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: key contributions to the U.S. Department of Energy’s carbon management portfolio

H,0
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and sequestration
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Carbon L

Formic acid

m enegy nmongxide | fuel-powered processes
CO, AN |
¢
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catalyst Formaldehyde

Methane Ethylene

Industrially-relevant chemicals and fuels

Develop technologies to utilize CO, for beneficial uses
that store and/or offset CO, emissions

* Lower overall costs of CO, capture, transport,

® Reduce carbon footprint of traditionally fossil

ethanol ® Increase energy security + domestic employment
[ ® New and expanded markets for domestic products

® Broader acceptance of fossil resource utilization

https:/ | www.energy.gov/ fe/ office-fossil-energy
3
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Electrochemically converting CO, into value-added chemicals and fuels

Cathode reaction E,(Vvs. RHE)
CO, + 2H* + 2¢~ — CO + H,0 -0.106
gg o CO, + 2H* + 2¢~ — HCOOH -0.250
C2H44 gﬂ CO, + 4H* + 4e~ — HCHO + H,0 -0.070
CH30H> = CO, + 6H* + 6e~ — CH,OH + H,0 +0.016
e 2CO, + 12H* + 12¢” — C,H,OH + 3H,0  +0.080
COo,” = CO, + 8H" + 8¢~ — CH, + 2H,0O +0.169
S 2CO, + 12H* + 12¢~ — C,H, + 4H,0 +0.064
2H* + 2¢” — H, 0
* Competitive hydrogen evolution reaction
* Multi-electron transfer pathway
* Low selectivity & Faradaic efficiency [ EC-CO,RR - Key challenges ]
* Large overpotential

* Poor electrochemical stability

e Abundance + cost + scalability
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& ‘ Highly selective o = A ctive - increase total amount of CO, converted
99 value-added

product * Selective - decrease downstream processing

* Robust and less expensive - increase economic viability

..... L S S S O S
Zn + * - * +
Ni + ) * + * + * Earth-abundant element
Fe + - + } } } * Broad product distribution!
Sn + * - - - +
+ Major product + Minor product * Novel product - No product

Develop a new copper oxide catalyst that is more active, selective,
and stable than traditional and state-of-the-art catalysts
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1. Why Iinverse opal? N =|NATONAL
Hexagonal close packed
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arrangement stemming from foe

3D opal template Precursor(@opal Inverse opal lattice of host template
(PMMA, PS, SiO,) heterostructure (3DOM)

a)
100F Au-I
g AIO 3 ek
B 80r i i
= s I
8 80 i
% a o Pctegtial (Vvs Aag'éAgCI} o qu: a 2? IJ"'I
~35 EOHO T o L i 16 Hm
S 3o} &) 0t )
£ 25/ = L f 4 0.5 pm
g 20 0557 <55 =08 =0
§ 15 -0.3 -04 -05 -06 -07
510 ElVvsRHE
S 5S¢
%.B 10 112: 1:4
Potential (V vs RHE)
Enhances OER performance by increasing Interconnected porous network - dynamic diffusion and
light absorption and by providing more adsorption of reactants + increased local pH gradient

electrochemically active sites —> local proton depletion: strong H, suppression

Y R T . e Ob et al., Nano Lett. 2017, 17, 5416 Hall et al., JACS 2015, 137, 14834

B\ 4 ENERGY Yoon et al., Angew. Chem. Int. Ed. 2016, 55, 1
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Cu precursor

iih;tin f

How to make it?

200.4 nm

0
Polymer vertical ~ Dry opal Liquid Blow off Infilrated ~ CuO hierarchical i
deposition infiltration excess liquid colloid crystal inverse opal film o

Close-packed (111) face-centered
cubic dry opal

How to test it?

_".‘-'I’f > PN 20 | 7 ~ * 50 mL/50 mI. KHCOj; (0.1 M) catholyte and anolyte,
o S 100 mL headspace/each compartment

* CO, flow rate = 20 mL. min’!

* Pt wire (CE), Ag/AgCl (RE), WE: CuO-HIO +
Nafion (5%)/catbon paper

*  85% /R-compensation

& U.S. DEPARTMENT OF 7

)a ENERGY Cheng et al., Nat. Mater. 2006, 5, §30



2. Structural and electronic properties
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3D interconnected
CuO backbone in a
fee lattice

Hierarhical CuO inverse opal
composed of 15~20 nm



2. Structural and electronic properties|N=|NATonAL

(002)/(111)
(200)/
(111)

Intensity / a.u.
(110)
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* Monoclinic symmetry unit cell

e Space group C2/c
e 2a=471187 A, b =3.43496 A, c = 5.11641 A
e a=y=90,B =098

Mean crystallite size ~ 15 nm

CUZO
A
4 5 6 7 8 9 10 11 12
2-theta/°no
Confirmed Cu(II)

oxidation state

U.S. DEPARTMENT OF
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Normalized Absorbance / a.u.

8970 8985 9000 9015 9030

Energy / eV
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B+, HcooH MMMCH, IMcH, B co

Lwd yw /%
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0 300 600 900 1200 1500 1800 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
Time / sec Potential / V vs. RHE

. . . .
Chronoamperometry between Impressive C, selectivity

-0.2 and -1.2 V »s. RHE * Peak FE, of >70% at -0.6 V
* Significant HER suppression

NERGY 10
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Control experiments

70 0 80
| |
60 5 Q
| < e 00
S 1 ™
50 B ~ '6 Q
| = SR SRR S G
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1.2 1.1 -1.0 0.9 0.8 0.7 -0.6 -05 0.4 0.3 0.2 0 30 60 90 120 150 180 210 240
Potential / V vs. RHE Time / min
High CO yield at moderate potentials Use of graphite counter electrode: No Pt
with higher catalyst loading crossover artificially increases CO selectivity
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2. How does it perform? N=
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- =)
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I =
= (&) o bulk CuO
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S = = CuO nps
o N
- =
N
)

(111)

(202)

(200)

Intensity / au
(110)
(110)

CuO nanoparticles (~5 nm)

4 5 6 7 8 9 10 11 12 13
2-theta/° 0

Higher crystallinity and larger particle size

| Buk Cu

12
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2. How does it perform?

CuO-HIO vs. CuO standards

10 N

Faradaic efficiency / %
S 3 8

N
o
T

-1.2-11-1.0-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
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B H, [ HCOOH [ C,Hg [ C,H, Il cH, [l CO
24
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Potential / V vs. RHE

CuO nanoparticles

Favors H, and C, production
Broad product distribution

Bulk CuO
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N o1 oo
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o
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Potential / V vs. RHE
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CuO-HIO 5. CuO standards Stability test @-0.6 V »s. RHE

80

CuO-HIO
CuO nps
Bulk CuO

2]
o
T

N
o
T

S
9% | Aoualolyye d1epeleq 09

Faradaic efficiency / %
S
Total current density J / mA cm™

-40 1 1 . 1 " 1 " S e
0= 2111009 08 0.7 -0.6 05 -0.4 -03 -0.2 0 3 6 e 12 15 18 21 24
Potential / V vs. RHE Electrolysis time / hour
80 ~ 90% CO selectivity over CuO-HIO Highly robust and active

CO,-t0-CO catalyst
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Sample Major CO FE / | Potential / V References
P product vs. RHE

Cu,O-derived Cu

CuO-derived Cu nanowire

Cu,0-derived Cu inverse opal
Electrochemically reduced CuO-
derived Cu nanowire

Electrochemically reduced CuO-
derived Cu nanowire

3D CuO-derived Cu hierarchical
nanostructures

CuO-derived Cu inverse opal

B U.S. DEPARTMENT OF

HCOOH
CO

HCOOH
CO
HCOOH
CO
HCOOH
CO
HCOOH
CO

HCOOH
CO

HCOOH

38
50

40
45.3
34.5

62

25
61.8
30.7

60

30 ~ 40
72.5
48.0
40.7

-0.35

-0.55
-0.6

-0.7
-0.6
-0.8
-0.4
-0.5
-0.4
-0.6
-0.55

-0.55 ~ -0.7
-0.6

-0.3
-0.2

Li et al,, J. Am. Chem. Soc. 2012,
134, 7231-7234

Ma et al, Phys. Chem. Chem.
Phys. 2015, 17, 20861-20867

Zheng et al., Nano Energy 2018,
48, 93-100

Cao et al,, ACS Catal. 2017, 7,
8578-8587

Raciti et al., Nano Lett. 2015, 15,
6829-6835

Raciti et al., ACS Appl. Energy
Mater. 2018, 1, 2392-2398

This work
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3. Structure-property relations N
T

il

ECSA ) cnv

Large surface-

CuO-HIO 2.962 30.79
to-volume ratio

Bulk CuO 0.372 5.27

CuO nps 0.548 7.76

3D porous High surface roughness allowed rapid consumption

g 00, "¢ interconnectivi
AL AN el of both CO, and H™ at the catalyst surface

ARk HCOOH
o]
HCOO™ -

* Reduction of available protons increased T"F . co
local pH and prevented further *CO o o owe
protonation and HER co, COzads o CO2%aus ~car e(_.‘.O a;’S

~ f | ca

* CO, consumPtion may limit number of 02H4‘t§:i c2Hx02ads‘% HCO", ..
bound *CO intermediates close enough to & | cat
undergo C-C coupling path CH

4

#o % U.S. DEPARTMENT OF
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In situ XAFS at -0.6 V vs. RHE

_«{ Cu foil Cu-Cu

300 min
180 min
120 min

' 60 min

e}
e
go
: O
Cu-O o:io
"a [SlN-INe)
o o
o}
o

_ lcufoil

ocv
CuO
Cuzo

4300 min

F.T. magnitude /a.u.

Normalized absorbance / a.u.

8964 8976 8988 9000 9012 9024 o 1 2 3 4 5 6
Energy / eV R/A

XANES line shape and Cu-Cu first-nearest-neighbor distance in EXAFS
: confirmed Cu® oxidation state

"‘ U.S. DEPARTMENT OF
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At -0.6 V vs. RHE At various potentials
Cu-Cu Cu:Cu

Cu-O i

F.T. magnitude / a.u.
F.T. magnitude / a.u.

Metallic copper is likely to be electrochemically active sites

% U.S. DEPARTMENT OF
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3. Structure-property relations

In situ SXRD at -0.6 V vs. RHE

—~
—
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Intensity / a.u.

-0.6 V
OoCV
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e Steady state: cubic Cu (Fm-3m, a = 3.6102 A)
e Dominance of Cu (111) (I;,,/1,,, = 3.58)

* Mean crystallite size of 10-11 nm

In situ works demonstrate metallic copper
is electrochemically active site for selective
CO formation over CuO-HIO

804R’
= 21b)
— 70- n | ]
>...| 4
= 601 % H, W - .
S 50 SO CHy »
g 1 ~ //
D 40+ S -
o 30 AL
g | L_G_Q——.\ /, \"'
E 20: N [ ] l‘ - }'
(-U i H — . -
(1 10. 4 - ’ - - = ~ -
o1 &F » * CH, .
0 5 10 15 20 25 30 35 foil
d/nm

2-15 nm Cu nps could reduce intermediate
mobility and facilitated CO and H, desorption

Reske et al., JACS 2014, 136, 6978 19
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reaction coordinates G(*CO)/feV G(*CO)/eV G(*CO)eV
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> 0af i T RNy 3
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!'— -0‘41\". TR _UBJ— —0.41\" -3 - n !_‘ '0-74\"' M 2 - -]
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(H* + e™ ) transferred (H* + e ) transferred (H™ + e ) transferred

* Cu (111) - lowest binding energy for both *CO and *COOH intermediates

* Cu (100) facet - most active in C, production due to lower energetic barrier for hydrogenation step

s, beraRTHENT OF Hori et al., |. Mol. Catal. A: Chem. 2003, 199, 39 Dutta et al, ACS Catal. 2016, 6, 3804
.@/ENERGY Peterson et al,, Energy Environ. Sci. 2010, 3, 1311 Cao et al, ACS Catal. 2017, 7, 8578 20
Reske et al,, JACS 2014, 136, 6978 Raciti et al, ACS Energy Lett. 2018, 3, 1545-1556
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CO ~90% * Highly active, selective, robust oxide-

b selectivity i -
d d C 1 talyst
Hierarchical CuO-derived @ e crve ! u mvége O(I;?) catalys
Cu inverse opal | outpertorms - LU0 over
“ _ commercially-available Cu catalysts

* Production of CO with 80~90%
selectivity and  >70%  Faradaic
efficiency at moderate potentials

* 3D interconnected porous structure - decrease in the local concentration of CO, and
proton donors and local pH increment

* Small metallic Cu sites - electrochemically active sites promoting CO,RR

* Highly roughened surface and dominance of Cu (111) surface site - weakly bind the
intermediate species, lower adsorbate mobility and reduce reactant availability per
active site

Ch ,’r,j\ U.S. DEPARTMENT OF
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2. How does it perform?

—
1 pm

Spectrum 1
Element Weight% Atomic%
0 CK 36.57 63.63
OK 2.83 3.70
FK 16.03 17.64
« KK 1.76 0.94
LM o CuK 42.81 14.08
1] I 2I I xli I fl:i I ili I 1ID I 1I2 I 1I4 I 1IB I 1IB I 2Il}
Full Scale 1008 cts Curser: 0.010 (17251 cis) keW|

Almost retain inverse opal structure

U.S. DEPARTMENT OF

)ENERGY .




2. How does it perform? N =|NATIONAL

TL TECHNOLOGY
LABORATORY

5
@ CuO-HIO
CuO-HIO **I' @ Bukcuo 4
LKA, A Bulk CuO . @ CuONPs
L CuO NPs >
Z o4t
- 3F " £ 178 mV dec™
o " [
< L A §o3f
3 A 2
--_. E ook
1t A 3" 141 mV dec™
1
i ‘ -A ! 184 mV dec
0 -‘ ‘lI‘ll‘ll‘l--‘::‘.||““‘--A 0.1F
12 -1.1 -1.0 0.9 -0.8 -0.7 0.6 -05 -0.4 -0.3 -0.2 30 25 20 15 10 05 00
Potential / V vs. RHE log (ioq / MA cm™)
High mass current density Rate determining step involving the
of CuO-HIO initial electron transfer to CO,
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2. How does it perform?

—<
i

40 100
CuO-HIO
3B [ CuO NPs
80k Bulk CuO
30F (e ] CuO-HIO .
N CuO NPs >
c 25} Bulk CuO N
Q Q =2 60F
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5 » 9 8 g 20 =
ol 9000
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-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5
Potential / V vs. RHE Potential / V vs. RHE

80 ~ 90% CO selectivity over CuO-HIO
5X ~ 9X higher than those for bulk and nanostructured CuO
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@-008 V VS. RHE @-100 V VS. RHE
6 80 * 80
N N
£ £
G o o-20} * * * ')
< | O <« L ,| ©
E 9l §60 T S 60 T
> >
= Q =5 Q
(%)) o (72} (@)
% -12 % 140 @ qC) 40 <,
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= 0, = 0,
S5 -15¢ 4208 5° ) 202
(&) -~ (@] -~
g g 8 S
o o
— [
_18 M L M L M L M L M L M L M L M O _35 L M L M L M L M L M O
0 30 60 90 120 150 180 210 240 0,0 15 3.0 4.5 6.0 7.5 9.0
Time / min Electrolysis time / hour
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Double layer capacitance measurement

3.0x10° 6.0x10°®
CuO-HIO CuO NPs
5.0x10° |
2.5x10° |
4.0x10° |
< <
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[} = [
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1.5x10° f R“ =0.9968
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.5 L
1.0x10 ook
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4.0x10° |
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<
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[y
o
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.OX B
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5.0x107 |
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003 006 009 012 015 018 0.21
Scanrate/ Vst
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Cu-C_)

F.T. magnitude /a.u.

Normalized absorbance / a.u.

8964 8976 8988 9000 9012 9024 0
Energy / eV
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4.0

Cu(111)

L A A A

W
o

Cu(311)

| Cu(200) Cu(220) Cu(222)

| . 300 min

‘| 180 min
N ane i 120 min

Intensity / a.u.

|,1,/1,00 INtENsity ratio
N w
(€]] o
1 1

 ocv

1 1 1 1 'H ' 1 1 1 20 1 M 1 M 1 M 1 M 1
5 6 7 8 9 10 11 12 13 14 60 120 180 240 300
2-theta / ° Electrolysis time / min
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