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i486DX PC

Pentium III

Sony PS3

Today's Best Systems

4ffianidd&OF •
Dennard
Scaling

Nvidia P100

Gooale TPU

CMOS Limits .
...

New paradigms: 0%.
PessimisticNeuromorphic, 4...

/11/ **analog, quantum, kst>.•..
reversible computing ° •:jk

19461 I I l l l l l l >
i 1980 1990 2000 2010 NOW 2025 2035

Year

Architecture
Innovation
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Al Across Power Envelopes
loT, Edge, and

Mobile
Computing

Self Driving Cars,
Unmanned Arial

Vehicles, and Satellite
Computing

Nvidia Self-Driving
Processor

wikimedia.org
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Datacenters, HPC

-Or

Q. Le, IEEE ICASSP 2013
Feature

Feature 1, rtgladm
Feature 3

Feature 4

Feature 5

F111.111

ASCI Red Supercomputer

1W 10W 102W 103W 104W 105W 106W 
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Digital Accelerators: Google TPU

• Tensor Processing Unit:
Machine learning

accelerator in use by
Google since 2015

• Used for TensorFlow

• Accelerates neural network
in▪ ference; new versions
may include training

• Core: matrix multiply unit

14 GiB/s

<1>.

14 GIB/s

Off-Chlp 110

D Data Buffer

E Computation
El Control

H
o
s
t
 I
nt

er
fa

ce
 

14 GIB/s

Control

Control

DDR3 DRAM Chips] 1

-0, 30 GiB/s
  30 GiB/s

Weight FIFO
1 > (Weight Fetcher)

DDR3-2133
s, interfaces

Unified
Buffer
(Local

Activation
Storage)

Control

 ✓
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ANINbos

Cintrol

Systolic
Data
Setup

167 GiB/s

;B/

7

1
1

Matrix Multiply
Unit

(64K per cycle)

LAccumulators

Activation

Normalize / Pool
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Digital Accelerators: Google TPU

• TPU vl Performance results released at ISCA 2017

• Die level performance of 2.3 TeraOps/W

• fu 1 pJ per 8 bit operation!

• Contemporary Intel Haswell die comparison:

• 1.8 GigaOps/W

• 4 55 pJ per 8-bit operation

Sandia
National
labotatodes

Model

Die Benchmarked Servers

1111112 11771 MHz TDP
Measured TOPS/s

GB/s
On-Chip
Memory

Dies DRAM Size TDP
Measured

Idle Busy 8b FP Idle Busy

Haswell
E5-2699 v3

662 22 2300 145W 41W 145W 2.6 1.3 51 51 MiB 2 256 GiB 504W 159W 455W

NVIDIA K80
(2 dies/card)

561 28 560 150W 25W 98W -- 2.8 160 8 MiB 8
256 GiB (host)
+ 12 GiB x 8

1838W 357W 991W

TPU <331 '8 700 75W 28W 40W 92 -- 34 28 MiB 4
256 GiB (host)
+8 GiBx 4

861\\ 190W 384W

N. P. Jouppi et al, 2017 ACM/1EEE 44th Annual International Symposium on Computer Architecture (1SCA), Toronto, ON, 2017
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Exemplar Synapse: Oxide ReRAM
• Referred to as Ox-RAM, ReRAM, memristor

Sandia TiN/Ta/TaOx/TiN example: 

• Starts as insulating MIM structure

• Forming: remove 02- 4 soft breakdown

• Bipolar resistance modulation

Ta (15 nm)

Ta0, (5-10 nm)

• Excellent memory attributes: Switching in

less than lns, less than 1 pJ demonstrated,

scaling to 5nm, >1012 write cycles
Pre-Form I/V Forming

6.0x10

2.0x1 09

0.0

-4.0x1

VTE

Ta (50 nrn)

Tal). 110 nn0

-1.0 -0.5 0.0

Voltage (V)

0.5 1.0

4.0x1

0.0

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4 5

Voltage (V)

TiN

2.0x1 0-4

0 0

-4.0x10-4

-6.0x10-0

VTE

Soda
National
labotatories

0-2 anions
exchange

switching
channel

(+) charged
vacancies

SET-RESET

-2.5 • -2.0 • -1.5

Highest current
switching process

-1.0 -0.5 0.0

Voltage (V)

0.5 1.0
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Analog Computation with a

ReRAM Crossbar

• Electronic Vector Matrix Multiply

Evl

Mathematical Electrical

v2 v31

Eii=Evi,iwi,i

VTW=1

W1,1 W1,2

W2,1 W2,2

W3,1 W3,2

12=Evi,2NIVi,2

v w
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W1,3
v1

G 11 11:1;141111

W2,3
v2

G2,1 IL121,1* IL121111

W3,3
v3

G3:1.11:40 GIL3:1".

_
-

13=Evi,3VVi,31 11= Ey i,1G 12= Ey i,2 G i,2 13= Ey it3G

_
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Basics of Neural Networks

Basic Building Block

1
Y 1 + e-z

Neuron

Weights

inputs x1

n

1 z = WiXi

i=0

X 2

lncorreci -
adjust 0

Simple Network:
Backpropagation

/
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it Correct — no
19 adjustment

Outputs

Hidden
Layer

nputs
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i

Mapping Neural Network to Crossbar,

for Backprop
45
>,
c o
ci)

.8 *
5
02
0_
'r

2
u)
m
0_
0

Convert analog
inputs to varying
length voltage
pulses

Vector Matrix Multiply, Matrix Vector
Multiply, Rank 1 Update:

Key kernels used in many algorithms

Backpropagated error
from following layer

• .

444

ik.

ik.

4k.

ik•

4%.

‘,. N4. %.

i I *
Outputs to next layer

*

*
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Integrate current to get
an analog output value

236th ECS Meeting



Forward Propagation

O(N2) O(N)
Operations Operations

Neural Core yj

z =Iyi x wu

yi

Digital Core
1

=
1 + e

-z

Sandia
National
labotatodes
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Back Propagation
err

z x -

Weight Update

Digital Core

= 
dy 
(z j) • A k

dz

Sandia
National
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O(N2) Read O(N) O(N2) Write

Operations Operations Operations
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Key Circuit Block/Kernel Analysis

,

Vector Matrix Multiply

(Classification)

Voltage Coding

Temporal
Coding
Logic

Edge Logic

Counter

Row
Drivers Two

1024 x 1024
Crossbars

-

Neuron

ADC

yi = wijxi

Offset
Correction

Integrators

Comparators

Register 2

Rank-1 Update

(Training)

[VI,V2•-V3,-V]

\1Voltage Coding

Temporal
Coding

Row
Drivers Two

Logic 1024 x 1024
Crossbars -

41)
ca.4)

Edge Logik.

Counter

ADC

Offset
Correction

E Integrators

Ramp /  -1-7-1- Comparator,

Marinella, Agarwal, et al, IEEE JETCAS, 2018

Register 2 H'

Sandia
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Analysis of 1024x1024 Operations
Dili, VI

Component
/.111m0\__/Voltage Coding

Temporal
Coding
Logic

Row
Drivers Two

1024 x 1024
Crossbars

L'

Edge Logic
Analog ReRAM TotalCounter 

Offset
Correction

Digital ReRAM Total

Digital SRAM Total
Integrators

ADC Ramp _/ Comparators

Si Eli>
I Analog ReRAM Total,

I Register 2 -
Digital ReRAM Total

Digital SRAM Total

Energy
430 — 6,900X over SRAM
105

10°
Analog Digital

(a) ReRAM ReRAM
SRAM

10

103

— 10

cv 10

10

10-1

Vector Matrix Outer
Matrix Vector Product
Multiply Multiply Update

12.8 nJ 12.8 nJ TWO

Soda
Natimal
laboratories

2140 nJ 2140 nJ 3250 nJ

I 2850 nJ 4855 nJ 4300 nJ I

Latency

0.384 ps

176 ps

4 ps

Latency
35 — 800X over SRAM

102
Analog

(b) ReRAM
Digital SRAM
ReRAM

0.384 ps 0.512 ps

176 ps 340 ps

32 ps I 8 ps 

Area
11 — 20X over SRAM

106

105

io4

(c)
Analog
ReRAM

8 bit in/out 4 bit in/out 2 bit in/out
8 bit weights 8 bit weights 8 bit weights

Marinella, Agarwal, et al, IEEE JETCAS, 2018

Digital SRAM
ReRAM

•

<2 fJ/op

Agarwal, et al, IEEE E3S Symp, 2017
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Compare Architectures
1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
• Vector Matrix Multiply
• Matrix Vector Multiply
• Outer Product Update

Energy Latency
430 — 6,900X over SRAM 35 — 800X over SRAM
105 1 i I = 104  

104

10

1

101

10
Ana og Digita SRAM
eRAM ReRAM

A alog Digital S M
Re M ReRAM

QD

Sandia
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Area
11 — 20X over SRAM

Anailog Digital SRAM
ReRAM ReRAM

8 bit in/out
8 bit weights

4 bit in/out
8 bit weights

2 bit in/out
8 bit weights

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices
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Neural Core Energy Analysis

Analog
ReRAM

Digital
ReRAM

SRAM

8 bits ln/out
8 bit weights

28 nJ

7,520 nJ

12,010 nJ

4 bits ln/out
8 bit weights

2.7 nJ

5,580 nJ

10,150 nJ

2 bits ln/out
8 bit weights

1.3 nJ

4,340 nJ

8,970 nJ
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di=

ADC

Integrator

Array Write

Array Read

Temporal Drivers

Voltage Drivers

Data Movement

Ir IN

-

AN

IIIM

Multiply & Add

Data Movement

Write Memory

Read Memory

r um

11

-

I

I

Multiply & Add

Data Movement

Write Memory

Read Memory

Read Transpose
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Experimental Device Nonidealities

• Analog architecture trade off digital precision for significant
performance/watt and performance/area gains
• Best suited for applications requiring —8 bits precision or less

• Backprop training: Ideally weight would increase and decrease linearly
proportional to learning rule result

• Key issue in experimental devices: altered the relationship between
intended and actual update: Write Nonlinearity, Asymmetry,
Stochasticity, Read Noise

Conductance versus Pulse 

A

0 

0

0

•

0

o

• = !deal = Write Variability o = Nonlinear

0

0 0 0 0

.
42

00 00
0
•••0 ID

0 i
• •

0 • 0
•

0 
0

Pos. Pulses Neg Pulses
0
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Symmetric and Linear
• Asymmetric, Nonlinear

0

Pulse Number (Vwrite +1v, tpuise lOns)
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Modeling Device Requirements

Wmax

Wmin

Asymmetric Nonlinearity

Positive Pulses Negative Pulses

0 0.5 1 0.5
Normalized Pulse Number

0

W
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t
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n
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)
 Wrnax

Wrnin

0

MNIST

Read Noise a (% Range) 5%

Write Noise a (% Range) 0.4%

Asymmetric Nonlinearity (v) 0.1

Symmetric Nonlinearity (v) 5

Maximum Current 13 nA

Symmetric Nonlinearity

Positiye Pulses Negatiye,Pulses

0.5 1 0.5
Normalized Pulse Number

99

E 90
c.)
cct.t.)

0
(b) 0.0 0.1 0.2 0.3 0.4

Normalized Sigma (o-wN)

Large Images

0
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Go from Measurement to Accuracy
Fabricate
Device

TiN
Ta0), — 10 nm

Ta— 5 nm

TiN

positive
weights

D/A-

negative
weights

D/A D/A

A/D
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0 2
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/

Neural
Core(s)

AG Scatterplot

18 20 22 24 26 28
Staitin Condu nce (mS)

Sandia
National
laboiatodes

Cumulative
Probability of AG

L2

LO

0.6

0.4
0.2

2

18 2 22 24 26 2
nductance (mS)

60

u 4
‹tu

2

e

LO

0.8

0.6

(tA I)

0.2

0.0

— Exp. rived

— Ideal umeric

5 10152025303 40
it' kiting Epoch

236th ECS Meeting



ReRAM Analog Characterization

6.0x104
SET

" Rise = 12.8 ns
Fall =11A ns
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500
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SEI" SET sEr

1000

Re

6.0x10-4

(J-5- 5.0x10-4
a)
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Pulse Width Analog Measurements
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100 on4off cycles,
(200k 

A 

pulses)

'Lrlfl..
2000 pulses per
on4off cycle

I=Ir 236th ECS Meeting



Lookup Table Generation
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CrossSim Model of TaOx ReRAM:

MNIST, Backprop Training
Increasing Network Size

40-

2

0

Performance
Gap

ii\AfAit.4

Exp. f

Itleall Num ic

it 11.1asAds
Training E h

4

ip I 11
Fite 

Tyr p11
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Performance
Gap

Id I

0 31!101!15210)153615
IT 'Wing E rh

20

0 

Performance
Gap

PR N NR ltl N
5 10152025303540
Training E

Data set
# Training
Examples

# Test
Examples

Network Size

UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9

MNIST Large Digits[3] 60,000 10,000 784x300x10

41ROSS SIM
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labotatodes
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Comparison of Filamentary ReRAM
Sandia
National
labotatodes

• Ta0.-Ta highest training classification accuracy initially

• Analyze effect of noise and nonlinearity on accuracy with
CrossSim

• Nonlinearity is an inherent issue for each filamentary device

Sandia Baseline Ta0.-Ta
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.!.t) 40
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%
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R. Jacobs-Gedrim et al, IEEE-ICRC, 2017

Numeric

Linearized

— No Noise

— No Manipulation
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A realistic variability approach
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National
labotatodes

• Extended the CrossSim platform to draw upon a library of look up
tables (LUTs)

• LUTs assigned prior to online training and remain constant during it

• Individualized updates -> slowdown (somewhat mitigated)
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Implications on Neural algorithm accuracies:
Small Digits (OCR Database)

• Loss between uniform and 0.9 -

Good Devices: ̂'4-7% 0.8 -

• Loss between uniform and 0.7 -

all functioning devices 0.6 -

(adaptive): "13-16% 0.5 -

0 \ .2 473 ii-
5- 6 7 i 1

%
 (
 

0.4 -

0.3 -

Sada
National
laboratories

Small Digits: LUT Variability

—0- Numeric

—A— Standard LUT

—ID— Variable LUT: Good

—A— Variable LUT: Adaptive -

.
0

.
2 4 6 8

Training Epoch

10 12
i
14

Data set
# Training
Examples

# Test
Examples

Network Size

UCI Iris Dataset 1-11 100 50 4x8x3
I UCI Small Digits[1] 3,823 L797 64x36x10 I

File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10
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Problems with Filamentary

Mechanism for Analog Training

Displaced
Oxygen

Anions 0-2)

Positively
Charged
Vacancies
(V.++)

VTE

Sandia
National
labotatodes

Nonlinearity
1. Tunneling current, esp in high resistances
2. Current crowding — high temperature

required for change give runaway effect
3. Nonlinear E-field

TaOx Pt

Asymmetry
Inherent property
of bipolar device —
Schottky-like and
ohmic junctions

Stochasticity
G depends on
position of a few
atoms
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Period Carry: Multi-Synapse Method
High Accuracy in Nonideal Devices

1 1 /4
• Example for TaOx: Each

weight uses 2 synapses

• Carry once every 1000
updates for the LSB, and

every 2 updates on others

• High variability TaOx device:
accuracy improves from

<89% to >97%, only -1%

under ideal

• Requires tradeoff of
energy/latency for accuracy
- exact tradeoff depends on
algorithm reqs.

?. 
0.3
0 

1)-5. 8.6
=8:i

c)..) 40.05
:0 -5. 0.00

—0.05

Agarwal et al, VLSI 2017

-1 /4

99

'5 90
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Ta0 —MNIST
Ideal Numeric

Single Device

lE

0 10 20 30 40
Training Epoch

Weyht During Trainil

0 1 2 3 4 5
Update Count (x10,000)

6
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Semiconductor-Oxide-Nitride-Oxide-

Semiconductor (SONOS)
•

ri-tyrw poly

N- source

lop eAelct

Ake!, ratride or orsonitrIcte
%urincl 424idc

Pi* e rain

(a) (b)

-1111 ses 10V .ulses

50 100 150
Pulse Number

+1 .5V -1AV
OV 

-1 .5V

-11V pulses +10V pulses 

50 100 150 200
Pulse Number

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 5, 52-57, 2019.
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SONOS Accuracy and Energy

1.0

W 0 8

u 0.5

OA

it 0.2

0.0
0

(a)

-I TV crises + puTses

50 100 150 200
Pulse Number

100

95

'5 90
u

85

MNIST

80 1 
0 10 20 30 40

Training E oc

Component Vector
Matrix
Multiply

Matrix
Vector
Multiply

Outer
Product
Update

Energy/Op ReRAM (fJ) 12 2 12 2 2.1
Energy/Op SONOS (fJ) 13 7 13.7 8.2

Energy/Op SRAM (fJ) 2718 4630 4102

Array Latency ReRAM (µs) 0.38 0.38 0.51
Array Latency SONOS (p) 0.40 0.40 20
Array Latency SRAM (p) 4 32 8

Soda
Natimal
laboratories

Low
inference
energy

Slow
write

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 2019.
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Li-lon Synaptic Transistor for Analog

Computation (LISTA)
c

• Alternatively, novel devices may 250

offer promise 
u4. 

200

• LISTA: modulate the doping of E 150

Lithium battery cathode 100

50• Resistivity across cathode
changes linearly with battery
charge/discharge

anode/gate

electrolyte/insulator

LiCo 02 Li1,Co2 + xLi+ + xh

 • source cathode/channel drain

vsoT 

L
i
t
h
i
u
m
 I
o
n
 

0

G-V for LISTA

-2
Vc (V)
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500 nm anode/gate
current-collector

electrolyte/insulator

4411rwAtio • 4• -

Si02 draintsource cathode/channel

E. Fuller et al, Adv Mater, 2017
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Analog State Characterization
a 250

200 \N VV
10 20
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LISTA > 200 states

200
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LISTA-device Performance for Backprop Algorith

0
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Data set
# Training
Examples

# Test
Examples

Network Size

UCI Small Digits[1] 3,823 1,797 64x36x10
File Types [2] 4,501 900 256x512x9

IVINIST Large Digits[3] 60,000 10,000 784x300x10

E. Fuller et al, Adv Mater, 2017
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E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).
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IFG Array Demonstration
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E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).
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Programming Demonstration
A
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XOR gate
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E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).
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IFG Energy Comparison
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120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage

10-5
VMM

MVM

OPU

Total

VO g).cz To To
.2) ci) 

w 
c c0 w < w < <

J

VMM

MVM

OPU

Total

2 c3)(f) cp 0) 2To To < o 0 0 <
To z To u_ co rY•-- c c wE w 0 < < <

0.9

0.7

0.6

E 115

co 0.4

< 0.3

2

0.1

0 •■ 
(75 Q g g 0 g

Z Li_ T2

° W ° LI) <

1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
- Vector Matrix Multiply - Matrix Vector Multiply - Outer Product Update

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices
Agarwal et al, VLSI-TSA 2019
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Outline

• Intro and Motivation

• Analog Accelerator Concepts & Energy Model

• Accelerator Accuracy Modeling & Characterization

• Training Accuracy Improvement
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• Summary and Future Work
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Summary
Sandia
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• As CMOS scaling slows (or ends), a new direction will be
needed to achieve the continue the exponential improvements
in performance per watt (or energy efficiency)

• Deep neural networks and related algorithms being adopted
for many big data and embedded applications

• Analog crossbar VMM and training operations can extend
performance per watt 10-1000x beyond digital CMOS limits

• Ideal analog "synapses" are a topic of continued research

Component Vector
Matrix
Multiply

Matrix Vector
Multiply

Outer
Product
Update

Energy/Op IFG (fJ) 11.9 -1r1.9 0.2

Energy/Op ReRAM (fJ) 12.2 12.2 2.1

Energy/Op SONOS (fJ) 13.7 13.7 68.2

Energy/Op SRAM (fJ) 2718 4630 4102

Array Latency IFG (ps) 0.39 0.39 1.9

Array Latency ReRAM (ps) 0.38 0.38 0.51

Array Latency SONOS (ps) 0.40 0.40 --o

Array Latency SRAM (ps) 4 32 8

236th ECS Meeting

100

— IIIFG

— SONIOS

— TaOx

10 20 30
Training E och



Conclusions and Future Work
Sandia
National
laboiatodes

• Key challenges at the device level must be addressed to make
analog accelerators a reality. Required properties include

• Linear conductance change with pulse, regardless of starting state

• Low switching stochasticity and read noise

• Low nudge current, voltage, and energy, high endurance, <100 ns nudge

• Filament & thermal switching devices (RRAM, CBRAM, PCRAM)
have fundamental challenges for analog operation

• Three terminal devices work better

• Extend architectural energy/latency analysis to system level

• Demonstrate improvements on large datasets with >10M parameters

• Novel ionic floating gate devices may mitigate these issues:

• IFG has demonstrated offers significant potential as a low energy, high
accuracy neural network accelerator synapse

• Future challenges: continue to improve and scale IFG — and
demonstrate CMOS integration
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Multi-ReRAM Synapse: Periodic Carry
If we need more bits per synapse, use multiple memristors

• Three 10 level ReRAMs could represent 1-1000!
• Adding to the weight requires reading every
ReRAM to account for any carries and serially
programming each ReRAM: VERY EXPENSIVE

x100 x10 xl

.41% \a Ns*

N. N. '122,.

Neuron

1

• Use >10 levels to represent a base 10 system
• Ignore carry and program the crossbar in parallel.
• Periodically (once every few hundred cycles) read

the ReRAM and perform the carry

Extra levels
store the
carry

1 10 levels
J represent the

weight
conductance
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Periodic Carry Compensates for Write Noise

1 1/5 1/25 1/125

-1/5 -1/25 -1/125

Read and reset every 100 pulses
Do 300,000 small (0.02% of weight range) updaLus
• net of 1500 positive training pulses

Noise Sigma = 1.4% for single device

• (from anoisel Grange — 0.1VAG Grange )

• Write noise applied during updates and carries
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I I

Periodic
Carry

Single
Device l'OPRORR

—1 0-0. .0

/eight

.0

Learn from a 0.5% Signal
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Periodic Carry Mitigates Write Nonlineari

1.0
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0.0
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Write Nonlinearity
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1 1/5 1/25 1/125

Alternating Pulses Cause Weight Decay
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• Train with 1% signal
• !deal result is 0.6
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Ta0), Results
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Ta0 — MNIST99   x  . 
nIdeal Numec

Periodic Carry
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I I IE 
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Training Epoch

A/D and D/A is modeled, Serial operations modeled
• When resetting weight, need to adjust pulse size based on current state to compensate for nonlinearity
• When reading a single weight, need to adjust readout range to be smaller (change capacitor on the integrator)
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Programming Demonstration
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Three Terminal Devices Tend to

Have Higher Accuracy

ReRAM
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Initial Study:
Effect of Si lon Irradiation on Training

• 2.5 MeV Si lon irradiation, neural training between steps

• Training accuracy for higher resistance devices may be
degraded following ion irradiation at high fluence

• In line with TaOx ReRAM heavy ion degradation results

toliz
Maim .
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Digital Accelerators: Apple A11

• Apple's iPhone 8 and X main SoC processor

• TSMC 10nm process

• No formal technical papers or presentations
given yet

• 600 Gigaops/s claimed, no other info

• Rough order of magnitude analysis still
possible:

• Assume "Op" is 8-bit fix point

• Entire smartphone CPU <600mW

• Almost certainly > 1 TeraOp/W, or

<1pJ/op

• Next challenge: moving beyond this!
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Why should we continue these gains?

• Google Deep Learning Study
• 16000 core, 1000 machine GPU cluster
• Trained on 10 million 200x200 pixel images
• Training required 3 days
• Training dataset size: no larger than what

can be trained in 1 week

• What would they like to do?

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

• -2 billion photos uploaded to internet per day (2014)

• Can we train a deep net on one day of image data?
• Assume 1000x1000 nominal image size, linear scaling

(both assumptions are unrealistically optimistic)

• Requires 5 ZettalPS to train in 3 days
(ZettalP5=1021 IPS; -5 billion modern GPU cores)

• World doesn't produce enough power for this!

• Data is increasing exponentially with time

• Need >1016-1018instruction-per-second on 1 IC
• Less than 10 fJ per instruction energy budget

input to another lmer abme

(image with 8 channels)

Number of output

H

w
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channcls = 8

Size = 5

Size = 5

k Number

of maps =

18

ik Number of input
channels — 3

Hine Size = 200

Q. Le, IEEE ICASSP 2013

236th ECS Meeting 57 I



General Purpose Neural Architecture

Run any neural algorithm on the
same hardware

Bus
7

[Neural Digital
Core(s) Core

Bus

Neural Digital
Core(s) Core

Bus

Router

Bus

Neural
Core(s)

1

Digital
Core

L 

Bus

Neural
Core(s)

1/4_ 

Digital
Core

Bus R

Neuromorphic core: 
• Evaluate vector matrix multiplies along

rows or columns
• Train based on input vectors

positive
weights

D/A

D/A

negative
weights

D/A

A/D

D/A

A/D

A/D

Digital Core: 
• Process neural core inputs/outputs
• For NxN crossbar, the crossbar accelerates

O(N2) operations leaving only O(N) operations
for the digital core
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Device Assumptions

Interconnect

Logic Transistor

High-Voltage Transistor

Crossbar

ReRAM & Select Device

Analog ReRAM & Select
Device

Full Pitch(wmlyitch) -62migir-
Capacitance -200 aFlpm

Resistance -30 0/pm

Area -0.04 pm2

Voltage

Area

Voltage

0.8 v

-0.35 pm2

1.8 v

Dimensions (nrowsx ncois) 1024 x 1024

Minimum Pulse Width

ReRAM ON/OFF Ratio

Capacitance (CReRAM)

1 ns

10

35 aF

On State Read Current 1 nA (Ron = 100 MO)

On State Write Current 10.3 nA (Ron = 100 MD)

Read Voltage 0.785 V

Write Voltage 1.8 V

Marinella, Agarwal, et al, IEEE JETCAS, accepted for publication, 2017
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Modeling Device Requirements
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Asymmetric Nonlinearity

0.5 1 0.5
Normalized Pulse Number

Small

images

Large

images
File Types

Read Noise a (% Range) 3% 5% 9%

Write Noise a (% Range) 0.3% 0.4% 0.4%

Asymmetric Nonlinearity (v) 0.1 0.1 0.1

Symmetric Nonlinearity (v) >20 5 5

Maximum Current 160 nA 13 nA 40 nA

Minimum Retention (@ 85°C) 7 days 7 days 7 days

Minimum Nudge Endurance 107 107 107

0
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ReRAM Measurements

N DC Current-voltage "loops" sweeps

are not time-controlled
• Excessive heating and early wearout

• Do not provide info on dynamics

• Physical switching < lOns
• Need pseudo RF setup to measure

• Ground/signal, conductor backed

• Agilent B1530 module

• 10 ns RT/FT, 10 ns PW

• 1 V nominal, —140 mV overshoot

TiN -(
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exchange
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(+) charged
vacancies
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24) 0.6
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Amp = 1.14 V
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Analog Device Comparison
S102-Cu
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For comparison all devices at 100 ns due to impedance limitation

Device operation voltages found by increasing amplitude by 0.1 V until switching

occurred — must survive 200,000 nudges so lowest possible voltage used

Chalcogenide SET = +0.8 V RESET = -0.8V

Si02-Cu SET = +1.4 V RESET =-1.6 V

Ta0. SET +1.0 V RESET = -1.0 V

190000
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https://cross-sim.sandia.gov
X

Sandia National Laboratenex ... X +

c Sandia
National
Laboratories CROSS SPil

Crossbar Simulator

CROSS SIM
About CrossSim

CrossSim is a crossbar simulator designed to model resistive memory

crossbars for both neuromorphic computing and (in a future release)

digital memories. It primacies a clean python API so that different

algorithms can be built upon crossbars while modeling realistic device

properties and vanability. The crossbar can be modeled using multiple

fast approximate numerical models including both analytic noise

models as well as experimentally derived lookup tables. A slower. but

more accurate circuit omulation of the desices using the parallel spice

simulator Xyce is also being developed and will be included In a future

release.

Download
Download the user manual here: CrossSim manual udf

Download Crosssim v0.2 here: cross sim-0.2.0.tar 

Download example scripts here: exan

Contact Us
Please email Sapan Agarwal for any questions or if you would like to contribute to the source code: saciarwansandia.scry

Selected Publications Using CrossSim
• S. Agarwal, R. B. Jacobs-Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller, A. A Talin, C. D. James, S. J. Plimpton, and M.

J. Marinello, "Achieving Ideal Accuracies in Analog Neuromorphic Computing Using Periodic Carry," in 2017 IEEE

Sinnposium on VLSI Technology Kyoto, Japan, 2017.
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Effect of System Precision on
Backpropagation Classification Accuracy

Determ inistic Rounding
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Agarwal et al, IEEE E3S, 2017
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