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Abstract
The United States (U.S.) road freight sector has continued to grow over recent decades. Growth in road freight could result
in more fuel consumption and hence increased greenhouse gas emissions. Policymakers have attempted to manage the
growth of energy usage through improved fuel economy based on technological advances. However, such improvements may
not lead to anticipated goals because of the rebound effect, where improvements in energy efficiency trigger more travel and
energy consumption that offsets energy savings. Thus, this study aims to determine the potential rebound effect from
improved energy efficiency in the U.S. road freight sector. Eight fuel cost models are applied and asymmetric price response
is incorporated in estimating the U.S. road freight sector’s rebound effect from 1980 to 2016. In addition, a recently devel-
oped data envelopment analysis is applied to determine the annual rebound effect in the road freight sector. The results sug-
gest that, after accounting for the asymmetric price response, the average rebound effect of the U.S. road freight sector
ranges from 6.9% to 8.8%, a level considerably less than that found for several industrialized countries and emerging econo-
mies. However, a considerable increase in the rebound effect has been seen in more recent years. The findings suggest that
overlooking the rebound effect in environmental policies could impede the goal of reducing total energy consumption and
accompanying emissions. Policymakers should incorporate the rebound effect from efficiency enhancement in policy develop-
ment and utilize some potential programs to reduce the adverse influence of rebound effect in related policies.

The United States (U.S.) freight sector has continued to
expand over the past decades as a vital link in the
nation’s economic activities. In 2018, nearly 5.3 trillion
ton-miles of goods were moved, with trucking as the
dominant mode (1). Given the surging development of e-
commerce, this growth is expected to continue. Freight
growth is also because of the increasing imports of manu-
factured goods (2). Increased freight activities have
resulted in more energy consumption that can also be
affected by fuel efficiency, road condition, labor availabil-
ity, and the load factor of heavy goods vehicles (HGVs)
(3). The U.S. transport sector is the second-largest energy
user among major economic sectors, accounting for more
than 28% of all energy consumption in the U.S. (4).
Among the transport sectors, road freight transport has
the highest energy use and constitutes one-third of trans-
port energy consumption in the U.S. (5, 6).

Energy consumption from rising freight transport
leads to increases in greenhouse gas (GHG) emissions.
The U.S. transport sector surpassed the electric power
sector in 2016 to become the largest source of GHG emis-
sions in the nation. Freight trucks produced 23% of U.S.

all transport-based GHG emissions (7, 8). Therefore,
reducing freight truck energy consumption through
energy efficiency improvement is a primary focus of pol-
icymakers (5). To mitigate the rising trend of energy use
and GHG emissions, the U.S. government has implemen-
ted national energy and environmental policies, such as
the Energy Independence and Security Act in 2007 and
the Clean Air Act in 2012, with the goals of improving
fuel efficiency (gallons/1,000 ton-kilometer) and reducing
GHG intensity (metric tons CO2 eq./ton-kilometer) of
HGVs (9–11).

However, the effects of the governmental efforts to
lower GHG emissions are unclear, as anticipated reduc-
tions in total energy use may not be achieved.
Presumably, improvement in technology and efficiency
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for energy service lowers its effective price, which will
attract greater use. Accordingly, improvements in energy
efficiency improvement may encourage more energy con-
sumption thus offsetting energy savings from upgraded
efficiency, which is referred to as the direct rebound
effect (12). Further, financial savings because of the
adoption of energy-saving technology can be expended
on other goods and services that require freight services,
which leads to the indirect rebound effect. Moreover, the
rebound effect reflects asymmetric responses to energy
price increases and decreases in both the short run and
long run. An increase in energy price may decrease the
rebound effect, whereas energy price reduction may
amplify the effect (13, 14).

Several empirical studies have attempted to identify
and estimate the rebound effect in the road transport sec-
tor. Small and Van Dender identified the rebound effect
from the improved fuel efficiency in the U.S. passenger
vehicle use (15). Llorca and Jamasb found the presence
of the rebound effect in the European Union (EU) road
freight transport sector after the EU adopted air quality,
energy security, and climate change policies (16). Sorrel
and Stapleton estimated the rebound effect in the United
Kingdom’s (UK) road freight sector based on static and
dynamic models (5).

Given the rising concern in relation to GHG emis-
sions and expected growth in freight, an updated study
on the potential rebound effect associated with U.S. road
freight transport is warranted. Further, previous studies
on the energy efficiency of the U.S. road freight sector
have generally overlooked the asymmetric nature of car-
riers’ responses to price changes, which could lead to a
biased estimate of the rebound effect (17). Therefore, the
objective of this study is to identify the rebound effect
for U.S. road freight transport given government policies
that aimed at reducing energy consumption and GHGs
emissions. Also, the related literature is complemented
by considering the asymmetric energy price responses in
the estimate of the rebound effects in U.S. road freight.

Literature Review

William Stanley Jevons first demonstrated that gains in
energy efficiency improvement could lead to less energy
savings, based on individual behavioral and systematic
responses. Jevons, in his seminal paper titled ‘‘The Coal
Question,’’ argued that ‘‘it is ridiculous to reduce fuel
consumption through using it economically and instead
the opposite is true’’ (18). This concept is known as the
Jevons Paradox. Clark and Foster illustrated Jevons’
argument in relation to energy efficiency and consump-
tion using an example of iron furnaces (19). If the fur-
nace increases profitability by reducing the amount of
coal used for the same level of output, new capital

investment will be attracted and could result in increased
iron production thereby lowering the final product (iron)
price. Thus, the increased number of furnaces could off-
set the decreased average consumption of each furnace,
which would eventually result in increased domestic coal
consumption.

Khazzoom studied the components of the Jevons
Paradox and showed that the demand for energy is price
elastic in the long run; the rebound effect holds if a suffi-
cient time span is considered (20). When actual energy
savings are higher than the expected savings, the rebound
effect is then negative. The price effect of an energy effi-
ciency improvement is known as the direct rebound effect
which includes both the substitution and income effects.
The effect of spending the extra income from energy effi-
ciency on the other goods or services is considered as the
indirect rebound effect (3).

Ruzzenenti and Basosi concentrated on the energy
efficiency of the freight sector in the EU as it is a pillar
of the EU’s strategy to meet the Kyoto protocol agree-
ment (21). Using two different estimation approaches
(econometric and network theory), they found a negative
rebound effect in European freight transport, suggesting
that actual energy savings are higher than the expected
savings. However, some researchers found a positive
rebound effect in the freight sector of the EU countries.
Llorca and Jamasb examined the impact of the EU’s
newly adopted energy and environmental policies on
energy consumption in the road freight transport sector
of 15 European countries (16). They estimated the aver-
age direct rebound effect in the road freight sector to be
3.8%, with the highest effect found in Sweden at 7.9%.
Also, the rebound effect in the road freight sector was
higher in the more fuel-efficient countries compared with
the less fuel-efficient countries. Matos and Silva found
the direct rebound effect to be over 24% in Portugal’s
road freight transport sector, while Sorrell and Stapleton
estimated the average direct rebound effect in the UK’s
road freight transport to be 49%, indicating that a 1%
increase in energy efficiency will reduce energy consump-
tion by only around 0.5% (5, 22).

Some researchers have paid attention to the rebound
effect in emerging economies or developing countries.
Wang and Lu estimated the direct rebound effect in
China’s road freight transport sector (18). They esti-
mated that the direct rebound effects for the eastern, cen-
tral, and western regions, and for all of China, as 52%,
80%, 78%, and 84%, respectively. A more recent study
by Jin and Kim estimated the energy rebound effect of
South Korea’s aggregate economy and found a moderate
rebound effect (23).

The definition of the rebound effect is related to the
change in energy demand with a corresponding shock in
the effective energy price. Frondel and Vance emphasized
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the importance of considering asymmetric price responses
to improve the estimation of the rebound effect (17).
Bentzen estimated the rebound effect in the U.S. manu-
facturing sector to be around 24% after incorporating
asymmetric price responses (24). Stapleton et al. consid-
ered the asymmetric price responses in estimating the
rebound effect in Great Britain’s personal automobile
transport and suggested an overall increase in the
rebound effect for a fuel price decrease (14). Lin and Li
incorporated asymmetric price responses in the model
specification to estimate the rebound effect in China’s
heavy industry and found an increased rebound effect for
energy price decreases (13).

Methods

Various definitions of the rebound effect have been intro-
duced in previous studies. The use of negative price elas-
ticity of energy service demand to estimate the rebound
effect has been widely adopted as related data can be
more easily obtained (5, 25, 26). As defined below, the
rebound effect is:

RE= � nPS
Sð Þ= � ∂lnS

∂lnPS

ð1Þ

where RE is rebound effect, Ps and S are energy cost and
service demand, while nPS

Sð Þ is the elasticity of service
demand with respect to the energy cost of the service.

Following prior studies, road freight activity is mea-
sured in ton-kilometers (tkm), that is, tons of goods
moved to the distances (5, 21, 22). Road freight levels
could be influenced by various factors, such as produc-
tion inputs, fuel cost, and gross domestic product (GDP)
of the region. Fuel price, fuel cost, GDP, and energy effi-
ciency of goods moved (e) are the most widely used vari-
ables in estimating the rebound effect in the freight
transport sector (22, 23).

The primary hypothesis in this study is that no
rebound effect associated with energy efficiency improve-
ment exists in the U.S. road freight transport sector.
Fuel cost static and dynamic models are estimated to
capture the short-run and long-run rebound effect fol-
lowing Sorrell and Stapleton (5). Static models define
distance traveled of goods as a function of the same
period explanatory variables. Since responses to effi-
ciency improvements and fuel price changes take time,
dynamic versions of each model are also estimated by
taking the lag term of the dependent variable along with
other explanatory variables.

The static fuel cost and the dynamic fuel cost are
formed as Equations 2 and 3, respectively:

lnTkmt =bSF
0 +bSF

1 lnYt +bSF
2 lnPSt +mt ð2Þ

lnTkmt =bDF
0 +bDF

1 lnYt +bDF
2 lnPSt +bDF

3 lnTkmt�1 +mt

ð3Þ

where Yt is GDP, Pst is fuel cost, Tkmt–1 is a one-term lag
of tkm, and mt is the error term of the model. In the static
model, the elasticity of tkm with respect to fuel cost is given
by the coefficient bSF

2 ; whereas the elasticity is generated
from ( bDF

2 /(1 �bDF
3 )) in the dynamic model. Three addi-

tional variables, including a dummy variable of year 2012
(Year2012), an ultra-low sulfur diesel (ULSD) dummy,
and manufacturing share of GDP, are considered to cap-
ture the potential effect of policy and industry develop-
ment. A total of eight different models are estimated,
including the base static model (static 1), three fuel cost sta-
tic models (static 2–4), the base dynamic model (dynamic
1), and three fuel cost dynamic models (dynamic 2–4), with
different combinations of the selected variables.

The selection of the models relies on the results of
serial-correlation tests and heteroscedasticity tests for the
error terms of each model. An endogeneity test is also
performed for the GDP variable, as the residual of tkm
and GDP might be related to some common factors, that
is, fixed assets, the total number of employees, or unem-
ployment rates (instrumental variables). Fit tests are also
performed to find the compatibility of the instrumental
variables in identifying the endogeneity issue of GDP.
The test for under-identification, weak-identification,
and over identification are conducted to examine if the
instruments are valid for the analysis.

The per-gallon fuel prices are further decomposed to
re-estimate the asymmetric price response to prevent
the potential issue of biased estimation of the rebound
effect. The decomposition technique proposed by Gately
and Huntington is followed (27). The original fuel prices
can be decomposed into maximum historical prices
(max ln PF, tð Þ½ �), cumulative sub-maximum price recov-
eries (rec½ln PF, tð Þ�), and cumulative price decreases
(dec½ln PF, tð Þ�) as follows:

ln PF, tð Þ= max ln PF, tð Þ½ �+dec ln PF, tð Þ½ �+rec ln PF, tð Þ½ �
ð4Þ

where

max ln PF, tð Þ½ �=max½ln PF, 1ð Þ, ln PF, 2ð Þ,
ln PF, 3ð Þ, . . . ::, ln PF, tð Þ

ð5Þ

dec½ln PF, tð Þ�=
Xt

i= 1

min(0, max ln PF, t�1ð Þ½ � � ln PF, t�1ð Þf g

� max ln PF, tð Þ½ � � ln PF, tð Þf g) ð6Þ

rec½ln PF, tð Þ�=
Xt

i= 1

max(0, max ln PF, t�1ð Þ½ � � ln PF, t�1ð Þf g

� max ln PF, tð Þ½ � � ln PF, tð Þf g) ð7Þ
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Each year fuel price ($/gallon) is decomposed to find
price decreases and recoveries. After decomposition,
recovery fuel price and decrease fuel price are used to
generate Pe and Ps. These newly generated variables are
used in the revised versions of the static and dynamic
models (Equations 2 and 3) in estimating the rebound
effects with changes in fuel prices.

Annual Rebound Effect from a Non-Parametric
Analysis

Jin and Kim recently developed a novel method to esti-
mate the rebound effect with time-series data (23). They
argued that previous studies typically neglect the impact
of energy intensity on the rebound effect. If the energy
intensity of a sector is highly volatile over time, tradi-
tional rebound estimation may overestimate the actual
rebound effect. Thus, they proposed an alternative defi-
nition as follows:

REt =
Et, actual

Et, potential
� 1 ð8Þ

where Et,actual refers to actual energy consumption and
Et,potential refers to potential energy consumption that is
derived from a data envelopment analysis (DEA). DEA
is a non-parametric approach to measure the relative effi-
ciency of the decision-making units (DMUs) based on a
set of inputs and outputs (23).

Jin and Kim are followed, to adopt an aggregate
rebound effect method to serve as a complementary to
the structural equation model (23). First, the annual effi-
ciency score is estimated using the slack-based DEA
model (28). In this method, the sector’s decision each
year is considered as one DMU with tkm as the output
and technological progress of the freight sector and
energy consumption as the inputs. Technological prog-
ress is estimated from a Cobb-Douglas (C-D) production
function comprising labor in the freight sector and new
vehicle purchases as factors of production for tkm. The
output-oriented slack-based DEA model is then used as
follows:

Let,

Xnt = X1t,X2t, . . . . . . . . . . . . :, Xntð Þ
Ylt =(Y1t, Y2t, . . . . . . . . . . . . . . . , Ylt),

Minimize r=
1� 1

n

P
n= 1

Sx
n

Xn1

1+ 1
l

P
l = 1

S
y

l

Yl1

ð9Þ

Subject to,

X

t= 1

ltXnt + Sx
n =Xn1 ð10Þ

X

t = 1

ltYlt � S
y
l = Yl1 ð11Þ

X

t= 1

lt ø 0 ð12Þ

Sx
n, S

y
l ø 0

where Xnt is the vector of n inputs used by DMU t, while
Ylt is the vector of l outputs produced by DMU t. r is
the energy efficiency score with 0\r ł 1. Sx

n and S
y
l are

the slack vectors of inputs excess, and outputs shortages,
respectively. Xn0 and Yl0 are the input and output values
of the first DMU (t=1). lt is the estimated weight vector
that optimizes the linear combination of input and output
vectors for DMU t. Robust DEA (‘‘rDEA’’) package ‘‘R’’
software is used to estimate the efficiency score.

After obtaining the efficiency score, the annual
rebound effect is then determined by measuring the over-
spent energy consumption following Equation 13 below
(23):

Et, potential = efficiencyt � Tkmt � EIt ð13Þ

where efficiencyt is the efficiency score generated from
the DEA for DMU t. EIt represents energy intensity
which can be derived from dividing tkm by freight
energy consumption. Plugging the estimated Et,potential in
Equation 8 will then generate the yearly rebound effect.

Data

The dependent variable, tkm, obtained from the U.S.
Bureau of Transportation Statistics (BTS) is estimated
using two different methods before and after 2012. The
estimate of tkm up to 2011 is based on the freight analysis
framework 3 (FAF3) that considers the difference between
the total of all modes and the sum of other modes without
road (29). The 2012–2016 data are tabulated using the
freight analysis framework 4 (FAF4) approach developed
by the Federal Highway Administration (FHA) and the
Oak Ridge National Lab (ORNL) (30). Fuel price ( Pe) is
measured as the price per megajoule (MJ) of energy con-
sumption. GDP growth measures the economic output of
a region (31). The energy efficiency (e) of goods moved is
defined as tkm divided by freight energy consumption.
The fuel cost per tkm (Pst) is primarily influenced by how
much it costs to travel 1 km and how much can be carried.
Here, Pst is derived from dividing Pe by e.

Following Sorrell and Stapleton, manufacturing’s
share of U.S. GDP is also included as an additional vari-
able to account for the potential decoupling of freight
from GDP (5). Similar to the UK, manufacturing’s share
of GDP in the U.S. has declined over time, while the
imports of foreign manufacturing goods have replaced
some freight demand from domestic manufacturing.
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Thus, freight activity may become partially decoupled
from GDP.

The Year2012 dummy variable is included to capture
the potential influence of the Clean Air Act 2012, as more
stringent regulations for cleaner highway vehicles are
implemented under this act (32). Also, the dummy vari-
able could capture the potential impacts of the switch of
tkm estimation by the U.S. BTS. The dummy variable
has a value of 1 after 2012, otherwise 0. An additional
dummy variable is introduced to account for the imposi-
tion of ULSD use in freight transport starting in 2006
when the environmental protection agency (EPA) began
to phase-in more strict regulations to lower the amount
of sulfur in diesel fuel to 15 ppm (33). (ULSD reduces
emissions and enhances fuel economy.) It is possible this
policy has a rebound effect. The dummy variable has a
value of 1 after 2006, otherwise 0.

Time-series data are collected from various sources
for the period 1980–2016. Per capita GDP is collected
from the World Bank (34). The value of manufacturing
shipments is collected from the U.S. Census Bureau (35).
Data on the instrumental variables, unemployment rate,
and the total number of employees, are collected from
the U.S. Bureau of Labor Statistics (36, 37). The value of
fixed assets is collected from the Bureau of Economic
Analysis (38). All other freight-related data, including
tkm, energy consumption, fuel prices, freight labor, and
the number of new vehicle purchases each year, are
obtained from the U.S. BTS (29). The descriptive statis-
tics of the data are summarized in Table 1.

Results and Discussion

Diagnostic tests indicate heteroscedasticity for both the
static 1 and dynamic 1 models. Two static models (static
1 and static 4) exhibit endogeneity issues as independent

variables are correlated with the residue terms. The serial
correlation issue is found in the static models based on
the Durbin-Watson (DW) d-statistic and two dynamic
models (models 1 and 4) given the DW h-statistic. To
correct for related serial correlation and heteroscedastic
disturbance terms, a two-stage least squares (2SLS) esti-
mation is applied with heteroskedastic and autocorrela-
tion consistent (HAC) robust corrections (39).

The fit tests for the instrumental variables in each of
the 2SLS models have also been conducted. The
Anderson-Canon LM statistic shows that the under-
identification issue is not detected in any of the estimated
models as the null hypothesis of under-identification
is rejected in all 2SLS models. Similarly, the weak-
identification issue has also been rejected. The Cragg-
Donald Wald F statistic indicates that the instrumental
variables have strong explanatory power for the endogen-
ous variables. The null hypothesis of the Hansen J statis-
tic is not rejected, suggesting the instruments of all the
models are valid and are not correlated with the error
term in the system. Overall, the fit tests of the instruments
indicate that fixed assets and the total number of employ-
ees are valid instruments for the endogenous GDP.

The 2SLS results of the static and dynamic fuel cost
models are presented in Table 2. In the base static model,
both GDP and fuel cost are statistically significant, sug-
gesting both have an impact on freight tkm. A 1%
increase in GDP increases tkm by 0.53%. In contrast, a
1% increase in fuel cost leads to a reduction in tkm by
0.14%. In static model 2, a 1% increase in the fuel cost
now decreases tkm by 0.06% which is less than half the
impact in the base model. The Year2012 dummy is statis-
tically significant and captures the potential impacts of
the tkm estimation method as well as the influence of the
Clean Air Act. For model 3, all other variables are statis-
tically significant. Similarly, fuel cost decreases to

Table 1. Summary Statistics of Variables

Variables for static and dynamic models Mean SD Min. Max.

tkm (millions) 2,948,606 620,796 1,849,246 3,971,260
GDP per capita ($) 34,050.30 13,799.30 12,574.80 57,904.20
Fuel cost ($ per tkm) 0.03 0.01 0.02 0.07
Manufacturing share of GDP 0.43 0.10 0.29 0.67
Year2012 dummy 0.11 0.32 0 1
ULSD dummy 0.30 0.46 0 1
Instrumental variables to test endogeneity issue for GDP
Fixed assets ($billions) 28,906.50 15,152.90 9,512.50 57,296.10
Employees (thousands) 1,436,253 203,717 107,6215 1,732,175
Unemployment rate 6.38 1.61 3.97 9.71
Factors of production for C-D production function
Labor (thousands) 1,319.35 105.90 1,104.60 1,452.68
New vehicle purchases (thousands) 5,661.11 1,264.66 3,107 7,467

Note: SD = standard deviation; Min. = minimum; Max. = maximum; C-D = Cobb-Douglas, GDP = gross domestic product, tkm = ton-kilometer, ULSD =

ultra-low sulfur diesel.
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–0.12%. In static model 4, the ULSD dummy is insignifi-
cant while the remaining variables are still significant.
The rebound effects for the three static models range
from 6.4% to 12.1%. An average of results from the
three static models indicates that a 1% increase in fuel
efficiency decreases fuel consumption by 0.9%.

The lag-dependent variable is significant in three
of the four dynamic models. Also, GDP and fuel cost
are significant in three of the four dynamic models.
However, model results indicate that the impacts of both
GDP and fuel cost on tkm are lower in the long run than
in the short run. The Year2012 dummy has an average
percentage negative impact on tkm across the four
dynamic models of 16.8%. Manufacturing share is sig-
nificant in dynamic models 3 and 4. As the long-run elas-
ticity of goods moved in the dynamic framework is
dependent on the significant estimates of fuel cost and
lag term, the respective rebound effect is estimated to be
7.6% and 6.3% in dynamic models 2 and 4, respectively.
The estimated rebound effects imply that a proportion of
the potential energy and carbon savings from the
improved efficiency in U.S. road freight has been

partially offset by increased freight activity (more tkm).
Results also show the dynamic models present relatively
smaller rebound effects than the static models, suggesting
that reliance on static models could lead to larger price
elasticities (40).

The re-estimated results for the dynamic and static
models from the price decomposition model are pre-
sented in Table 3. The table represents the rebound
effects of recovery fuel price (Prec) and decreased fuel
price (Pdec) along with the original fuel price estimate for
both static and dynamic models. All variables in the Prec

fuel cost are statistically significant. The rebound effects
are averaged 7.3% and 5% for the static and dynamic
models, respectively. These averages are lower than the
original fuel price average rebound effect (8.8% in static,
6.9% in dynamic), suggesting the freight carriers use less
energy with the price increase, and this results in a lower
rebound effect. In the Pdec cases, the average rebound
effects of the static and dynamic models are 9.5% and
7.1%, respectively, which are higher than the original
rebound effect estimates, implying the increase of fuel
consumption in responding to the reduction in fuel price.

Table 3. Adjusted Rebound Effects Considering Asymmetric Price Response

Original fuel
price estimates

Average rebound
effect

Recovery fuel
price estimates

Average rebound
effect

Decrease fuel
price estimates

Average
rebound effect

8.8% 7.30% (17% decrease) 9.5% (8% increase)
Static 2 20.064*** 20.070*** 20.048
Static 3 20.121*** 20.090*** 20.130***

Static 4 20.08** 20.060*** 20.059***

6.90% 5% (27.5% decrease) 7.10% (2.9% increase)
Dynamic 2 20.076*** 20.050*** 20.055**

Dynamic 3 20.102 20.063*** 20.099***

Dynamic 4 20.063** 20.038* 20.060***

Note: ***, **, and * denote 1%, 5%, and 10% significance level respectively.

Table 2. Parameter Estimates of the Static and Dynamic Models

Models ln (GDP) ln (fuel cost) ln (lag tkm)# ln (manufacturing share)
Year2012
dummy

ULSD
dummy

Rebound
effect

Static 1 0.52*** (0.037) 20.14*** (0.04) na na na na na
Static 2 0.58*** (0.019) 20.06*** (0.023) na na 20.23*** (0.020) na 6.4%
Static 3 0.78*** (0.040) 20.12*** (0.012) na 0.37*** (0.071) 20.22*** (0.009) na 12.1%
Static 4 0.75*** (0.055) 20.08** (0.028) na 0.31*** (0.086) 20.22*** (0.013) 20.03 (0.028) 8%
Dynamic 1 0.12 (0.086) 20.06 (0.037) 0.74*** (0.147) na na na na
Dynamic 2 0.43*** (0.096) 20.05*** (0.015) 0.27* (0.157) na 20.18*** (0.039) na 7.6%
Dynamic 3 0.62*** (0.127) 20.08*** (0.016) 0.22 (0.149) 0.31*** (0.105) 20.18*** (0.041) na na
Dynamic 4 0.65*** (0.078) 20.05** (0.023) 0.18** (0.093) 0.28*** (0.086) 20.19*** (0.024) 20.04 (0.026) 6.3%

Note: GDP = gross domestic product, tkm = ton-kilometer, ULSD = ultra-low sulfur diesel; na = not applicable.

Percentage impact of the dummy variable (D) is estimated by 100 3 [exp (D) – 1].
***, **, and * denote 1%, 5%, and 10% significance level, respectively. The numbers in brackets indicate the standard error.
#Only dynamic models include the lag term of tkm.
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Figure 1 illustrates the annual rebound effect esti-
mated from the robust SBM DEA model. On average,
the rebound effect of U.S. road freight transport is
5.5%, which is 20.3% less than the estimated dynamic
fuel cost models. It is seen that the annual rebound effect
was less than 5% in the period 1980–2005. From 2006
through 2010, it typically ranged between 5% and 10%.
However, from 2012 to 2016, it dramatically increased to
the 21%–26% range. The surge in road freight’s rebound
effect in the later period could be potentially related to
the Clean Air Act 2012 that requires higher fuel effi-
ciency vehicles for freight. The improved fuel efficiency
may reduce the fuel cost. As travel cost decreases in the

U.S. road freight sector, there might be less incentive to
have full loads, which eventually increases energy inten-
sity along with tkm (41). It explains the volatility with a
boost in the energy intensity of the U.S. road freight sec-
tor shown in Figure 2.

Comparing with other countries, the rebound effect of
U.S. road freight is higher than those estimated for
European countries with an average of 3.8% reported by
Llorca and Jamasb, while markedly lower than estimates
for both Portugal and the UK (16). Among those exam-
ined countries, China has the highest rebound effect
(84%) for the road freight sector (18).

Several factors may contribute to the variability in the
rebound effect over time in this study. First, the types of
commodities to be transported by freight transport can
be an important factor for the high variability of freight
rebound effect across time. According to Li et al., bulk
commodities like logs, lumber, and textiles are shown to
be less elastic than non-bulk commodities like paper,
plastic, and rubber products (42). Hence, the estimation
results reflect the situation that the tkm generated by the
trucking is mostly associated with bulk commodities.
Bulk commodities, for example, meat, seafood, coal, and
motorized vehicle machinery, among others, moved by
road freight transport in the U.S. have increased over
time (30). Hence, the rebound effect is slightly higher in
the short run but lower in the long run. The shift in the
composition of freight movement could be because of
changes in shipping distance, including origin and desti-
nations, and to changes in the sectoral composition and
location of economic activity (for example, primary pro-
ducers of certain products—seafood, red meat, dairy,
and horticulture, among others, have perhaps become
increasingly geographically concentrated) (43).

Second, Christdis and Leduc stated that shorter ship-
ping distances tend to be less elastic than long shipping
distances (44). According to the U.S. Department of
Transportation, and Winebrake et al., the majority of the
HGV shipping in the U.S. is for shorter distances, that is,
less than 500 mi, which may explain smaller rebound
effects in U.S. road freight transport (41, 45). Also, dis-
tance is closely related to the availability of competing
modes for commodity shipping.

Third, the availability of alternative modes might
have an impact on freight elasticity. This availability is
also dependent on factors like regional infrastructure
and shipping distances. Christdis and Leduc showed,
generally, the shorter the shipping distance, the greater
the possibility of only one modal option availability (44).
Rich et al. showed that, when the shipping distance is
longer, rail and barge are often available alternatives,
which increases the ability to respond to price changes
(i.e., elasticities increase) (46). Specifically, rail availabil-
ity as an alternative to truck allows the companies to

Figure 1. Annual rebound effect of the U.S. road freight
transport from 1980 to 2016.

Figure 2. Energy intensity of U.S. road freight transport from
1980 to 2016 (4, 30).
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consider the cross-price elasticities between modes.
Winebrake et al. indicated that smaller elasticities hint at
a potential shift from rail to truck in the U.S. because of
changes in HGV freight prices given increased fuel effi-
ciency (41). Lower freight elasticity found in this study
indicates there might be a shift of shipping from rail to
truck to accommodate the relative growth in shorter
shipping distance. However, the large-scale shipments
weighing between 25 and 40 tons and greater than 500
mi are more suited to rail (9).

Conclusion

One of the main objectives of energy and emissions
policies is to reduce energy consumption for major con-
suming sectors like the road freight sector. Energy con-
sumption reduction can be done through fuel economy
improvement. However, such improvements lower the
marginal cost of supplying energy service that may in
turn increase energy consumption thus eventually offset-
ting the expected energy efficiency gains (i.e., creating a
positive rebound effect). This study estimates the
rebound effect in the U.S. road freight sector for the
period 1980–2016. Based on eight fuel cost models,
including four static and four dynamic models, the
results suggest that the short-run rebound effect ranges
between 6.4% to 12.1%, and the long-run rebound effect
is around 7% in the U.S. road freight sector. Further
analyses show that the average rebound effects are low-
ered to 7.3% for the static model (i.e., the short-run esti-
mates) and 5% for the dynamic model (the long-run
estimates) after adjusting the price response asymmetries
in the estimation. In addition, over the study period, the
rebound effect was initially less than 5%, increased to
around 10% in 2007, but dramatically increases to an
average of 22.2% after 2011.

Despite the increasing rebound effect in the U.S. road
freight sector over the study period, it is still less than the
rebound effect found in other developed countries and
emerging economies. The variability of the U.S. rebound
effect over time could be linked to several factors such as
commodity types, shipping distance, modal share, and
geographical location. In addition, the estimation
method of tkm by the U.S. Bureau of Transportation
Statistics and ORNL could contribute to this volatility,
as freight analysis framework (FAF) tkm is based on
traffic assignment rather than the actual odometer read-
ings. Moreover, annual updates of FAF data are driven
mostly by assumptions and not collected from the field
except for survey years.

These results have important policy implications. The
estimated rebound effect proves to be a deterrent to the
energy efficiency policies when the actual energy con-
sumption exceeds the anticipated reduction from the

policies. Overlooking the rebound effect in the develop-
ment of energy or environmental policies could result in
more energy consumption and related GHG emissions
even when the goal of the policy is to mitigate environ-
mental degradation. However, the rebound effect should
not be used as a rationale for inaction in addressing the
energy and environmental issues. Instead, policymakers
should take the rebound effect generated from efficiency
enhancement into account in the policy development to
better gauge the impact of related policies.

Some specific policies have been suggested as the
potential remedies to reduce the adverse influence of the
rebound effect in energy and environmental policies. For
instance, a systematic cap-and-trade scheme has been
suggested as an effective approach to address the
rebound effect associated with energy efficiency improve-
ment (16, 47). Also, sector-specific energy or environ-
mental tax, for example, carbon tax, could serve as an
alternative strategy in mitigating the rebound effect,
assuming the pricing for carbon is adequately estimated
(3, 47). In addition, altering consumption patterns by
using consumption information and standardization
could enhance the effect of carbon tax (47). Combining
those policies could lower burden-shifting among eco-
nomic sectors and further reduce the negative conse-
quences of the rebound effect.
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