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Outline of Talk

1. Research motivation
2. Materials properties and activity

• How to fabricate and test hierarchical CuO-IO?
• Structural and electronic properties
• Electrochemical CO2 reduction performance

3. Understand structure-property relations
4. Conclusions
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1. Introduction

Develop technologies to utilize CO2 for beneficial uses 
that store and/or offset CO2 emissions

• Lower overall costs of  CO2 capture, transport, 
and sequestration

• Reduce carbon footprint of  traditionally fossil 
fuel-powered processes

CO2 Utilization Technologies program
: key contributions to the U.S. Department of  Energy’s carbon management portfolio

• Increase energy security + domestic employment 

• New and expanded markets for domestic products 

• Broader acceptance of  fossil resource utilization 

Industrially-relevant chemicals and fuels

https://www.netl.doe.gov/
https://www.energy.gov/fe/office-fossil-energy
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1. Solution – Energy & fuel production

CO2 + 2H+ + 2e− → CO + H2O -0.106
CO2 + 2H+ + 2e− → HCOOH -0.250
CO2 + 4H+ + 4e− → HCHO + H2O -0.070
CO2 + 6H+ + 6e− → CH3OH + H2O +0.016
2CO2 + 12H+ + 12e− → C2H5OH + 3H2O +0.080
CO2 + 8H+ + 8e− → CH4 + 2H2O +0.169
2CO2 + 12H+ + 12e− → C2H4 + 4H2O +0.064
2H+ + 2e− → H2 0

Cathode reaction E0 (V vs. RHE)

EC-CO2RR - Key challenges

• Competitive hydrogen evolution reaction
• Multi-electron transfer pathway
• Low selectivity & Faradaic efficiency
• Large overpotential
• Poor electrochemical stability
• Abundance + cost + scalability

Electrochemically converting CO2 into value-added chemicals and fuels  
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1. Materials challenge: What is important?

Metal H2 CO CH4 C2-3+ CH3OH HCOOH

Cu + + + + * +

Zn + + * - * +

Ni + - * + * +

Fe + - + - - -

Sn + * - - - +

+ Major product        + Minor product        * Novel product        - No product 

Develop a new copper oxide catalyst that is more active, selective, 
and stable than traditional and state-of-the-art catalysts

• Earth-abundant element

• Broad product distribution!

• Active - increase total amount of CO2 converted
• Selective - decrease downstream processing
• Robust and less expensive - increase economic viability
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1. Why inverse opal?

3D opal template 
(PMMA, PS, SiO2)

Precursor@opal
heterostructure

Inverse opal 
(3DOM)

Hexagonal close packed 
arrangement stemming from fcc

lattice of  host template

Hall et al., JACS 2015, 137, 14834
Yoon et al., Angew. Chem. Int. Ed. 2016, 55, 1

Interconnected porous network - dynamic diffusion and 
adsorption of  reactants + increased local pH gradient 

→ local proton depletion: strong H2 suppression

Ag-IO Au-IO

Oh et al., Nano Lett. 2017, 17, 5416

Enhances OER performance by increasing 
light absorption and by providing more 

electrochemically active sites
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2. Synthesis & EC-CO2RR test

Close-packed (111) face-centered 
cubic dry opal

Hexagonal arrangement

Polymer vertical 
deposition

Dry opal Liquid 
infiltration

Blow off  
excess liquid

Infiltrated 
colloid crystal 

Cheng et al., Nat. Mater. 2006, 5, 830

CuO hierarchical 
inverse opal film

How to make it? Cu precursor 
solution

Cathode Anode

How to test it?

• 50 mL/50 mL KHCO3 (0.1 M) catholyte and anolyte,
100 mL headspace/each compartment

• CO2 flow rate = 20 mL min-1

• Pt wire (CE), Ag/AgCl (RE), WE: CuO-HIO +
Nafion (5%)/carbon paper

• 85% iR-compensation
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180±5 nm

Hierarhical CuO inverse opal 
composed of  15~20 nm 

nanoparticles

3D interconnected 
CuO backbone in a 

fcc lattice

2. Structural and electronic properties
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2. Structural and electronic properties

• Monoclinic symmetry unit cell 
• Space group C2/c 
• a = 4.71187 Å, b = 3.43496 Å, c = 5.11641 Å
• α = γ = 90, β = 98
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2. How does it perform?

Chronoamperometry between 
-0.2 and -1.2 V vs. RHE
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• Impressive C1 selectivity
• Peak FECO of >70% at -0.6 V
• Significant HER suppression
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2. How does it perform?

High CO yield at moderate potentials 
with higher catalyst loading
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2. How does it perform?

Higher crystallinity and larger particle size

CuO-HIO vs. CuO standards
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2. How does it perform?
CuO-HIO vs. CuO standards

CuO nanoparticles

Favors H2 and C2 production
Broad product distribution

Bulk CuO
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2. How does it perform?

80 ~ 90% CO selectivity over CuO-HIO
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Highly robust and active 
CO2-to-CO catalyst

Stability test @-0.6 V vs. RHECuO-HIO vs. CuO standards
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Sample Major 
product

CO FE / 
%

Potential / V 
vs. RHE References

Cu2O-derived Cu
CO

HCOOH
45
38

-0.35
-0.55

Li et al., J. Am. Chem. Soc. 2012,
134, 7231-7234

CuO-derived Cu nanowire
CO

HCOOH
50
40

-0.6
-0.7

Ma et al., Phys. Chem. Chem.
Phys. 2015, 17, 20861-20867

Cu2O-derived Cu inverse opal
CO

HCOOH
45.3
34.5

-0.6
-0.8

Zheng et al., Nano Energy 2018,
48, 93-100

Electrochemically reduced CuO-
derived Cu nanowire

CO
HCOOH

62
25

-0.4
-0.5

Cao et al., ACS Catal. 2017, 7,
8578-8587

Electrochemically reduced CuO-
derived Cu nanowire

CO
HCOOH

61.8
30.7

-0.4
-0.6

Raciti et al., Nano Lett. 2015, 15,
6829-6835

3D CuO-derived Cu hierarchical
nanostructures

CO
HCOOH

60
30 ~ 40

-0.55
-0.55 ~ -0.7

Raciti et al., ACS Appl. Energy
Mater. 2018, 1, 2392-2398

CuO-derived Cu inverse opal
CO

HCOOH
CH4

72.5
48.0
40.7

-0.6
-0.3
-0.2

This work

2. How does it perform?
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High surface roughness allowed rapid consumption 
of  both CO2 and H+ at the catalyst surface

Sample ECSA / cm2 RF
CuO-HIO 2.962 30.79
Bulk CuO 0.372 5.27
CuO nps 0.548 7.76

3. Structure-property relations

Large surface-
to-volume ratio

3D porous 
interconnectivity

• Reduction of available protons increased
local pH and prevented further *CO
protonation and HER

• CO2 consumption may limit number of
bound *CO intermediates close enough to
undergo C-C coupling path
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3. Structure-property relations
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3. Structure-property relations

At -0.6 V vs. RHE

Metallic copper is likely to be electrochemically active sites
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• Steady state: cubic Cu (Fm-3m, a = 3.6102 Å)

• Dominance of Cu (111) (I111/I200 = 3.58)

• Mean crystallite size of 10-11 nm

In situ works demonstrate metallic copper 
is electrochemically active site for selective 

CO formation over CuO-HIO
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3. Structure-property relations
In situ SXRD at -0.6 V vs. RHE

Reske et al., JACS 2014, 136, 6978

2-15 nm Cu nps could reduce intermediate 
mobility and facilitated CO and H2 desorption
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• Cu (111) - lowest binding energy for both *CO and *COOH intermediates
• Cu (100) facet - most active in C2 production due to lower energetic barrier for hydrogenation step

Hori et al., J. Mol. Catal. A: Chem. 2003, 199, 39
Peterson et al., Energy Environ. Sci. 2010, 3, 1311
Reske et al., JACS 2014, 136, 6978

HCOOH CO CH4

Dutta et al., ACS Catal. 2016, 6, 3804
Cao et al., ACS Catal. 2017, 7, 8578
Raciti et al., ACS Energy Lett. 2018, 3, 1545-1556

3. Structure-property relations
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• Highly active, selective, robust oxide-
derived Cu inverse opal catalyst
outperforms CO2-to-CO over
commercially-available Cu catalysts

• Production of CO with 80~90%
selectivity and >70% Faradaic
efficiency at moderate potentials

• 3D interconnected porous structure - decrease in the local concentration of CO2 and
proton donors and local pH increment

• Small metallic Cu sites - electrochemically active sites promoting CO2RR

• Highly roughened surface and dominance of Cu (111) surface site - weakly bind the
intermediate species, lower adsorbate mobility and reduce reactant availability per
active site

4. Conclusions
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Almost retain inverse opal structure

Element Weight% Atomic%
C K 36.57 63.63
O K 2.83 3.70
F K 16.03 17.64
K K 1.76 0.94

Cu K 42.81 14.08

2. How does it perform?
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2. How does it perform?

Rate determining step involving the 
initial electron transfer to CO2

High mass current density 
of  CuO-HIO
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2. How does it perform?
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2. How does it perform?
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3. Structure-property relations
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3. Structure-property relations

8964 8976 8988 9000 9012 9024

N
or

m
al

iz
ed

 a
bs

or
ba

nc
e 

/ a
.u

.

Energy / eV

Cu foil

-0.6 V

OCV

CuO

Cu2O

0 1 2 3 4 5 6
F.

T.
 m

ag
ni

tu
de

 / 
a.

u.
R / Å

Cu-Cu

Cu-O

Cu-Cu

Cu-Cu

Cu-O

Cu foil

-0.6 V

OCV

CuO

Cu2O



33

3. Structure-property relations
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