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State of the Art: Apple Al12

= Apple’s iPhone X main SoC processor
= 7/nm TSMC process
= |ncludes “neural engine” accelerator IP
= Apple spec: 5 TeraOps/s (8 bit)
= Poweris ~2.5-5W
= Hence, ~ 1-2 TeraOp/W,

= State of the art neural accelerator is
about 500f) to 1pJ per 8 bit operation

= Nearing digital limits?

= Similar for published accelerator data,
modern GPU, and Google TPU

apple.com, techinsights.com




Analog Computation with a @
Resistive Switch Crossbar

= Electronic Vector Matrix Multiply
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Let the physics do the computing
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Matrix Energy/Latency Analysis
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Component Vector Matrix = Matrix Vector Outer

Multiply Multiply Product
Energy/Op IFG (fJ) 11.9 11.9 0.2
Energy/Op ReRAM (fJ) 12.2 12.2 21
Energy/Op SONOS (fJ) 13.7 13.7 68.2‘
Energy/Op SRAM (fJ) 2718 4630 4102 \
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Analog Device Requirements L=

Conductance versus Pulse
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Device-Algorithm Interaction = Strict analog requirements




TaOx ReRAM Training Evaluation — @&
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lonic Transistor
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Key Messages .

= Energy efficiency critical at all scales, especially at the edge

= Digital CMOS nearing its limits

= Analog crossbar training operations 10-1000x more efficient
than digital CMOS limits

= This can enable training at the edge

= Training at the edge is desirable

= Communication bandwidth is limited: cannot send all data
to the cloud

= Privacy: may not want to send all data to the cloud
= Device affects algorithm accuracy =2 challenge for analog
= |deal analog devices a topic of continued research
= Compatible with algs which tolerate moderate precision
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Session Charge ()

= Al/ML has provided an explosion in new applications and features, but at
a significant energy cost. Processing at the “edge” which is energy
constrained is a unique challenge. What role will “analog” play in the
Al/ML processing at the edge?
= What new devices are required for analog in machine learning?
= Requirements in: precision, retention, linearity, speed etc.?

= For example, could it be that, in future, you could have larger Al machines
artificially produce data for training smaller Al machines?

= How scalable is Analog in Machine Learning?
= Only for smaller “edge” applications?
= Only for inference?
= Learning on the fly?

=  What should be the goals for Analog in Machine Learning for the next 3, 6
and 10 years?




State of the Art Digital

= TPU vl Performance/Watt

= Die level performance of 2.3
TeraOps/W

= - ~ 1 pl per 8 bit operation!

= |ntel Haswell die comparison:
= 18 GigaOps/W s
= — 55 pJ per 8-bit operation

=  Similar for mobile processors

Die Benchmarked Servers

Model P . Measured | TOPS/s | On-Chip ;. - Measured

mm- | nm (MHz| TDP Tdie | Busv | 8b TEP GB/s Memzry Dies| DRAM Size IDP Tdie | Busv
] 662 | 22 | 2300 145W| 41W| 145W] 2.6 | 13| 51 51 MiB| 2 256 GiB 504W| 159W | 455W
E5-2699 v3
INVIDIA K80 ) 256 GiB (host)
s dicsfoard) 561 |28 ] 560 150W| 25W| 98W| -- |2.8| 160 8 MiB| 8 + 12 GiB x 8 1838W| 357W | 991W
TPU <331% [ 28 | 700 75W| 28W| 40W| 92 | -- | 34 28 MiB| 4 25f8G(13]?13Ehx03t) 861W| 290W | 384W

N. P. Jouppi et al, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), Toronto, ON, 2017




Al Across Power Envelopes () i,

loT, Edge, and Self Driving Cars, Datacenters, HPC
Mobile Unmanned Arial
Computing Vehicles, and Satellite S TErTeT

Computing

Nvidia Self-Driving |
Processor

nest.com

wikimedia.org
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SONOS RRAM PCM MRAM FeRAM lonic
On/Off ratio 108 10-104 102-104 1.5-2 102-103 103
Retention High High High High High Medium
Drift Weak Weak Strong None None None
Endurance 106 108 106 >1012 1010 10°
Switching 100 fJ 100 fJ 10pJ 100fJ 100fJ <100fJ
Energy
(Nudge)
Switching 1 ps <10ns 10-100ns <10ns 30ns <10ns
Speed
Analog High Moderate Low Low Low High
Tunability
DNN High High Low Low Low High
Inference
Suitability
DNN Training Moderate  Moderate Low Low Low Moderate to
Suitability High




Device to Algorithm Model

Target Algorithms
* Deep Neural Nets
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Near ideal
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E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).




Magnetic Synapse Concept @
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Exemplar Synapse: Oxide ReRAM @&

Ve

ReRAM (OxRAM)
= Starts as insulating MIM structure TiN

O anions
exchange

= Forming: remove 0% - soft breakdown o
. . . Ta (15 nm) : switching
= Bipolar resistance modulation ‘o0 _channel

TaOy (5-10 nm) (+) charged

= Excellent memory attributes: Switching in vacancies

less than 1ns, less than 1 pJ demonstrated, TiN
scaling to 5nm, >102 write cycles possible

= Potential for 100 Thit of ReRAM on chip
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Key Circuit Block/Kernel Analysis &

Vector Matrix Multiply Rank-1 Update
(Classification) (Training)
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Lookup Table Generation
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Semiconductor-Oxide-Nitride-Oxide- &
Semiconductor (SONQOS)
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SONOS Accuracy and Energy

100
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lonic Floating Gate =
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Programming Demonstration =
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Programming Demonstration .
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CrossSim Model of TaOx ReRAM:
MNIST, Backprop Training
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- Training Epoch Training Epoch
# Training # Test Network Size
Data set
Examples | Examples
UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10
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Crossbar Theoretical Limits | =

= |f each can perform 1M computations of

= Potential for 100 Thit of ReRAM on chip  * "] "] “Ju] "] -
k] A

interest per second (1 M-op): DRy RN R
= 102 active devices/chip x 10° cycle per [ peice
second =108 comps per second per chip F {:d_I: [ ] E
= Exascale-computations per sec on one chip! 2F {[jﬁa: (]88
= |n order to not melt the chip, entire area ReRAM Density vs Min. Feature Size
must be limited to ~100W o Basumes 47 coll, Lhitonl
" Allowed energy per operation = P x t/op < T - DE el
=100W / 108 = 1016 = 100 aJ/operation 3 | i
= 10nm line capacitance = 10 aF 3 \\
= Can charge line to 1V with 10 aJ '

" " " PR S S | " "
0.81 2 4 6 810 20 40

= Drawback: “only” ~100B transistors/chip Minimum Fuature Size. F (v




