
VTE
2

E 2

a
L-A
RT
it:22

xp
U18

16
0 200 0 0 0

Rase Num

Neuromorphic Computing with Analog Nonvolatile Memory

Matthew J. Marinella
Sandia National Laboratories, Albuquerque, NM

Contributors: S. Agarwal, C. Bennett, R. Jacobs-Gedrim, E. Fuller, A.A. Talin, J.A. lncorvia (UT),___.„,......„® U.8. DEPARTMENT OF
ENERGY AWS4 LDR13,. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly

owned subsidiary of Honeywell International lnc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

=P. 2N9 SRC Analog Workshop *mmarine@sandia.gov 1

SAND2020-4460PE



C
o
m
p
u
t
a
t
i
o
n
 

A
p
p
r
o
x
i
m
a
t
e
 E
n
e
r
g
y
 P
e
r
 U
s
e
f
u
 

100 J  

100 pJ

10 pJ

1 pJ

100 nJ

10 nJ

1 nJ

100 pJ

10 pJ

1 pJ

100 fJ

10 fJ

1 fJ

100 aJ

IBM PC

i486DX PC

\

Pentium III _

Sandia
National
labotatodes

1

4ffianidd&OF •
Dennard
Scaling

Sony PS3
Nvidia P100

Today's Best Systems

CMOS Limits

Goog_le TPU

Architecture
Innovation

New paradigms:
•.. 
8•.. Pe

ssimisticAnalog 4
1,
.•.
,,..

neuromorphic, 'kv?;. *,
quantum, reversible

1 
... ° 

l 
.

19461 I I I I 1 
•4

  I  >
i 1980 1990 2000 2010 NOW 2025 2035

Year

2019 SRC Analog Workshop



State of the Art: Apple Al2

• Apple's iPhone X main SoC processor

• 7nm TSMC process

• Includes "neural engine" accelerator IP

• Apple spec: 5 TeraOps/s (8 bit)

• Power is —2.5-5W

• Hence, — 1-2 Tera0p/W,

• State of the art neural accelerator is

about 500fJ to 1pJ per 8 bit operation

• Nearing digital limits?

• Similar for published accelerator data,

modern GPU, and Google TPU

Sandia
National
labotatodes

ocR

Neural Fnmne
(cores s8)

Mg cores (x2)

DDR logc 2]

system cache
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little cores (c4)
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GPU cores (x4)
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Analog Computation with a
Resistive Switch Crossbar

• Electronic Vector Matrix Multiply

Evl

Mathematical Electrical

v2 v31
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Matrix Energy/Latency Analysis
VI, V2, —V3, —VI]

jvoltage Coding LOP
Temporal Row
Coding Drivers
Logic

E4c

,untor

Two
1024 x 1024
Crossbars

ADC

Offset
Correction

Integrators

Ramp Comparators

Si   Register 2

Marinella, et al, IEEE JETCAS, 2018
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onent atrix Matrix Vector Outer
Multiply Multiply Product

Update

Energy/Op IFG (fJ) 11.9 - 11.9

Energy/Op ReRAM (fJ) 12.2 12.2 2.1

Energy/Op SONOS (fJ) 13.7 13.7 68 .21

Energy/Op SRAM (fJ) 2718 4630 4102

Array Latency IFG (ps) 0.39 0.39 1.9

Array Latency ReRAM (ps) 0.38 0.38 0.51

Array Latency SONOS (ps) 0.40 0.40 20
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Will enable training at the edge!
E. J. Fuller et al, Science 364, 570, (2019). 2019 SRC Analog Workshop



Analog Device Requirements
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Conductance versus Pulse
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Device-Algorithm Interaction = Strict analog requirements
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TaOx ReRAM Training Evaluation
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lonic Transistor

VSET

• source cathode/channel drain

40
t (ks)
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anode/ ate
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LiCo02 —0- Lii,Co2+xLi. +xh t °

J Ca

current-collector
500 nm anode/gate

MilefirK

E. Fuller et al, Adv Mater, 2017

Emerging ionic devices show promise for anal
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Key Messages
Sandia
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labotatodes

• Energy efficiency critical at all scales, especially at the edge

• Digital CMOS nearing its limits

• Analog crossbar training operations 10-1000x more efficient
than digital CMOS limits

• This can enable training at the edge 

• Training at the edge is desirable

• Communication bandwidth is limited: cannot send all data
to the cloud

• Privacy: may not want to send all data to the cloud

• Device affects algorithm accuracy 4 challenge for analog

• Ideal analog devices a topic of continued research

• Compatible with algs which tolerate moderate precision
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Backup Slides
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Session Charge
Sandia
National
laboiatodes

• Al/ML has provided an explosion in new applications and features, but at
a significant energy cost. Processing at the "edge" which is energy

constrained is a unique challenge. What role will "analog" play in the
Al/ML processing at the edge?

• What new devices are required for analog in machine learning?

• Requirements in: precision, retention, linearity, speed etc.?

• For example, could it be that, in future, you could have larger Al machines
artificially produce data for training smaller Al machines?

• How scalable is Analog in Machine Learning?

• Only for smaller "edge" applications?

• Only for inference?

• Learning on the fly?

• What should be the goals for Analog in Machine Learning for the next 3, 6

and 10 years?
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State of the Art Digital

• TPU vl Performance/Watt

• Die level performance of 2.3
TeraOps/W

• 4 1 pJ per 8 bit operation!

• Intel Haswell die comparison:

• 18 Gigaops/W

• 4 55 pJ per 8-bit operation

• Similar for mobile processors
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Accumulators

Activation
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Model

Die Benclunarked Servers

mm2 inn MHz TDP
Measu red TOPSIs
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On-Chip
Memory

Die.s DRAM Size TDP
Measured

Idle Busy 8b FP Idle Busv
Haswell
E5-2699 v3

662 22 2300 145W 41W 145W 2.6 1.3 51 51 MiB 2 256 GiB 504W 159W 455W

NVIDIA K80
(2 dies/card)

561 28 560 150W 25W 98W -- 2.8 160 8 MiB 8
256 GiB (host)
+ 12 GiB x 8

1838W 357W 991W

TPU <331* 28 700 75W 28W 40W 92 34 28 MiB 4
256 GiB (host)
+8 GiBx 4

861W 290W 384W

N. P. Jouppi et al, 2017 ACM/1EEE 44th Annual International Symposium on Computer Architecture (1SCA), Toronto, ON, 2017
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Al Across Power Envelopes
loT, Edge, and

Mobile
Computing

Self Driving Cars,
Unmanned Arial

Vehicles, and Satellite
Computing

Nvidia Self-Driving
Processor

wikimedia.org

1W 10W 102W 103W 104W
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Datacenters, HPC

Q. Le, IEEE ICASSP 2013
Feature

Feature 2

Feature 3

Feature 4

Feature 5

F111.111

eme AOMPw"

ASCI Red Supercomputer

io5w 106W 
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MRAM FeRAM loni

On/Off ratio 1411 10-104 102-104 1.5-2 102-103 103

Retention High High High High High Medium

Drift Weak Weak Strong None None None

Endurance 106 108 106 >1012 1010 109

Switching 100 fJ 100 fJ 10pJ 100fJ 100fJ <100fJ

Energy
(Nudge)

Switching 1 ps <10ns 10-10Ons <10ns 3Ons <10ns

Speed

Analog High Moderate Low Low Low High

Tunability

DNN High High Low Low Low High

Inference
Suitability

DNN Training Moderate Moderate Low Low Low Moderate to

Suitability High
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Device to Algorithm Model
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IFG Array Demonstration
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Magnetic Synapse Concept
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Exemplar Synapse: Oxide ReRAM
VTE

ReRAM (OxRAM) 

• Starts as insulating MIM structure

• Forming: remove 02- 4 soft breakdown

• Bipolar resistance modulation

• Excellent memory attributes: Switching in

less than lns, less than 1 pJ demonstrated,
scaling to 5nm, >1012 write cycles possible

• Potential for 100 Tbit of ReRAM on chip
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ReRAM Density vs Min. Feature Size

Assumes 4F2 cell, 1-bit cell
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Key Circuit Block/Kernel Analysis

Vector Matrix Multiply
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Lookup Table Generation
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Semiconductor-Oxide-Nitride-Oxide-

Semiconductor (SONOS)
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S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 5, 52-57, 2019.
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SONOS Accuracy and Energy

(a) Pulse Number

100

95
u>"

'5 90
u

85

MNIST

80  1111 
0 1 20 3 40

Training Epoch

Component Vector

Matrix

Multiply

Matrix

Vector

Multiply

Outer

Product

Update

Energy/Op ReRAM (fJ) 12 2 12 2 2.1
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Energy/Op SRAM (fJ) 2718 4630 4102

Array Latency ReRAM (µs) 0.38 0.38 0.51
Array Latency SONOS (p) 0.40 0.40 20
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S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 2019.
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lonic Floating Gate
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Programming Demonstration
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XOR gate
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Programming Demonstration
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CrossSim Model of TaOx ReRAM:

MNIST, Backprop Training
increasing Network Size

Performance
Gap
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# Training
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Network Size

UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9

MNIST Large Digits[3] 60,000 10,000 784x300x10
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Crossbar Theoretical Limits

• Potential for 100 Tbit of ReRAM on chip

• If each can perform 1M computations of
interest per second (1 M-op):

• 1012 active devices/chip x 106 cycle per
second 41018 comps per second per chip

• Exascale-computations per sec on one chip!

• In order to not melt the chip, entire area
must be limited to fu100W

• Allowed energy per operation = P x t/op (.4-E-
= 100W / 1018 = 10-16= 100 aJ/operation g,

• lOnm line capacitance = 10 aF

• Can charge line to 1v with 10 aJ

• Drawback: "only" fw10013 transistors/chip
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c c
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