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Digital Accelerators: Google TPU

• Tensor Processing Unit:
Machine learning

accelerator in use by
Google since 2015

• Accelerates neural network
inference with TensorFlow

• New versions may include
training

• Core: matrix multiply unit
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Digital Accelerators: Google TPU

• TPU vl Performance results released at ISCA 2017

• Die level performance of 2.3 TeraOps/W

• fu 1 pJ per 8 bit operation!

• Contemporary Intel Haswell die comparison:

• 1.8 GigaOps/W

• 4 55 pJ per 8-bit operation

Sandia
National
labotatodes

Model

Die Benchmarked Servers

1111112 11771 MHz TDP
Measured TOPS/s

GB/s
On-Chip
Memory

Dies DRAM Size TDP
Measured

Idle Busy 8b FP Idle Busy

Haswell
E5-2699 v3

662 22 2300 145W 41W 145W 2.6 1.3 51 51 MiB 2 256 GiB 504W 159W 455W

NVIDIA K80
(2 dies/card)

561 28 560 150W 25W 98W -- 2.8 160 8 MiB 8
256 GiB (host)
+ 12 GiB x 8

1838W 357W 991W

TPU <331 '8 700 75W 28W 40W 92 -- 34 28 MiB 4
256 GiB (host)
+8 GiBx 4

861\\ 190W 384W

N. P. Jouppi et al, ISCA, Toronto, ON, 2017
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State of the Art: Apple Al2

• Apple's iPhone X main SoC processor

• 7nm TSMC process

• Includes "neural engine" accelerator IP

• Apple spec: 5 TeraOps/s (8 bit)

• Power is —2.5-5W

• Hence, — 1-2 Tera0p/W,

• State of the art neural accelerator is

about 500fJ to 1pJ per 8 bit operation

• Nearing digital limits?

• Similar for published accelerator data,

modern GPU, and Google TPU

Sandia
National
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ocR

Neural Fnmne
(cores s8)

Mg cores (x2)

DDR logc 2]

system cache
slices (x0)

little cores (c4)

CaDR Imam

GPU cores (x4)
end shared logic

ITnesi ht
DOR logn

apple.com, techinsights.com
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Exemplar Synapse: Oxide ReRAM
VTE

ReRAM (OxRAM) 

• Starts as insulating MIM structure

• Forming: remove 02- 4 soft breakdown

• Bipolar resistance modulation

• Excellent memory attributes: Switching in

less than lns, less than 1 pJ demonstrated,
scaling to 5nm, >1012 write cycles possible

• Potential for 100 Tbit of ReRAM on chip

2.0x1

0.0

-4.0x10-0

-6.0x104

SET-RESET

-2.5 • -2.0 • -1.5

Highest current
switching process
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switching
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ReRAM Density vs Min. Feature Size

Assumes 4F2 cell, 1-bit cell

1000

0.1

0.01 0.8 1 2 4 6 8 10 20
Minimum Feature Size, F (nm)

40

20211=



Crossbar Theoretical Limits

• Potential for 100 Tbit of ReRAM on chip

• What if we can compute with ReRAM?

• If each can perform 1M computations of
interest per second (1 M-op):

• 1012 active devices/chip x 106 cycle per
second 41018 comps per second per chip

• Exascale-computations per sec on one chip!

r1

r2

r3

r4

c c

Sandia
National
labotatodes

PISM11151

7111111M1
71E1=

71 74 71 71

• In order to not melt the chip, entire area 1000
must be limited to "i100W I 100

• Allowed energy per operation = P x t/op .4i' io

= 100W / 1018 = 10-16= 100 aJ/operation f
8

• lOnm line capacitance = 10 aF

• Can charge line to 1v with 10 aJ

1

0.1

0.01
0.8 1 2 4 6 8 10 20

Minimum Feature Size, F (nm)

Device

0
Cell

,'" ------

ReRAM Density vs Min. Feature Size

Assumes 4F2 cell, 1-bit cell

40
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Analog Computation with a

ReRAM Crossbar

• Electronic Vector Matrix Multiply

Evl

Mathematical Electrical

v2 v31

Eii=Evi,iwi,i

VTW=1

W1,1 W1,2

W2,1 W2,2

W3,1 W3,2

12=zvi,2VVi,2

v w
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v1

G11
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G2,1 IL121,1* IL121,141

W3,3
v3

G3:.11.:* GeL31,12110 G1111.631,1;1".

-1
13=EvoVV01 11=Evi,1Gi,1 12=zvi,2Gi,2 13=Evit3G43:
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Basics of Neural Networks

Basic Building Block

1
Y 1 + e-z

Neuron

Weights

inputs x1

n

1 z = WiXi

i=0

X 2

Incorrect -
adjust if 0
training

Simple Network:
Backpropagation

/

§ '.orrect

Outputs

Hidden
Layer

nputs
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Mapping Neural Network to Crossbar,

for Backprop
45
>,
c o
ci)

.8 *
5
02
0_
'r

2
u)
m
0_
0

Convert analog
inputs to varying
length voltage
pulses

Vector Matrix Multiply, Matrix Vector
Multiply, Rank 1 Update:

Key kernels used in many algorithms

Backpropagated error
from following layer

• .

444

ik.

ik.

4k.

ik•

4%.

‘,. N4. **e.

i I *
Outputs to next layer

*

*
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Integrate current to get
an analog output value
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Forward Propagation

yi

O(N2)
Operations

Neural Core

Inference

O(N)
Operations

yj

Digital Core
1

=
1 + e

-z
'
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Back Propagation Training

zj

Digital Core

= 
dy
(zi)-Ak

dz

O(N2) Read Yi O(N)

Operations Operations
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National
laboratories

0(N2) Write
Operations
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Key Circuit Block/Kernel Analysis

Vector Matrix Multiply

(Inference)

- 11

Voltage Coding

Temporal
Coding
Logic

Row
Drivers

Edge Logic

Counter

Two
1024 x 1024
Crossbars

Neuron Offset
Correction

Integrators

Comparators

Register 2

Rank-1 Update

(Training)

[vi, v2, -v3, —174]

1101, 7S'Voltage Coding

Temporal
Coding
Logic

Row
Drivers

Edge Logic

Counter

Two
1024 x 1024
Crossbars

ADC

Offset
Correction

E7 Integrators

Ramp / Comparator,.

Marinella, Agarwal, et al, IEEE JETCAS, 2018

Register 2

Sandia
National
labotatodes

SELSE 2020 15



Device Assumptions for Analysis

Interconnect

Logic Transistor

High-Voltage Transistor

Crossbar

ReRAM & Select Device

Analog ReRAM & Select
Device

Full Pitch(wmlyitch) -6-2migir-
Capacitance -200 aF/pm

Resistance -30 0/pm

Area -0.04 pm2

Voltage 0.8 v

Area -0.35 pm2

Voltage 1.8 v

Dimensions (nrowsx 11,010 1024 x 1024

Minimum Pulse Width 1 ns

ReRAM ON/OFF Ratio 10

Capacitance (CReRAM) 35 aF

On State Read Current 1 nA (Ron = 100 MO)

On State Write Current 10.3 nA (Ron = 100 MD)

Read Voltage 0.785 V

Write Voltage 1.8 V

Marinella, Agarwal, et al, IEEE JETCAS, 2018.
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Matrix Energy/Latency Analysis
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Outer
Product
U • date

101L10°
Analog Digital SRAM

(a) ReRAM ReRAM

4630
0.38
32

Based on a commercial 14/16 nm PDK

Analog
ReRAM

Digital SRAM
ReRAM

104
Analog Digital SRAM

(C) ReRAM ReRAM

2.1 
4102
0.51
8

8 bit in/out
8 bit weights I I

4 bit in/out
8 bit weights l I

2 bit in/out
8 bit weights

Two orders of magnitude beyond digital!
Marinella, Agarwal et al, IEEEJETCAS, 2018 SELSE 2020 17



Neural Core Energy Analysis

Analog
ReRAM

SRAM

8 bits ln/out
8 bit weights

28 nJ

12,010 nJ

4 bits ln/out
8 bit weights

2.7 nJ

10,150 nJ

2 bits ln/out
8 bit weights 1

E

1.3 nJ

8,970 nJ
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I
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Integrator

Array Write

Array Read
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Voltage Drivers

Data Movement

I
I
I
.1MU
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Write Memory

Read Memory
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Analog Device Comparison
1'1,1(2, —173, —1741

jvoltage Coding Li,
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Coding Drivers
Logic
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Marinella, et al, IEEE JETCAS, 2018
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Energy/Op IFG (fJ) 11.9
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- 11.9
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Energy/Op SRAM (fJ)

12.2 2.1

13.7 68.2

Array Latency IFG (ps)

2718

0.39

4630 4102

0.39 1.9

Array Latency ReRAM (ps) I 0.38 0.38 0.51
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Experimental Device Analog Nonidealities

■ Now we need to consider the challenges of analog processing

■ Digital: During normal operation has perfect accuracy
• Degraded device quality might mean reduced clock speed or reliability issues

■ Analog: Device characteristics affect algorithm accuracy!
• Research challenge: analog behavior must give acceptable algorithm-level results

■ Inference challenges:
• Measured device conductance not proportional to weight

• Caused by current drift, noise

■ Training challenges:
• Actual analog device state change does not match intended weight update

• Caused by write nonlinearity, asymmetry, stochasticity

I +Al

I -Al

Time (Vr„d= 00111V)

~00f.l®® 000.. .•
• Aiii•-E3 • .......-.

O :°4°• Pos Mil Neg 1

c lg
O 4 °-•- • , 

Pulse Nu =±111t, tp. — ns)

• • •

00000ort
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System Level Effects of Device Analog Properties:
Multiscale Modeling

Algorithm Accuracy vs Device
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Modeling Effects of Noise on
ReRAM Inference Accelerator

• Read noise referred

to as random

telegraph noise (RTN)

often observed in

ReRAM and CBRAM

• Example RTN noise

measured in Hf0

RRAM

• Mechanism and

magnitude depends

on conductance state 30 —

0
o

o

25 —

u) 20 —

15 —
o

4t 10 —

5 —

0

22001

200°-
0
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Modeling Effects of Noise on
ReRAM Inference Accelerator

Sandia
National
labotatodes

• Trained with no noise, noise added during inference

• RTN and Gaussian similar

• Noise affects inference at about cm-5% of dynamic range

99
Classification with Read Noise

Large Images

Small Images

Gaussian

mmmRTN

File Types

0 1 
0.00 0.05 0.10 0.15 0.20 0.25

Normalized Sigma ORO

99

0
0,00 0.05 0.10 0.15 0.20 0.25

Normalized Sigma (‘GRN/

Classification with Read Noise

Independent

mmm Proportional

S A•arwal et al IJCNN 2016
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Modeling Effects of State Drift on
SONOS Inference Accelerator

• Semiconductor-oxide-nitride-oxide-semiconductor (SONOS)
and related charge trapping devices

• One of the most common devices for flash memory

• MOSFET with a tunable threshold voltage based on the
amount of charge in the charge trapping layer

n-type poly

n+
source

)

n+ drain
L
0

<
Erase Write

-2 0 2 4

Gate Voltage (V)

Courtesy DK Schroder

Sandia
National
tabonitodes
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Modeling Effects of State Drift on
SONOS Inference Accelerator

• SONOS will slowly lose charge and change from the
programed to erased state (retention loss mechanism)
• Clearly, this will affect the weights and inference accuracy

• Used simplified charge loss model to study affect on weights

n-type poly

n+ source

1.0

10.8

top oxide To
E

charge trapping layer
‘L3 0.6

tunnel oxide 'E
2

n+ drain 3 0.4
a)0
'5
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0 0.2

:)
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10
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10
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Time after programming (days)

Current Drift Model

ids,0 = 0.1

1ds,0 = 0.3

ids,0 = 0.5

ids,0 = 0.7

— Ids, o = 0.9

Sandia
National
laboiatodes

Bennett, Xiao, et al, IRPS 2020 (accepted, to be presented) SELSE 2020



Modeling Effects of State Drift on

SONOS Inference Accuracy
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Modeling Effects of State Drift on
SONOS Inference Accelerator

• Inference stability looks good for actual 40nm SONOS

• Decay of 0.8% of dynamic range after 24hrs
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Experimental Device Analog Nonidealities:

Training

• Analog architecture trade off digital precision for significant
performance/watt and performance/area gains
• Best suited for applications requiring —8 bits precision or less

• Backprop training: Ideally weight would increase and decrease linearly
proportional to learning rule result

• Key issue in experimental devices: altered the relationship between
intended and actual update: Write Nonlinearity, Asymmetry,
Stochasticity, Read Noise

Conductance versus Pulse 

A

0 

0

0

•
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o

• = !deal = Write Variability o = Nonlinear

0

0 0 0 0

.
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00 00
0
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0
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• Asymmetric, Nonlinear

0
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Device Requirements for Training
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10 20 30 40 50 60 70

Pulse Number

Small

images

Large

images
File Types

Read Noise a (% Range) 3% 5% 9%

Write Noise a (% Range) 0.3% 0.4% 0.4%

Asymmetric Nonlinearity (v) 0.1 0.1 0.1

Symmetric Nonlinearity (v) >20 5 5

Maximum Current 160 nA 13 nA 40 nA

Minimum Retention (@ 85°C) 7 days 7 days 7 days

Minimum Nudge Endurance 107 107 107
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Training Lookup Table Generation
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Device to Device Variation
Sandia
National
labonitodes

• Extended the CrossSim platform to draw upon a library of look up
tables (LUTs)

• LUTs assigned prior to online training and remain constant during it

• Individualized updates -> slowdown (somewhat mitigated)
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CrossSim Model of TaOx ReRAM:

MNIST, Backprop Training

2

Performance
Gap

I Num ic

° d1 11 11 11 , 11 1

0 5 1015202
Training E

40

Increasing Network Size

Filme litypmeS

20-

1 11

Performance
Gap

1/6 illoi15210)15
Titaiining E

11 11
3540

2

e
g1 11111

ewr 
Performance
Gap

. M1W .1•-•

NR MIME]
101520253035
Training E h

Data set
# Training
Examples

# Test
Examples

Network Size

UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9

MNIST Large Digits[3] 60,000 10,000 784x300x10

[CROSS SIM
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Pulse Width Optimization
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ReRAM algorithm accuracies:
Small Digits (OCR Database)

Small Digits: LUT Variability

%
 C
or

re
ct
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e
s
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t
 

—0- Numeric

—A— Standard LUT

—0— Variable LUT: Good

—A— Variable LUT: Adaptive -

0 2

0 \ .2 473 ii-
S. 6 7 i el

4
i .
6 8

Training Epoch
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Data set
# Training
Examples

# Test
Examples

Network Size

UCI Iris Dataset 1-11 100 50 4x8x3
I UCI Small Digits[1] 3,823 L797 64x36x10 I

File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10
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Comparison of Filamentary ReRAM
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• Ta0.-Ta highest training classification accuracy initially

• Analyze effect of noise and nonlinearity on accuracy with
CrossSim

• Nonlinearity is an inherent issue for each filamentary device

Sandia Baseline Ta0.-Ta
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R. Jacobs-Gedrim et al, IEEE-ICRC, 2017
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— No Noise

— No Manipulation
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Problems with Filamentary

Mechanism for Analog Training

Displaced
Oxygen

Anions 0-2)

Positively
Charged
Vacancies
(V.++)

VTE

Sandia
National
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Nonlinearity
1. Tunneling current, esp in high resistances
2. Current crowding — high temperature

required for change give runaway effect
3. Nonlinear E-field

TaOx Pt

Asymmetry
Inherent property
of bipolar device —
Schottky-like and
ohmic junctions

Stochasticity
G depends on
position of a few
atoms
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Period Carry: Multi-Synapse Method
High Accuracy in Nonideal Devices

1 1 /4
• Example for TaOx: Each

weight uses 2 synapses

• Carry once every 1000
updates for the LSB, and

every 2 updates on others

• High variability TaOx device:
accuracy improves from

<89% to >97%, only -1%

under ideal

• Requires tradeoff of
energy/latency for accuracy
- exact tradeoff depends on
algorithm reqs.

?. 
0.3
0 

1)-5. 8.6
=8:i

c)..) 40.05
:0 -5. 0.00

—0.05

Agarwal et al, VLSI 2017

-1 /4

99

'5 90
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Ta0 —MNIST
Ideal Numeric

Single Device

lE

0 10 20 30 40
Training Epoch

Weyht During Trainil

0 1 2 3 4 5
Update Count (x10,000)

6
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SONOS Training

n+
source

n-type poly

1 0

n* drain

-1111 • ulses +1OV .ulses
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Pulse Number

_-11V pulses > -1-10v pulses >
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10-6 n21911..-.2-

11D-9 - ,0, I

10-io iit 1  i. . *1W/hi
200 0

( b)
50 100 150 200
Pulse Number

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 5, 52-57, 2019.
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SONOS Accuracy and Energy

(a) Pulse Number

100

95

eu
15 90
u

85

MNIST

80  i 
0 1 20 30 40

Training Epoch

Component Vector

Matrix

Multiply

Matrix

Vector

Multiply

Outer

Product

Update

Energy/Op ReRAM (fJ) 12 2 12 2 2.1
Energy/Op SONOS (fJ) 13.7 13.7 8.2

Energy/Op SRAM (fJ) 2718 4630 4102

Array Latency ReRAM (µs) 0.38 0.38 0.51
Array Latency SONOS (p) 0.40 0.40 20
Array Latency SRAM (p) 4 32 8
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Low
inference
energy

Slow
write

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 2019.
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• Analog Accelerator Concepts & Performance Model

• Accelerator Accuracy Modeling & Characterization
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• Radiation Effects
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Li-lon Synaptic Transistor for Analog

Computation (LISTA)
c

• Alternatively, novel devices may 250

offer promise 200

• LISTA: modulate the doping of E 150

Lithium battery cathode 100

• Resistivity across cathode
changes linearly with battery
charge/discharge

anode/gate

electrolyte/insulator

LiCoO2 Li1,Co2 + xLi+ + xh

 • source cathode/channel drain

vsoT 

L
i
t
h
i
u
m
 I
o
n
 

50

0

G-V for LISTA

-4 -3 -2 -1
Vc (V)
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500 nm anode/gate

imisr• b t

source cathode/channel

current-collector

electrolyte/insulator

4 • •

Si02 drain

E. Fuller et al, Adv Mater, 2017
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Analog State Characterization
a 250

200 \A/
10 20

180

30

LISTA > 200 states

200
Go GtS)

220

40

t (ks)

240

6
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60 70

Tany RPRAM

1000 20
Co urtan

PCM Arra
Measured
AG-per-pulse
[uS]

-1
5 1 15 20 43E. Fuller et al, Adv Mater, 2017 GW Burr et al,

0 
IEEE TED 20'I5

From all 31 million
partiai-SET pulses
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LISTA-device Performance for Backprop Algorithft
Sandia
National

aimiuiIncreasing Network Size

Small Digits
99)

0
0 5 10 15 20 25 )0 35 40

TeWniing Ep

F e Types

LISTA Base 1

Ideal Niumer c
11 • • 11 • • II 

0 5 10 1.5 2a 25 30 35 40
Tiraiiniing Epoch

9 )
arge Digits

tabotatodes

Exp. Der efil

Meali NUITierrk
1.1 11 111.111111 -

0 5 10 15 20 25 30 35 40
Trtaiiniing Epoch

Data set
# Training
Examples

# Test
Examples

Network Size

UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9

IVINIST Large Digits[3] 60,000 10,000 784x300x10

E. Fuller et al, Adv Mater, 2017
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lonic Floating Gate
VN>Vt,

control gift -

Ay' 0

migration
(ON)

o o
oo Goo

510,,

floatIn ate Au

IDEDOT:ESS
H+ -sr reduct[on
6

nafion

oxidation 6
PEDOT:P55

0
Ay oo
diffusion
(OFF) r #'9.!

—o
46. 00

  a 000 0

Oe-

H+

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).
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IFG Array Demonstration
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E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).
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Near ideal
accuracy
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Programming Demonstration
A

_Z]

_Z]

XOR gate

X, X2 z,
1 0 1

0 1 1
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E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).
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lonic Floating Gate Energy

120-430X Energy Advantage 2-34X Latency Advantage
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5-11X Area Advantage

I I • 
O(0) g Q.

5 2 :5 rY z
0 w 0 LI) < 

1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
- Vector Matrix Multiply - Matrix Vector Multiply - Outer Product Update

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices
Agarwal et al, VLSI-TSA 2019
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Magnetic Synapse Concept
(a) Pinned layer OUT zt_0(
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Effects of Protons on TrueNorth

Digital ASIC Inference

• MNIST inference on

IBM TrueNorth ASIC

• Some SRAM flips occur

• Affects different digits

differently

• On average accuracy

not significantly

affected

Digit
Number of False
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—

0 2 IL ,0
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7 8 9
•

R.M. Brewer et al, TNS 67, 108-115, 2019

Increasing fluence
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Effect of Single Events Upsets on

Inference ReRAM

• Based on SPICE model of SEU in

1T1R cell

• SEU has little effect on inference

• RRAM less susceptible to SEU
than SRAM

1T1R Circuit Model

BL

RRAM

Ion Strike

WL

SL

TE

BE

Radiation

induced

photocurrent

Ye et al, TNS 66, 97-103, Jan 2019
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RRAM Conductance
Transient

100

80

60

40

20

0

-LET = 2.5

LET = 4.0
LET = 4.25

-LET = 4.5
LET = 5.0

-LET = 5.5

- . .

20 40 60

Simulation Time (ps)

Effects of SEU: Smaller
Network Topology

Simulation Value of Total Ion Accuracy
Variables Variables Number (%)

0 0 97.26
Operation 10 3 97.26

years 20 6 97.26
30 9 97.25

Technology 45 nm 1 97.26
node 65 nm 3 97.26

130 nm 12 97.24
0.5 V 3 97.26

BL voltage 0.7 V 3 97.26
0.9 V 3 97.26

RRAM 0.55 V 3 97.25
Switching 0.90 V 3 97.26
voltage 1.25 V 3 97.26

Effects of SEU: Larger
Network Topology

Simulation
Variables

Value of
Variables

Total Ion
Number

Accuracy

0 0 98.74
Operation 10 90 98.73

years 20 180 98.72
30 270 98.70

Technology 45 nm 43 98.74
node 65 nm 90 98.73

130 nm 360 98.67
0.5 V 90 98.73

BL voltage 0.7 V 90 98.74
0.9 V 90 98.74

RRAM 0.55 V 90 98.66
80 Switching 0.90 V 90 98.70

voltage I 25 V 90 98.73
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Effect of Total lonizing Dose on

Inference CBRAM

• Ag/Ge30Se70 CBRAM exposed to

100 keV Li

• Primary mechanism is TID

• Only small accuracy degradation
until fluences of —30Mrad(GeSe)

Effects of TID: Larger
Network Topology

0

Neurons: activation function (x„,

2013
20 Pixels

i

Input Layer

Sudo
Wilma!
laboratories

Synapses: weight in memory

Output Layer

Hidden Layer

Effects of TID: Smaller

100  
Network To • olo

80

20 40 60 80 0 20 40 60 80
TID (Mrad(GeSe)) TID (Mrad(GeSe))

Ye et al, TNS 66, 97-103, Jan 2019 SELSE 2020



Effect of Displacement Damage on

Training — ReRAM

• 2.5 MeV Si lon irradiation, neural training between steps

• Training accuracy for higher resistance devices may be
degraded following ion irradiation at high fluence

• In line with TaOx ReRAM heavy ion degradation results

FkozarrePustadif

WS lel ma leo 1014
m
u
u
u
[
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u
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 k

 7
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10 15 20 25 30 35 40

Training Epoch (#)

0 9

0 8

0 7

z

& 0.6

8
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R Jacobs-Gedrim, DR Hughart et al, TNS, 2018
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Summary
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• As CMOS scaling slows (or ends), a new direction will be needed to achieve
the continue the exponential improvements in performance per watt (or
energy efficiency)

• Deep neural networks and related algorithms being adopted for many big
data and embedded applications

• Analog crossbar VMM and training operations can extend performance per
watt 10-1000x beyond digital CMOS limits

• Ideal analog "synapses" are a topic of continued research: Ionic floating
gate and magnetic domain wall devices may mitigate issues:

• IFG has demonstrated offers significant potential as a low energy, high accuracy
neural network accelerator synapse

• Future challenges: continue to improve and scale IFG — and demonstrate CMOS
integration

• In-memory computing shows promise for radiation-induced fault tolerant
computing
• Additional research in this area is needed
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Conclusions and Future Work

input
Aric channels

bias:

# rows = x Ky x + 1
# columns = N„

1

Filters
Ky

Output
N„, channels
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ReRAM Analog Characterization
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Pulse Width Analog Measurements
100 on4off cycles,

(200k pulses)
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ns

2000 pulses per
on4off cycle
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Multi-ReRAM Synapse: Periodic Carry
If we need more bits per synapse, use multiple memristors

• Three 10 level ReRAMs could represent 1-1000!
• Adding to the weight requires reading every
ReRAM to account for any carries and serially
programming each ReRAM: VERY EXPENSIVE

x100 x10 xl

.41% \a Ns*

N. N. '122,.

Neuron

1

• Use >10 levels to represent a base 10 system
• Ignore carry and program the crossbar in parallel.
• Periodically (once every few hundred cycles) read

the ReRAM and perform the carry

Extra levels
store the
carry

1 10 levels
J represent the

weight
conductance
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Periodic Carry Compensates for Write Noise

1 1/5 1/25 1/125

-1/5 -1/25 -1/125

Read and reset every 100 pulses
Do 300,000 small (0.02% of weight range) updaLus
• net of 1500 positive training pulses

Noise Sigma = 1.4% for single device

• (from anoisel Grange — 0.1VAG Grange )

• Write noise applied during updates and carries

Sandia
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Periodic
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II
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W ig ht

Learn from a 0.5% Signal
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Periodic Carry Mitigates Write Nonlineari
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• Train with 1% signal
• !deal result is 0.6
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Ta0), Results

1 1 /4 
99 

Ta0x —File Types
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1000 updates
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Training Epoch
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Ta0 — MNIST99   x  . 
nIdeal Numec

Periodic Carry

Single Device 
I I IE 

0 10 20 30 40
Training Epoch

A/D and D/A is modeled, Serial operations modeled
• When resetting weight, need to adjust pulse size based on current state to compensate for nonlinearity
• When reading a single weight, need to adjust readout range to be smaller (change capacitor on the integrator)

SELSE 2020



a

Electrochemical Neuromorphic
Organic Device (eNode)

(-2_ 600
0' 800

0

L';' 550)=..
' 600o

6 650uc

Sandia
National
labotatodes

2,500 5,000 7,500 10,000 12,500 15,000

700 -t5°3- 
z2 750 -
0
o 800 N

3 1 -
0

K -1›.
4,000 4,500 5,000 5,500

Pulse #

van de Burgt et al, Nature Mater., 2017

- -55

- -60

- -65

- -70

- -75

- -80

(
V
1
1
)
 41
./

a1
.1

11
3 
Dg
cl
eu
/S
s1
so
d 

SELSE 2020 Mu 68



Electrochemical Neuromorphic

Organic Device (eNode)
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Programming Demonstration
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Three Terminal Devices Tend to

Have Higher Accuracy

ReRAM
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Digital Accelerators: Apple A11

• Apple's iPhone 8 and X main SoC processor

• TSMC 10nm process

• No formal technical papers or presentations
given yet

• 600 Gigaops/s claimed, no other info

• Rough order of magnitude analysis still
possible:

• Assume "Op" is 8-bit fix point

• Entire smartphone CPU <600mW

• Almost certainly > 1 TeraOp/W, or

<1pJ/op

• Next challenge: moving beyond this!
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1,3ezz.;•:i• • 
'011 le

Int •

www.ifixit.com
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Why should we continue these gains?

• Google Deep Learning Study
• 16000 core, 1000 machine GPU cluster
• Trained on 10 million 200x200 pixel images
• Training required 3 days
• Training dataset size: no larger than what

can be trained in 1 week

• What would they like to do?

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

• -2 billion photos uploaded to internet per day (2014)

• Can we train a deep net on one day of image data?
• Assume 1000x1000 nominal image size, linear scaling

(both assumptions are unrealistically optimistic)

• Requires 5 ZettalPS to train in 3 days
(ZettalP5=1021 IPS; -5 billion modern GPU cores)

• World doesn't produce enough power for this!

• Data is increasing exponentially with time

• Need >1016-1018instruction-per-second on 1 IC
• Less than 10 fJ per instruction energy budget

input to another lmer abme

(image with 8 channels)

Number of output

H

w

Sandia
National
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channcls = 8

Size = 5

Size = 5

k Number

of maps =

18

ik Number of input
channels — 3

Hine Size = 200

Q. Le, IEEE ICASSP 2013
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General Purpose Neural Architecture

Run any neural algorithm on the
same hardware

Bus
7

[Neural Digital
Core(s) Core

Bus

Neural Digital
Core(s) Core

Bus

Router

Bus

Neural
Core(s)

1

Digital
Core

L 

Bus

Neural
Core(s)

1/4_ 

Digital
Core

Bus R

Neuromorphic core: 
• Evaluate vector matrix multiplies along

rows or columns
• Train based on input vectors

positive
weights

D/A

D/A

negative
weights

D/A

A/D

D/A

A/D

A/D

Digital Core: 
• Process neural core inputs/outputs
• For NxN crossbar, the crossbar accelerates

O(N2) operations leaving only O(N) operations
for the digital core
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Modeling Device Requirements
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Asymmetric Nonlinearity

0.5 1 0.5
Normalized Pulse Number

Small

images

Large

images
File Types

Read Noise a (% Range) 3% 5% 9%

Write Noise a (% Range) 0.3% 0.4% 0.4%

Asymmetric Nonlinearity (v) 0.1 0.1 0.1

Symmetric Nonlinearity (v) >20 5 5

Maximum Current 160 nA 13 nA 40 nA

Minimum Retention (@ 85°C) 7 days 7 days 7 days

Minimum Nudge Endurance 107 107 107

0
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ReRAM Measurements

N DC Current-voltage "loops" sweeps

are not time-controlled
• Excessive heating and early wearout

• Do not provide info on dynamics

• Physical switching < lOns
• Need pseudo RF setup to measure

• Ground/signal, conductor backed

• Agilent B1530 module

• 10 ns RT/FT, 10 ns PW

• 1 V nominal, —140 mV overshoot

TiN -(

Ta (15 nm)

TaClx (5-10 nm)

TiN

VTE
T

&
0.2 anions
exchange

switching
channel

(+) charged
vacancies

1.2

1.0

, 0.8
>

24) 0.6
2
Z 0.4
>

0.2

0.0

Rise = 12.8 ns
- Fall = 11.4 ns
Amp = 1.14 V

-0.2
-4x10-8 -2x10-8

. ,
0 2x10-8 4x10-8

Time (S)
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Analog Device Comparison
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• For comparison all devices at 100 ns due to impedance limitation

• Device operation voltages found by increasing amplitude by 0.1 V until switching

occurred — must survive 200,000 nudges so lowest possible voltage used

• Chalcogenide SET = +0.8 V RESET = -0.8V

• Si02-Cu SET = +1.4 V RESET =-1.6 V

• Ta0. SET +1.0 V RESET = -1.0 V

190000
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S S s

https://cross-sim.sandia.gov
X

Sandia National Laboratories: ... X +

c) SandiaNational
Laboratories CROSS S.1 ,̂1

Crossbar Simulator

CROSS SIM
About CrossSim

CrossSim is a crossbar simulator designed to model resistNe memory

crossbars for both neuromorphic computing and (in a future release)

digital memories. It pomades a clean python API so that different

algorithms can be built upon crossbars while modeling realistic device

properties and vanability. The crossbar can be modeled using multiple

fast approximate numerical models including both analytic noise

models as well as experimentally derived lookup tables. A slower. but

more accurate circuit omulation of the devices using the parallel spice

simulator Xyce is also being developed and will be included In a future

release.

Download
Download the user manual here: CrossSim manual qdf

Download CrossSim v0.2 here: cross sim-0.2.0.tar 

Download example scripts here: exan

Contact Us
Please email Sapan Agawal for any questions or if you would like to contdbute to the source code: saroorwansandiaxm

Selected Publications Using CrossSim
• S. Agarwal, R. B. Jacobs-Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller, A_ Talin, C. D. James, S. J. Plimpton, and M.

J. Marinello, "Achieving Ideal Accuracies in Analog Neurornorphic Computing Using Periodic Carry; in 2017 IEEE

Symposium on VLSI Technology Kyoto, Japan, 2017.
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Circuit Model

Simple Python API:
1:t a matrix vertnr multinlication

result = neural core.run xbar mvm(vector)
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Effect of System Precision on
Backpropagation Classification Accuracy

Determ inistic Rounding

99 
MNIST
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2 bill
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(a) Training Epoch
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99 
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All stoch
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Agarwal et al, IEEE E3S, 2017
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Al Across Power Envelopes
loT, Edge, and

Mobile
Computing

Self Driving Cars,
Unmanned Arial

Vehicles, and Satellite
Computing

Nvidia Self-Driving
Processor

wikimedia.org

1W 10W 102W 103W 104W
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Datacenters, HPC

Q. Le, IEEE ICASSP 2013
Feature

Feature 2

Feature 3

Feature 4

Feature 5

Feature I

ASCI Red Supercomputer
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