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Motivation

e Projection-based reduced-order models: e
Promising approach for time-critical and many-
query problems 31

e Projection-based ROMs: Compute solutions to "
the governing equations in a low-dimensional
subspace

e Motivation for work: current ROMs have
limitations

LSPG ROM of the Sod shock tube

e Require better ROM techniques

e Introduce the windowed least-squares

h
approac Collocated LSPG ROM of a cavity flow
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Mathematical setting

e We focus on model-reduction of the dynamical system

x = f(x)
x:[0,T] » RY

e Solving this system can be computationally expensive

e Motivates model-order reduction

e Model-order reduction: approximate state in a low-
dimensional trial subspace and solve the system

e We focus on POD ROMs
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Trial subspaces

® Approximate state in low dimensional trial subspace
x(t)~ X)) e 7 CRY

: RN
dim(7") = K, (K < N)

® Subspace described by orthonormal trial basis:

VeRM™ VIV =1
Range(V) =7

® Approximation can be written as I
X(t) = Vx(v)
£:[0,7] - R*

xXH= V x@)
® Dynamical system can be solved via, e.g., Galerkin, LSPG
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Galerkin and LSPG

e Galerkin: Enforces the residual to be orthogonal to the trial space
A _ T A
2o = VIf(Vi,)

e (an alternatively be cast as a minimization problem:

Xc(1) = arg min ||Vy — f(VE:(@))||3
yeRX

® Galerkin minimizes the time-instantaneous ODE residual

e L. SPG: minimizes the time-discrete residual
—1
~ : y— XZSPG 9
XZSPG = arg nun || As _f(Y)Hz
YET

¢ LSPG minimizes the ODE residual over a finite time window
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Least-squares Petrov— Galerkin (LSPG)

e [SPG can perform better than Galerkin

W— -
- Nigh-ficelity:
, dim 1.2x106
2 : | — Galerkin: dim 204
S 24 P wver Galarkin: dim 368
w . - Caerkir: dim 564
a . 5
5' i : —— LSPG: dim 204
& 2 0 . :'.‘
- ™~ @ . weeee | SPG: dim 368
Q ,
—— = - = |SPG: dim 564
- _—
“ 16- ‘ A : A
0 2 4 6 & 10 12
fime

K. Carlberg, M. Barone, and H. Antil, Galerkin v. least-squares Petrov-Galerkin projection in
nonlinear model reduction, Journal of Computational Physics, 330 (2017), pp. 693—734.

e [.SPG 1s observed to be more stable than Galerkin

e [.SPG is often more accurate than Galerkin

e Minimizes the residual over a finite time window

® Problem solved?
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K. Carlberg, M. Barone, and H. Antil, Galerkin v. least-squares Petrov-Galerkin projection in
nonlinear model reduction, Journal of Computational Physics, 330 (2017), pp. 693-734.

® [SPG is subject to several nuances:

1. Sensitivity to the time step
- In the limit Ar — 0, LSPG recovers Galerkin

2. Sensitivity to the time scheme

- LSPG recovers Galerkin for explicit schemes

3. Lacks a priori guarantees of accuracy, stability, etc

e Motivates the need for more robust ROM techniques
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Windowed least-squares (WLS)

e Underpinning thought: LSPG i1s thought to outperform Galerkin
because 1t minimizes the residual over a finite time window

e LSPG doesn’t directly do this

e Byproduct of the fully discrete formulation

e Common sense: Formulate a model-order reduction approach that
directly minimizes the time-continuous residual over a finite time
window

e Result of this is the windowed least-squares (WLS) approach
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WLS formulation

e Start by partitioning [0,7] into N,, windows

1 2 3 4 N w—1
i 2 I i3 g5 (N e
Gttt ~—4
AT  AT*  AT® AT AT Ve
t=0 =T

® Sequentially solve minimization problems over each window

n

/
ly(®) — fy (@) ||5dt

Iy

X" = arg min J

yesST"

e WLS computes a function that minimizes a functional

(12,11 € [0,T]
AT" =g — ¢

tl=0,t=T

- Minimization statement comprises a problem from the calculus of variations
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Solving WLS

e Two types of solution techniques are possible

e Indirect (optimize then discretize)

e Solve the stationary conditions (Euler—Lagrange equations)

e Direct (discretize then optimize)
e Discretize the objective functional and solve with, e.g., Gauss

—Newton
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Indirect approach:

Euler— Lagrange equations

® Solutions to Euler—Lagrange equations are the stationary conditions

® Fuler—Lagrange gives the forward—backward problem over each window

X" — VIf(VE") = A"
x"(t!) = X
A+ VT[%(an)] "var = — VT[Z—j;(Vﬁ”)] T<I _ VVT> <V _ f(VJ?”))

A = 0

e Forward system 1s a Galerkin ROM with forcing

e Backwards system 1s an adjoint equation forced by the residual

® Recovers Galerkin for infinitesimal window size
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Direct approach:

(implicit Euler)

e Step 1: discretize the state into /N instances

x" = x»l XN

e Step 2: discretize the objective functional

i N, X — xi—l
X"(t) — fx"(D)||3dt — Y At x")||3
|, 1@ ="l Z} |——— — ")l
e Step 3: solve the optimization problem
N oi il

—Y F(VE))3

S
g1 &N = arg min ZAtHVy v

§l.. 3N eRK =1

® Recovers LSPG for window size = step size
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Sod shock tube

® Reduced-order models of the SOD shock tube % L9 =0
ot Ox
e FOM: Ar=0.002 0;“ N ai(puz“Lp):O
e [SPG: Ar=0.002 agtE N aax(”(pEer) _0
o WLS: Ar=0.002, AT =0.1 (10 windows) r e [0.1]
= o ROM details
XE _ 1:1’@ AT 01 _1 Type: reconstructive

Energy criterion:

[
va

99.99%
POD Modes: 46

density, p
‘2

I I I I I I
L.l 1.2 U4 1.6 L8 1.4

spatial coordinate, x
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Numerical results:

errors vs window size

e (Quantitative results:
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residual norm, > J"(z")
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Cavity flow:

ull-order model

® (Consider reduced-order models of a cavity flow
® Governed by the compressible Navier-Stokes equations
® 7D (no turbulence model)
e Re=10,000,M =0.5
® FOM: Third-order discontinuous Galerkin discretization with 150k DOF

e Time-stepping: explicit SSP RK3
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Cavity flow:

results

ROM details

Type: reconstructive

® Pressure response

Energy criterion: 97%
POD Modes: 193

— 'O M — [,SPG WLS (AT = 0.5) === WLS (AT = 2.0)
mem= Galerkin = =esm WLS (AT = 0.2) WLS (AT = 1.0)
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O —
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e WLS accurately captures response where LSPG/Galerkin fails
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Conclusions

e Qutlined the windowed least-squares approach
® Minimizes the time-continuous residual over windows
o Comprises a problem from the calculus of variations
e WLS comprises a generalization of existing approaches

e Numerical experiments showed that WLS outperforms

Galerkin and LSPG
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Questions?

Preprint

Parish, E.J., and Carlberg, K.T., “Windowed least-squares model-reduction for dynamical
systems” https://arxiv.org/abs/1910.11388

Thanks for your time!
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Numerical results:

errors vs window size

e (Quantitative results:
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e Lower residuals, but not necessarily lower errors!
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