-
aluations

ith MLP
he scores
, and the
all clock
arameter
nfidence

formance

better re-
s of pre-

r, we no-
the num-
because

becomes
es for the
nce band
s not be-
nt model
stratified
ization is
space.

has a flat
increase
number

TPE fin-
luations,
the one

etter ex-

Journal Pre-proof
ion we present numerical experiments for the five
tasets described above, and we focus on the best
neural network structure for each one of the se-
. Our numerical experiments compare the per-
SNNA against BO and TPE in terms of final

uracy of the selected NN architecture and time-
complete the hyperparameter search.
tests described in this section focus on weak scal-

that the performance of HPO algorithms is mon-
eased numbers of concurrent model evaluations,
current model evaluation mapped to a separate

and a separate GPU to train, and the predictive
f the model is assessed. Strong scaling tests are
n the discussion for the following reasons. For
uch as the ones considered in this paper, strong
es fixing the number of concurrent model evalu-
gressively increase the computational resources
e for each model evaluation. In our methodol-
one-to-one mapping between concurrent model

d GPUs. When the total number of GPUs is less
rrent models, the strong scaling boils down to the
job scheduler, which is outside the scope of this
the total number of GPUs is more than the con-
s, this would translate to using multiple GPUs to
le model evaluation instead of using one GPUs
ne in the work. In the deep learning community,
is known as model parallelization. Model paral-
ld accelerate the model evaluations and it would
to all the three methods TPE, BO, and GSNNA.
el parallelization would not accelerate the execu-
erparameter optimization algorithms themselves.
comparison of TPE, BO, and GSNNA would not

e ones presented in this paper in relative terms.
small size of the neural networks and the small

chmark datasets used in this work does not justify
ization; strong scaling would only bring marginal
acceleration of model evaluations.

son for predictive performance and computational

t of numerical experiments compares the predic-
the GSNNA with TPE and BO. The metric used
e predictive performance of a NN for regression
e R2 score defined as

R2 = 1 −
∑m

i=1(yi − ŷi)2

∑m
i=1(yi − yi)2 (8)

he observations for m data points in the test set,
ictions obtained with the DL model over the test
e sample mean of the data points over the test set.
d to quantify the predictive performance of a NN
fication problems is the F1 score defined as

F1 = 2
PPV · T PR
PPV + T PR

, (9)

positives
hit rate, or true positive rate.

For the datasets that require the use of MLP arch
the number of concurrent model evaluations per iterat
to 10, 25, 50, 75, and 100 for all the three HPO algorit
the CIFAR-10 dataset that requires the use of CNN
tures, the number of concurrent model evaluations per
is set to 150, 300, 450, and 600 to cope with a larger n
hyperparameters to tune. The maximum number of
is set to 5 for all the three HPO algorithms and the stop
terion imposes a threshold on the R2 score and F1 sc
to 0.99.

To guarantee a fair comparison between the differ
algorithms, the implementations of the three HPO a
make use of the same number of concurrent model eva
and each implementation of the HPO algorithms ma
concurrent model evaluation to a separate GPU. How
complexity of (and thus the cost to train) each model
tion varies according to the specific architectures that
algorithms select at each iteration. Since different H
rithms select different architectures to construct and
this can lead to different computational times. Becaus
has six GPUs per compute node, the total number o
nodes used in a numerical experiment is equal to the
teger greater than or equal to the concurrent model ev
divided by 6.

Figures 2, 3, 4, and 5 correspond to the test cases w
models. In these figures, the figures on top show t
obtained on the test set of the selected MLP model
figures at the bottom show the time-to-solution in w
seconds. The performance is reported for each hyperp
search algorithm, averaging over 10 runs with 95% co
intervals both for the mean value of the predictive per
and for the mean value of the time-to-solution.

The experiments with the Eggbox dataset exhibit
sults for GSNNA with respect to TPE and BO in term
dictive power achieved by the selected NN. Moreove
tice that the confidence band for GSNNA narrows as
ber of concurrent evaluations increases. This happens
the inference on the attainable predictive performance
more accurate with a higher number of random sampl
stratified RS. A different trend is shown for the confide
of TPE and BO. In this case, the confidence band doe
come narrower by increasing the number of concurre
evaluations. This highlights the benefit of using a
RS in GSNNA: the uncertainty of the random optim
bounded by reducing the dimensionality of the search

In terms of scalability, we notice that GSNNA
weak scaling curve, whereas BO and TPE significantly
the computational time-to-solution with an increased
of concurrent model evaluations. Although BO and
ish in less time than GSNNA for 10 and 50 model eva
the final attained accuracy is significantly lower than
obtained with GSNNA. This indicates that GSNNA b
plores the hyperparameter space.

7

Jo
ur

na
l P

re
-p

ro
of

Figure 2: Eggbo

Search and Bayes
at the top shows t
parameter search
of the computatio

Similar res
ability have be
Computer ha

Phishing we

the tuning par
the datasets co
formance of B

nificantly cha
admission da
rithms reduce
ber of concurr
intuitive reaso
note that the n
tational time in
evaluations m
desired accura
nate the mode
these two fact
reduction or a

The result
ure 6 show th

edy search,
chitectures.
del selected
om shows a

ance and
iate than
sified) to

s for clas-
However,
e predic-
aset such
ith other
accuracy

ith state-
], we see
as a test
currently
n the per-
other re-
e goal of
erparam-
cs of the
rch more
wer than

Journal Pre-proof
x dataset. Comparison between Greedy search, HyperOpt-
OptSearch for test cases with MLP architectures. The graph
he performance obtained by the model selected by the hyper-
on the test set. The graph at the bottom shows a comparison
nal times.

ults in terms of final attainable accuracy and scal-
en obtained for Graduate admission,
rdware and
bsites datasets. Although different values for
ameter of BayesOptSearch have been tested on
nsidered in this paper, we noticed that the per-
ayesOptSearch on these datasets did not sig-

nge. We also noticed that for the graduate

taset and the phishing dataset, some HPO algo-
the total time of the search for an increased num-
ent model evaluations, and this goes against an
ning. To better understand this phenomenon, we
umber of concurrent models impacts the compu-
two ways: a higher number of concurrent model

akes it likely to identify a network that attains a
cy faster, but it also needs more time to coordi-
l evaluations between each other. Whether one of
ors prevails over the other can results in either a
n increase in the total computational time.
s for the CIFAR-10 dataset using CNN in Fig-
at GSNNA outperforms both TPE and BO algo-

Figure 3: Graduate admission dataset. Comparison between Gre
HyperOptSearch and BayesOptSearch for test cases with MLP ar
The graph at the top shows the performance obtained by the mo
by the hyperparameter search on the test set. The graph at the bott
comparison of the computational times.

rithms in terms of best attainable predictive perform
computational time. The F1-score is more appropr
the accuracy (percentage of data points correctly clas
measure the predictive performance of neural network
sification purposes in case of class imbalance [51].
the accuracy is still the mostly used metric to report th
tive performance of a model on some benchmark dat
as CIFAR-10. In order to facilitate the comparison w
results published in the literature, we also report the
for CIFAR-10.

Comparing the architecture selected by GSNNA w
of-the-art architectures customized for CIFAR-10 [52
that the predictive performance of our architecture h
error of about 9%, whereas customized architectures
provide error below 0.1%. In view of this gap betwee
formance we obtained on CIFAR-10 with respect to
sults published in the literature, we emphasize that th
our research is to build an automatic selection of hyp
eters that is as agnostic as possible about the specifi
dataset at hand. This makes the hyperparameter sea
challenging, and the attainable accuracy is generally lo

8

Jo
ur

na
l P

re
-p

ro
of

Figure 4: Comput
HyperOptSearch
The graph at the
by the hyperparam
comparison of the

the one obtain
obtained by ot
when a Bayes
of a neural net
with the result

4.2. Sensitivit
current m

In Figure 7
on the Eggbox
a function of
bers of concu
both experime
concurrent mo
in the score, a
chitectures for
increase in the
ference. This
stratified hype
attainable bes
cient explorati

HyperOpt-
. The graph

the hyper-
comparison

m attain-
f hidden
firm that
her num-

CNN for
f concur-
00. The

r number
previous
rameters

also by a
he previ-
oncurrent
f a better
ut a pro-
leads to a

Journal Pre-proof
er hardware dataset. Comparison between Greedy search,
and BayesOptSearch for test cases with MLP architectures.
top shows the performance obtained by the model selected
eter search on the test set. The graph at the bottom shows a
computational times.

ed with customized approaches. Recent results
her researchers [53] show a test error around 12%
ian approach is used to optimize the architecture
work for the CIFAR-10 dataset, and this is in line
s we present here.

y of GSNNA with respect to the number of con-
odel evaluations
we show the performance obtained with GSNNA
dataset and the Computer hardware dataset as

the number of hidden layers for different num-
rrent model evaluations (10, 50, and 100). For
nts it is clear that the use of a small number of
del evaluations leads to significant fluctuations
s the stratified RS does not explore enough ar-
a fixed number of hidden layers. A progressive
concurrent model evaluations leads to a better in-

happens because an exhaustive exploration of the
rparameter space reduces the uncertainty in the
t performance of the model. Moreover, a suffi-
on of the stratified hyperparameter space enables

Figure 5: Phishing dataset. Comparison between Greedy search,
Search and BayesOptSearch for test cases with MLP architectures
at the top shows the performance obtained by the model selected by
parameter search on the test set. The graph at the bottom shows a
of the computational times.

us to highlight the dependence between the maximu
able performance of the NN and the total number o
layers. Indeed, the examples displayed in Figure 7 con
nonlinear input-output relations can benefit from a hig
ber of hidden layers.

In Figure 8 we present a similar analysis using
the CIFAR-10 dataset. In this case, the number o
rent model evaluations considered is 150, 300, and 6
scalability tests for the CIFAR-10 dataset use a highe
of concurrent model evaluations with respect to the
datasets because there are more architectural hyperpa
to tune in CNN than in MLP models, as described
comparison between Tables 2 and 3. Different from t
ous numerical examples, increasing the number of c
model evaluations does not benefit the identification o
performing architecture for the CIFAR-10 dataset, b
gressive increase of the number of hidden layers still
progressive gain in attainable accuracy.

9

Jo
ur

na
l P

re
-p

ro
of

Figure 6: Comp
Search for test ca
for the CIFAR10
the model selecte
score. The graph
selected by the hy
graph at the botto

NA). Coef-
dden layers
concurrent

A). Coeffi-
n layers for
ations. Re-

Journal Pre-proof
arison between GSNNA, HyperOptSearch and BayesOpt-
ses with CNN architectures. The comparison is performed

dataset. The graph on top shows the performance obtained by
d by the hyperparameter search on the test set in terms of F1
in the center shows the performance obtained by the model
perparameter search on the test set in terms of accuracy. The
m shows the computational time.

Figure 7: Greedy Search for Neural Network Architecture (GSN
ficient of determination expressed in terms of the number of hi
for Eggbox, Computer hardware datasets using 10, 50, and 100
model evaluations. Results are shown for a single run.

Figure 8: Greedy Search for Neural Network Architecture (GSNN
cient of determination expressed in terms of the number of hidde
CIFAR10 dataset using 150, 300, and 600 concurrent model evalu
sults are shown for a single run.

10

Jo
ur

na
l P

re
-p

ro
of

5. Concluding remarks and future developments

GSNNA a
a given comp
of layers that
same structure
rithms. The al
of hidden laye
tional time and
makes the algo
compelling wh
ited, or when
timely manne
disregards an
perparameter
makes the opt
significant red
our numerical
final attainable
tion procedure

CIFAR-10
at 32x32 reso
have more tha
at 256x256. A
time, and CIFA
itation to the
posed research
ters search alg
get. Therefore
datasets and n
tions on large
works under th

For future
ferent types o
and CNN, suc
rent neural ne
ral networks (
problems by se
for the HPO, a
analysis to esti
parameters wi
space and the

Acknowledge

Massimilia
for his valuab
and three anon
and suggestion

This work
the US Depar
gram of Oak
sources of the
(OLCF), whic
ported under
partly support
tional Laborat

LANL is operated by Triad National Security, LLC, for the Na-
tional Nuclear Security Administration of U.S. Department of

ocument

C. E Shan-
nceton Uni-

ta. In L. A.
iley, pages

ation stor-
), 1958.

ility in cog-
Inc. Report

ird Edition.

ral network
nal Confer-

s for hyper-
the 24th In-
tems, pages

architecture
Conference

rchitecture.
–532, 1990.
. The MIT
.
l. Gradient-
8 Workshop

rchitecture:
2855–2870,

e, J. Huang,
ceedings of
mber 2018.
ecture opti-
n, N. Cesa-
ation Pro-

ciates, Inc.,

n optimiza-
roceedings
Processing

nforcement

Sundaram,
n optimiza-
lei, editors,
e Learning,
ages 2171–

ation model
retical and

review on
d Diagnos-

erican Edi-

rithms with
76, 1990.

Journal Pre-proof
ims to determine in a scalable fashion, and within
utational budget, the NN with minimal number
performs at least as well as NN models of the
identified by other hyperparameter search algo-

gorithm adopts a greedy technique on the number
rs, which can benefit the reduction of computa-
cost to perform the hyperparameter search. This

rithm not only appealing, but sometimes strongly
en computational and memory resources are lim-
DL driven decisions have to be performed in a
r. The recycling of hidden layer configurations
exponential number of architectures in the hy-
space. However, having a smaller search space
imization a much more tractable problem with a
uction in computational complexity. Moreover,
results show that this does not compromise the
accuracy of the model selected by the optimiza-

.
is the largest tested dataset, with 60000 images

lution. ImageNet or the Open Images Dataset
n a million images and are commonly evaluated
t the same efficiency, this could take 1000x more
R-10 already takes about 8 hours. This is a lim-

applicability of the method. However, the pro-
aims at improving scalability of hyperparame-

orithms with a constrained computational bud-
, while the method is illustrated on modest-size
eural networks, it has promise for implementa-

r datasets and correspondingly larger neural net-
e same computational budget constraints.
developments we aim to extend the study to dif-
f architectures other than multilayer perceptrons
h as residual neural networks (ResNet), recur-

tworks (RNN) and long short-term memory neu-
LSTM). We will also use GSNNA for specific
lecting customized attributes other than the score
nd we will conduct an uncertainty quantification
mate the sensitivity of the inference on the hyper-
th respect to the dimension of the hyperparameter
number of concurrent model evaluations.

ments

no Lupo Pasini thanks Dr. Vladimir Protopopescu
le feedback in the preparation of this manuscript
ymous reviewers for their very useful comments
s.
is supported in part by the Office of Science of

tment of Energy (DOE) and by the LDRD Pro-
Ridge National Laboratory. This work used re-
Oak Ridge Leadership Computing Facility
h is a DOE Office of Science User Facility sup-
Contract DE-AC05-00OR22725. Y. W. Li was
ed by the LDRD Program of Los Alamos Na-
ory (LANL) under project number 20190005DR.

Energy (Contract No. 89233218CNA000001). This d
number is LA-UR-21-20936.

References

[1] M. L. Minsky. Some universal elements for finite automata. In
non & J. McCarthy (Eds.), Automata studies, Princeton: Pri
versity Press, pages 117–128, 1956.

[2] J. von Neumann. The general and logical theory of automa
Jeffress (Ed.), Cerebral mechanisms in behavior, New York, W
1–41, 1951.

[3] F. Rosenblatt. The perceptron: a probabilistic model for inform
age and organization in the brain. Psychological Review, 65(6

[4] F. Rosenblatt. The perceptron: a theory of statistical separab
nitive systems. Buffalo: Cornell Aeronautical Laboratory,
Number VG-1196-G-1, 1958.

[5] S. Haykin. Neural Networks And Learning Machines, Th
Pearson Education Ltd, 2009.

[6] B. Baker, O. Gupta, N. Nahik, and R. Raskar. Designing neu
architectures using performance prediction. 2018 Internatio
ence on Learning Representations, Workshop Track, 2018.

[7] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithm
parameter optimization. Proceeding NIPS’11 Proceedings of
ternational Conference on Neural Information Processing Sys
2546–2554, 2011.

[8] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient
search by network transformation. Proceedings of the AAAI
on Artificial Intelligence, 32(1), 2018.

[9] S. Fahlman and C. Lebiere. The cascade-correlation learning a
Advances in neural information processing system, pages 524

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning
Press, Cambridge, Massachusetts and London, England, 2016

[11] W. Grathwohl, E. Creager, S. K. S. Ghasemipour, and R. Zeme
based optimization of neural network architecture. ICLR 201
Track, 2018.

[12] T. K. Gupta and K. Raza. Optimizing deep neural network a
a tabu search based approach. Neural Processing Letters, 51:
2020.

[13] C. Liu, B. Zoph, J. Shlen, W. Hua, L. Li, L. Fei-Fei, A. Yuill
and K. Murphy. Progressive neural architecture search. In Pro
the European Conference on Computer Vision (ECCV), Septe

[14] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu. Neural archit
mization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauma
Bianchi, and R. Garnett, editors, Advances in Neural Inform
cessing Systems, volume 31, pages 7816–7827. Curran Asso
2018.

[15] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesia
tion of machine learning algorithms. Proceeding NIPS’12 P
of the 25th International Conference on Neural Information
Systems, 2:2951–2959, 2012.

[16] B. Zoph and Q. V. Le. Neural architecture search with rei
learning. arXiv:1611.01578, 2016.

[17] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N.
M. M. A. Patwary, Prabhat, and R. P. Adams. Scalable bayesia
tion using deep neural networks. In Francis Bach and David B
Proceedings of the 32nd International Conference on Machin
volume 37 of Proceedings of Machine Learning Research, p
2180, Lille, France, 07–09 Jul 2015. PMLR.

[18] M. Ettaouil, M. Lazaar, and Y. Ghanou. Architecture optimiz
for the multilayer perceptron and clustering. Journal of Theo
Applied Information Technology, 10(1):64–72, 2013.

[19] T. K. Gupta and K. Raza. Optimization of ann architecture: A
nature-inspired techniques. Machine learning in Bio-signal an
tic Imaging, pages 159–182, 2018.

[20] J. Holland. Genetic algorithms,for the science. Scientific Am
tion, 179:44–50, 1992.

[21] H. Kitano. Designing neural networks using genetic algo
graph generation system. Complex Systems Journal, 4:461–4

11

Jo
ur

na
l P

re
-p

ro
of

[22] P. Koehn. Combining Genetic Algorithms and Neural Networks: The
Encoding Problem, Master of Science Thesis. University of Knoxville,
Tennessee, U

[23] J. T. Tsai, J.
of a neural
Trans. Neur

[24] S. R. Young
ton. Optim
ary algorith
in High-Per
New York,
chinery.

[25] Oak Ridg
tionary n
https://w

multi-nod

[26] N. K. Tread
works. IEEE

[27] S. W. Stepn
using mode
Application

[28] Compressin
works.
compressi

[29] N. Srivastav
nov. Dropo
Journal of M

[30] T. Domhan,
hyperparam
learning cur
ence on Arti

[31] T. Hinz, N.
Hyperparam
Internationa
17(02):1850

[32] J. Bergstra a
tion. Journa

[33] P. Liashchy
netic algorit

[34] C. Cortes, X
adaptive str
the 34th Inte
883, 2017.

[35] T. Y. Kwok
ing in feedfo
actions on N

[36] D. Liu, T.
feedforward
tions on Cir
49(12):1876

[37] J. .H. Fried
Statistics, 9

[38] K. Fukushim
for a mecha
Biological C

[39] A. Krizhevs
with deep co
processing s

[40] Y. Le Cunn,
applied to d

[41] Summit -
percompute
compute-s

[42] Kaggle: You
[43] D. W. Aha,

real-valued
[44] UCI Machin

ml/index.

[45] The cifar-10
html.

[46] D. P. Kingm

Conference Paper at International Conference on Learning Representa-
tions, 2015.

io.
stable/.
ps://ray.

walkar. Hy-
meter opti-

puting and

code.com/

ng. Hyper-
n bayesian
, 17(1):26–

Journal Pre-proof
SA, 1991.
H. Chou, and T. K. Liu. Tuning the structure and parameters
network by using hybrid taguchi-genetic algorithm. IEEE
al Networks, 17(1):69–80, 2006.
, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Pat-

izing deep learning hyper-parameters through an evolution-
m. In Proceedings of the Workshop on Machine Learning
formance Computing Environments, MLHPC ’15, pages 1–5,
NY, USA, November 2015. Association for Computing Ma-

e National Laboratory. Multi-node evolu-
eural networks for deep learning (MENNDL).
ww.ornl.gov/division/csmd/projects/

e-evolutionary-neural-networks-deep-learning-menndl.
gold and T. D. Gedeon. Exploring constructive cascade net-

Transactions on Neural Networks, 10(6):1335–1350, 1999.
iewski and A. J. Keane. Pruning backpropagation networks
rn stochastic optimization techniques. Neural Computing and
s, 5(2):76–98, 1997.
g and regularizing deep neural net-

https://www.oreilly.com/ideas/

ng-and-regularizing-deep-neural-networks.
a, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
ut: a simple way to prevent neural networks from overfitting.

achine Learning Research, 15:1929–1958, 2014.
J. T. Springenberg, and F. Hutter. Speeding up automatic

eter optimization of deep neural networks by extrapolation of
ves. IJCAI’15 Proceedings of the 24th International Confer-
ficial Intelligence, pages 3460–3468, 2016.

Navarro-Guerrero, S. Magg, and S. Wermter. Speeding up the
eter Optimization of Deep Convolutional Neural Networks.
l Journal of Computational Intelligence and Applications,
008, June 2018.
nd Y. Bengio. Random search for hyper-parameter optimiza-
l of Machine Learning Research, 13:281–305, 2012.

nskyi and P. Liashchynskyi. Grid search, random search, ge-
hm: a big comparison for NAS. arXiv:1912.06059v1, 2019.
. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang. Adanet:

uctural learning of artificial neural networks. Proceedings of
rnational Conference on Machine Learning, PMLR, 70:874–

and D. Y. Yeung. Constructive algorithms for structure learn-
rward neural networks for regression problems. IEEE Trans-
eural Networks, 8(3):630–645, 1997.
S. Chang, and Y. Zhang. A constructive algorithm for
neural networks with incremental training. IEEE Transac-

cuits and Systems—I: Fundamental Theory and Applications,
–1879, 2002.
man. Multivariate adaptative regression splines. Annals of
(1):1–67, 1991.

a. Neocognitron: a self-organizing neural network model
nism of pattern recognition unaffected by shift in position.
ybernetics, 36:193–202, 1980.
ky, S. Sutskever, and G. E. Hinton. Imagenet classification
nvolutional neural networks. Advances in neural information
ystems, 25(2), 2012.
L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
ocument recognition. Proceeding of the IEEE, 86(11), 1998.

Oak Ridge National Laboratory’s 200 petaflop su-
r. https://www.olcf.ornl.gov/olcf-resources/

ystems/summit/.
r home for data science. https://www.kaggle.com.
D. F. Kibler, and M. K. Albert. Instance-based prediction of
attributes. Computational Intelligence, 5:51–57, 1989.
e Learning Repository. https://archive.ics.uci.edu/
php.
dataset. https://www.cs.toronto.edu/~kriz/cifar.

a and J. L. Ba. Adam: a method for stochastic optimization.

[47] Keras: The Python Deep Learning library. https://keras.
[48] MPI for Python. https://mpi4py.readthedocs.io/en/
[49] Ray Tune: Hyperparameter Optimization Framework. htt

readthedocs.io/en/ray-0.3.1/tune.html.
[50] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Tal

perband: bandit-based configuration evaluation for hyperpara
mization. ICLR Conference proceedings, 2017.

[51] A. Tharwat. Classification assessment methods. Applied Com
Informatics, 2020.

[52] Image classification on cifar-10. https://paperswith

sota/image-classification-on-cifar-10.
[53] J. Wu, X. Y. Chen, H. Zhan, L. D. Xiong, H. Lei, and S. H. De

parameter optimization for machine learning models based o
optimization. Journal of Electronic Science and Technology
40, 2019.

12

Jo
ur

na
l P

re
-p

ro
of

High
•
• s

•

• rk

• ter

•

• nce
our

• bra

Journal Pre-proof
lights
 Neural networks are computationally expensive to train
 Identifying a well performing neural network with minimal structural complexity help

the training converge faster
 We propose a novel scalable algorithm for the optimization of neural network

architectures within a constrained computational budget
 Our novel approach aims to minimize the number of hidden layers in a neural netwo

architecture
 Numerical results performed on supercomputer Summit show that our approach bet

scales than state-of-the-art algorithms with comparable computational cost
 When our approach has similar time-to-solution than state-of-the-art algorithms, our

algorithm identifies a neural network with better predictive performance
 When the neural network identified by our approach has similar predictive performa

than the one identified by state-of-the-art hyperparameter optimization algorithms,
algorithm better scales

 The presence of GPUs is fully exploited in our implementation to perform tensor alge
operations for the training of the neural network

Jo
ur

na
l P

re
-p

ro
of

Conf

•
•
•
•

Journal Pre-proof
lict of interest listed by authors:

 Massimiliano Lupo Pasini: NONE
 Junqi Yin: NONE
 Ying Wai Li: NONE
 Markus Eisenbach: NONE

Jo
ur

na
l P

re
-p

ro
of

