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Digital Accelerators: Google TPU @&

Memory Bottleneck

. . — I | DDR3 DRAM Chips _

= Tensor Processing Unit: i I o 1T
Machine learning -: E Ié
accelerator in use by . 1=
Google since 2015 oish 3{ woish f omy 13
| = b i =1
= Accelerates neural network § JI 3
inference with TensorFlow m @

= New versions may include
training

= Core: matrix multiply unit



Digital Accelerators: Google TPU @&

= TPU v1 Performance results released at ISCA 2017
= Die level performance of 2.3 TeraOps/W

= - ~ 1 pl per 8 bit operation!

= Contemporary Intel Haswell die comparison:
= 18 GigaOps/W
= — 55 pJ per 8-bit operation

Die Benchmarked Servers
Model 2 . Measured | TOPS/s | On-Chip : - Measured
mm~ | nm (MHz| TDP Idle | Busy | Sb | FP GBl/s Mamsary Dies| DRAM Size IDP Bl | By
"g;‘_s;g; " 662 | 22| 23000 145W| 41W| 145W] 2.6 | 13| 51 51 MiB| 2 256 GiB 504W| 159W | 455W
NVIDIA K80 . 256 GiB (host)
2 dies/card) 561 | 28| 5600 150W| 25W] 98W| -- [2.8] 160 8MiB| 8 | 5 GB X8 1838W] 357W | 991W
TPU <331% | 28 | 700 75W| 28W| 40w| 92 | - | 34 28 MiB| 4 ZSfSG(‘}?B“;OZ‘) 861W| 290W | 384W

N. P. JouEEi et aIi ISCAi TorontoI ONI 2017



State of the Art: Apple Al12

= Apple’s iPhone X main SoC processor
= 7/nm TSMC process
= |ncludes “neural engine” accelerator IP
= Apple spec: 5 TeraOps/s (8 bit)
= Poweris ~2.5-5W
= Hence, ~ 1-2 TeraOp/W,

= State of the art neural accelerator is
about 500f) to 1pJ per 8 bit operation

= Nearing digital limits?

= Similar for published accelerator data,
modern GPU, and Google TPU

apple.com, techinsights.com
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Exemplar Synapse: Oxide ReRAM @&

Ve

ReRAM (OxRAM)
= Starts as insulating MIM structure TiN

O anions
exchange

= Forming: remove 0% - soft breakdown o
. . . Ta (15 nm) : switching
= Bipolar resistance modulation ‘o0 _channel

TaOy (5-10 nm) (+) charged

= Excellent memory attributes: Switching in vacancies

less than 1ns, less than 1 pJ demonstrated, TiN
scaling to 5nm, >102 write cycles possible

= Potential for 100 Thit of ReRAM on chip
SET-RESET ro—e x%\
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Crossbar Theoretical Limits | =

= What if we can compute with ReRAM?
= |f each can perform 1M computations of

= Potential for 100 Thit of ReRAM on chip  * "] "] “Ju] "] -
RN N

interest per second (1 M-op): : {:d_l:_j opse
= 10*2 active devices/chip x 10° cycle per sl cel
second =108 comps per second per chip 2F {EE: u

= Exascale-computations per sec on one chip! ReRAM Density vs Min. Foature Size

Assumes 4F2 cell, 1-bit cell

= |n order to not melt the chip, entire area
must be limited to ~100W

= Allowed energy per operation =P x t/op i
= 100W / 1018 = 1016 = 100 aJ/operation °

= 10nm line capacitance = 10 aF

—=— 1 Layer i
24 Layers|

1000 £
i —4A— 96 Layers ]

Density (TB|tIcm2)
- s
/ .

PR | " " " PR S S | " "
0.81 2 4 6 810 20 40

= Can charge line to 1V with 10 aJ bilnimii Festurs &b, E fnm)




Analog Computation with a @
ReRAM Crossbar

= Electronic Vector Matrix Multiply

Mathematical Electrical
VW=l A W |
v, v, v, |[[Wi, w, w, | V] i
[1 2 3:| 1,1 1,2 1,3 : 1: : é?}\ C?:l}* é\:?‘ :
o War Wos | = Ve e S
I I 2,1 2,2 2,3 I
W Y, W V! :
-7 = T e e e
I 1 |

————————————————————————

[|1=zvi,1wi,1 =2V, Wi,  13=2V; Wi, | :I1=ZVL1GL1 1,=2V;,G;, |3=ZVi,3Gi,3:
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Basics of Neural Networks

Simple Network:
Backpropagation

Basic Building Block

Incorrect —

Neuron

Weights W

Inputs

Layer




Mapping Neural Network to Crossbar@m_
for Backprop

Backpropagated error

T from following layer

s o~ | % %[ dH 2
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& | ¥ |
_Convert analgg Outputs to next layer
Inputs to varying

length voltage

pulses
Vector Matrix Multiply, Matrix Vector Integrate current to get
Multiply, Rank 1 Update: an analog output value

Key kernels used in many algorithms




Forward Propagation — Inference ~ @&
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Back Propagation — Training RN
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Key Circuit Block/Kernel Analysis @&

Vector Matrix Multiply Rank-1 Update
(Inference) (Training)

Vi, Va, =V, =V,

! !
1 V1, Va, —V3, - V4]
E % n
Voltage Coding
Voltage Coding

Temporal | Row
i Drivers Two

T | = 1024 x 1024

y 1024 x 1024 .
| &_A‘H) Crossbars 23, X | @_(ﬂ“ Cros);bars
: Edge Logic ‘/‘/ e i :
7 M/ >

Counter

Row
Drivers Two

Anal
Analog Mux

|| Edge Logic
Counter

- —

| Neuron A Offset .
Correction _Offset &
| l Correction
‘ / S i | Integrators
J = Integrators
\ I :
‘ADC Ramp / > | Comparators . S
L 1 ADC| |Ramp _/ —> Comparators

Si )

Marinella, Agarwal, et al, IEEE JETCAS, 2018




Device Assumptions for Analysis @&

Quantity Value

Interconnect Full Pitch(Wy piecn) 64 nm
Capacitance ~200 aF/uym
Resistance ~30 Q/pm
Logic Transistor Area ~0.04 pm?
Voltage 0.8v
High-Voltage Transistor Area ~0.35 pm?2
Voltage 1.8v
Crossbar Dimensions (N owsX Neols) 1024 x 1024
Minimum Pulse Width 1ns
ReRAM & Select Device ReRAM ON/OFF Ratio 10
Capacitance (Creram) 35 aF
Analog ReRAM & Select On State Read Current 1 nA (R,, =100 MQ)
Device On State Write Current 10.3 nA (R,, = 100 MQ)
Read Voltage 0.785V
Write Voltage 1.8V

Marinella, Agarwal, et al, IEEE JETCAS, 2018.



Matrix Energy/Latency Analysis ()

Component Vector  Matrix
i ] Matrix Vector
BN e 5 Multiply Multiply
rlo| S ™ et | | L EnergylOp ReRAM(R)) 1422 122 21 ____!
oy 2 T L = Energy/Op SRAM (fJ) 2718 4630 4102
= Wi Array Latency ReRAM (us) 0.38  0.38 0.51
Array Latency SRAM (us) 4 32 8

Sp— Based on a commercial 14/16 nm PDK

Analog Digital SRAM Analog Digital SRAM Analog Digital SRAM
(2) ReRAM ReRAM (b) ReRAM ReRAM (C) ReRAM ReRAM

8 bit in/out 4 bit in/out 2 bit in/out
gt weights B g it weights B g it weights

Two orders of magnitude bexond digital!
| Woriela agawaletal eesercas2is  SELSE2020 17



Neural Core Energy Analysis

8 bits In/out 4 bits In/out 2 bits In/out
8 bit weights 8 bit weights 8 bit weights :.

Integrator

Array Write
Array Read
Temporal Drivers
Voltage Drivers
Data Movement

Analog
ReRAM

28 nd 2.7 nJ 1.3 nJd

Multiply & Add |y
_Data Movement
Write Memory
Read Memory
Read Transpose

SRAM

12.010 nd 10,150 nd 8.970 nJ




Analog Device Comparison

Va, V2, —V3,—V4)
1
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Marinella, et al, IEEEJETCAS, 2018
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Component Vector Matrix = Matrix Vector Outer
Multiply Multiply Product
Update
Energy/Op IFG (fJ) 11.9 11.9 0.2
Energy/Op ReRAM (fJ) 12.2 12.2 21
Energy/Op SONOS (fJ) 13.7 13.7 68.2
Energy/Op SRAM (fJ) 2718 4630 4102
Array Latency IFG (us) 0.39 0.39 1.9
Array Latency ReRAM (ps) 0.38 0.38 0.51
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Experimental Device Analog Nonidealities (@&

= Now we need to consider the challenges of analog processing
= Digital: During normal operation has perfect accuracy

= Degraded device quality might mean reduced clock speed or reliability issues

= Analog: Device characteristics affect algorithm accuracy!
= Research challenge: analog behavior must give acceptable algorithm-level results

= |nference challenges:
= Measured device conductance not proportional to weight
= Caused by current drift, noise
= Training challenges:
= Actual analog device state change does not match intended weight update
A " Caused by write nonlinearity, asymmetry, stochasticity
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System Level Effects of Device Analog Properties: () i,

. . g anunl di"“.
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Modeling Effects of Noise on o
ReRAM Inference Accelerator

2400+

= Read noise referred T 200 o MMW{E_) |
to as random 5 i
) E 2000+ ﬁw""’”m}‘hf"?ﬁﬁﬁ M LRS
telegraph noise (RTN) S| MY rrﬂrw“, JUCTIUNTTT L
often observed in 1800+ T T T T T
ReRAM and CBRAM oo 7
= ]
. = 1004
= Example RTN noise E iier—d L HRS
- E &0
measured in HfO 3 o
RRAM 20 J"UL_W_ﬂ_;_ﬁ_r _Jowwwer! rrajurwmy |
M h . d D 2 4 G ﬂ ID 12 14 15 'IE .?.D 22 24 ”'E 28 SCI
o echanism an Time [s]
magnitude depends  Example High Resistance and Low Resistance State Noise
on conductance state 304 30
] HRS ] LRS
@ 20 - Gaussian |20
2 .
§ 3 10- 10
4 5- 5-
* 0- 0_-

2 0 2 4 6 8 10 2 0 2 4 6 8 10
Ln(P-p[nA Ln(P-p[nA])




Modeling Effects of Noise on o
ReRAM Inference Accelerator

= Trained with no noise, noise added during inference
= RTN and Gaussian similar
= Noise affects inference at about 0=5% of dynamic range

Classification with Read Noise Classification with Read Noise

T T 1 l 99 . | | T
Large Images e G gussian | Large Images e | dependent
a*"::,: p——- N g?':* == mm = Proportional 1
== - s :
3 : o y y . 3
g 90 | Small Images File Types ) E 90 FSmall Images b )
3 3
g g
- i - ‘
I 1/, HE R B GI.E I L 1 L
0,00 005 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
Normalized Sigma (0Ogy) Normalized Sigma (Tgry)

S Agarwal et al, IJCNN 2016




Modeling Effects of State Drift on M
SONOS Inference Accelerator

= Semiconductor-oxide-nitride-oxide-semiconductor (SONQOS)
and related charge trapping devices
= One of the most common devices for flash memory

= MOSFET with a tunable threshold voltage based on the
amount of charge in the charge trapping layer

m) —
s I ox>0 ox_o ox<

- | |

n-type poly d:D _

'g Erase Write |
top oxide (&)
— —— — — | charge trapping layer c

1 B st catde T v
= I | L] | - T. vT
< i n*drain [ ¥ () . . L
ource p-type 2 0 2 4

Gate Voltage (V)

Courtesy DK Schroder




Modeling Effects of State Drift on M
SONOS Inference Accelerator

= SONOS will slowly lose charge and change from the
programed to erased state (retention loss mechanism)

= Clearly, this will affect the weights and inference accuracy

= Used simplified charge loss model to study affect on weights

Current Drift Model
1.0
n-type poly
£=)
.g 0.8
top oxide Tg
—=TT= charge trapping layer g 06
tunnel oxide ©
) o
n* source n* drain ' 304
p-type Si 8
>
<))
0 0.2
i 0.0

10° 107 10 10° 10" 10° 10’
) Time after programming (days)




Modeling Effects of State Drift on
SONOS Inference Accuracy
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o o o
H (o)} oo
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0.0
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Modeling Effects of State Drift on e
SONOS Inference Accelerator cgtiboration with

= |nference stability looks good for actual 40nm SONQOS
= Decay of 0.8% of dynamic range after 24hrs
fMNIST Accuracy vs Time CIFAR-10 Accuracy vs Time

N
o
N
o

Blue = Actual 40nm SONOS '
% Blue = Actual 40nm SONOS

[_
2
= 0.8 0.8
= 4
S =
% 0.6 O 0.6
L S
g o
0 o @
S o Of(t=1day)=0.8%" % _o_ O(t=1day)=0.8%" ~
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—e— 0y(t=1 day) = 40% —e— 0)(t =1 day) = 8%
0.0 0.0
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Time after programming (days) Time after programming (days)

Bennetti Xiaoi et aIi IRPS 2020 ‘acceﬁtedi to be Eresentedl



Experimental Device Analog Nonidealities: .
Training

= Analog architecture trade off digital precision for significant
performance/watt and performance/area gains
= Best suited for applications requiring ~8 bits precision or less

= Backprop training: Ideally weight would increase and decrease linearly
proportional to learning rule result

= Key issue in experimental devices: altered the relationship between
intended and actual update: Write Nonlinearity, Asymmetry,

Stochasticity, Read Noise
Conductance versus Pulse

A | y © = Nonlinear
o
c e L,000000000g _ _
S o o © e« Yo% %o, Symmetric and Linear
So o s ot ] o ® .4./ Asymmetric, Nonlinear
© ; O e o ® : o ® 9
C 8 O @ ) ¢ o o @ ®
o 0 ® P O @ > = o) ) > %
O ¢ ° Pos. Pulses NegPulses © ¢ [
o ° 00000000 g9

Pulse Number (Vi .=x1V, t, ,.=10ns)




Device Requirements for Training @&

Large Images Asymmetric Nonlinearity
99 T T T T ' ! '
wmax
§
3
3
3
% —3[f  Positive Alternating
2 | [ Pulses Pulses
ok Wnin [ Positive Pulses »’I Negativ(;aI Is'-’ulses —-10 0 10 20 30 40 50 60 70 80
0 0.5 . 0
wﬁmﬁ‘%&@&?ﬁgﬁ% @gﬁk@ Normalized Pulse Number Pulse Number
Small Large File Types
Images Images
Read Noise o (% Range) 3% 5% 9%
Write Noise o (% Range) 0.3% 0.4% 0.4%
Asymmetric Nonlinearity (v) 0.1 0.1 0.1
Symmetric Nonlinearity (v) >20 5 5
Maximum Current 160 nA 13 nA 40 nA
Minimum Retention (@ 85°C) 7 days 7 days 7 days
Minimum Nudge Endurance 10’ 107 10’




Training Lookup Table Generation @&
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Device to Device Variation () =,

= Extended the CrossSim platform to draw upon a library of look up
tables (LUTSs)

= LUTs assigned prior to online training and remain constant during it
= |ndividualized updates -> slowdown (somewhat mitigated)

Old New Online Updates
. [ T
by px0 VWV
Ev v ?{-g.={} 33 * “"'.IH ‘\"ﬁ ‘\‘1” lﬂ:d
E ) v [ t* ‘\' \\
L 22

n
0 iy
5 o,
i‘;'ins- net
nz
i
o
Fii) 24 25

SET table RESET table
Master LUT o’
Uniform Variable SETLUT:ws  RESET LUT: wr




CrossSim Model of TaOx ReRAM:
MNIST, Backprop Training

q [ [ . I

=

L Hﬂne Tﬂg F ) g“ I l ; |§§_gurag@m[ﬁ)iirgﬁit% I

Performance
Gap

— Exp. Derived

- |deal Numeric

—  Ideal Numeric | — ideal Numeric
Rl A . st T o Oy
- Training Epoch Training Epoch
# Training # Test Network Size
Data set
Examples | Examples
UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10

ZROSS SIM
.~ sELsE220 33
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ReRAM algorithm accuracies: i)
Small Digits (OCR Database)

Small Digits: LUT Variability
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0 2 4 6 8 10 12 14
Training Epoch

# Training # Test Network Size
Examples | Examples
UCI Iris Dataset [1 100 50 4x8x3

Data set

UCI Small Digits[ 1 1.797 64x36x10
File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10




Comparison of Filamentary ReRAM @&,

= TaO,-Ta highest training classification accuracy initially

= Analyze effect of noise and nonlinearity on accuracy with
CrossSim

= Nonlinearity is an inherent issue for each filamentary device

Sandia Baseline TaO,-Ta SiO,-Cu Ag-Chalcogenide
10— 100 ————————r———————— 10—
90 [f T 1 o - 90 , ]
_ 80 ' = VA\/A'_/—\J\VAVAVA < ' _ 80 ' - 80 I ﬂ T
X 70: X 70H— X 70 1
> 60} > 60 I~~~ T — A > 60
© © ] ©
5 50 5 50 1 5 50
3 40 9 ]
< - S 4 8 40
30} —— Numeric 30} —— Numeric 30§ —— Numeric
201 —Llnear_lzed 20! —Linear_ized 201 —— Linearized
10l — No Noise 1ol T No Noise —— No Noise
0. —— No Manipulation . . . ; . —— No Manipulation . 10.' —— No Manipulation
0 5 10 15 20 25 30 35 40 075 10 15 20 25 30 35 40

0 |'|'|'-
0 5 10 15 20 25 30 35 4(

Training Epoch (#) Training Epoch (#) Training Epoch (#)

R. Jacobs-Gedrim et al, IEEE-ICRC, 2017



Problems with Filamentary s
Mechanism for Analog Training

Nonlinearity
1. Tunneling current, esp in high resistances
2. Current crowding — high temperature

Displaced required for change give runaway effect
Oxygen 3. Nonlinear E-field
Anions (0%?)
Positivel Asymmetry
1 Inherent property
Charged " : :
Vacancies - gf :lpt;iarl .dkewced—
(Vo) chotiky-like an
\ , ohmic junctions
Vie o -|||

— Stochasticity

G depends on
position of a few
atoms




Period Carry: Multi-Synapse Method 0
High Accuracy in Nonideal Devices

1 1/4 99 TaO, MNIST
= Example for TaOx: Each Ideal Num
igh 2 >
weight uses 2 synapses N 5 Periodic Carry
= Carry once every 1000 O 590
updates for the LSB, and = < : g
every 2 updates on others ;2 Single Device ]
[ R -
= High variability TaOx device: 0 0 10 20 30 40
accuracy improves from -1 -1/4 Training Epoch

<89% to >97%, only ~1%
under ideal

Weight During Training

-

Digit 1
Weight

= Requires tradeoff of _E
energy/latency for accuracy -0.
0
0
0

U WNIHORNW
T

— exact tradeoff depends on
algorithm regs.

Digit 0
Weight

o 1 2 3 4 5 6
Agarwal et al, VLSI 2017 Update Count (x10,000)




SONOQOS Training =

I Pawallel Virite: wy — wy % 3y

n-type poly
top oxide
— — — — — | charge trapping layer
1 innel oxide
so::ce hdeain I
p-type
Si

¢

I-‘I‘WEuIses: +10V EUIEESE
1.0 T

=
gO.E

—
Yo.6
=

w
N0.4

[1s]

g{].z

=
0.0

Currént (A)

0 50 100 150 200 0 50 100 150 200
(a) Pulse Number (b) Pulse Number

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 5, 52-57, 2019.



SONOS Accuracy and Energy

100

Lo -1V E!l:ﬂsesl I+TUV ?ursesl ; : ;
$0.8 ;,;\_ . 95 W _
3 J >
©0.6 ©
5 5 90t E
20.4
5 <
0.2 85 it -
=
0.0 . - .
‘ 30 I 1 1
0 50 100 150 200 ‘
() Pulse Number 0 10 20 30 40
Training Epoch
Component Vector Matrix Outer
Matrix Vector Product Low
Multiply Multiply Update X
Encray/Op ReRAM (1)) 122 122 2.1 ——inference
F
Energy/Op SONOS (fJ) 13.7 13.7 532 energy
Energy/Op SRAM (fJ) 2718 4630 4102
Array Latency ReRAM (us) | 0.38 0.38 [ 0.51 Slow
Array Latency SONOS (us) | 0.40 0.40 i
Array Latency SRAM (us) 4 32 8

S Agarwal et al, IEEE J Exploratory Solid-State Computational Devices and Circuits, 2019.
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Li-lon Synaptic Transistor for Analog e

Computation (LISTA) G-V for LISTA
C 250
= Alternatively, novel devices may 250r
offer promise @ 200)
= LISTA: modulate the doping of & 1501
Lithium battery cathode 100}
= Resistivity across cathode 50
changes linearly with battery Ok =
charge/discharge
o s 500 nm anode/gate current-collector

‘ electrolyte/insulator
4 N |

anode/gate

Vv ; _ . =

G electrolyte/insulator i = >

' E ()]
— Liy. Li* + xh
LiCoO, Li1.xCop + xLi" + ‘ EE WDMVV"‘" W NGETYeYY v e
_'<80urce cathode/channel  drain 5 \

g — r cathode/channel SiO [

VesT T — source 2 _drain

V E. Fuller et al, Adv Mater, 2017




Analog State Characterization =,

Y]
[\
4]
o

200

Gsp (1S)

20 30 40 50 60 70

t (ks)

10
TaOxy ReRAM
LISTA > 200 states

1600 2000
Conductance {35}

PCM Array
4 Measured
S AG-per-pulse
[uS]

180 200 220 240
Go (1S)

i From all 31 million’ S
partial-SET pulses G [uS
E. Fuller et al, Adv Mater, 2017 — al.,‘?EEElTED 229



LISTA-device Performance for Backprop Algorith@%

Small Digits File Types Large Digits
N N B N R R | B L B 98 — T

U | J

— LISTABased | — LISTABased | = Exp. Derived
. = Ideal Numeric - —  Ideal Numeric - - =  ldeal Numeric -
@ - I]J L L — L ..I] , "EI ) L ) @ . H Bl H H i I i - @ : I Il Il I H }l [ -
0 5 10152025303540 0 5 10152025 303540 0 5 10152025 303540
Training Epoch Training Epoch Training Epoch
# Training # Test Network Size
Data set
Examples | Examples
UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10

E. Fuller et al, Adv Mater, 2017
—



lonic Floating Gate =

0%
, Ag I »0 ]
i — g >
migration Sio, diffusion ® -
(OFF)
199

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).



IFG Array Demonstration =

Near ideal
accuracy

i

Accuracy
|~ os!
i
o oot

10 20 30 40
Training Epoch

Viet
oS

Soo boo boo
Qo0 o OO

Vel 'V

read-write operation

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).



Programming Demonstration =

A B GG, (1S)
\Y O 1+100
Ve O VO . v +
Y — Y ov Y [ ov Y] ov |

fﬁ}v\ A ooy oy

VA

200

203

-248

A4

zZ'[1]

E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019).




lonic Floating Gate Energy W=

120-430X Energy Advantage 2-34X Latency Advantage 5-11X Area Advantage

10—4 3 H [ 1] H 1 : 1 @MB ¥ H 1) 7 [ 0 = 9 ] 1] 1] ] ¥
| B VMM |- ‘ E VMM |
0 . MVMI N MVM
1050 BN OPU || : BN OPU || _
2 B Total |1 <& I Total || E
>
5107 | §10° £
3] 1 0 (U
107} mii- <
10” B -
525z 868, 82 5252 888, 82 5252 888, 82
e =< 80 20 2L 2 =< Y 20 8K =22 =2 0 08¢0 ©°
Oy o gZ Suw S Oy DX gZ Suw S Oy o gZ Suw S
¥ <pn < < ¥ <pn < < Y n < v

1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
- Vector Matrix Multiply - Matrix Vector Multiply - Outer Product Update

Used a commercial 14/16 nm PDK ***Requires 100 MQ on state devices

Agarwal et al, VLSI-TSA 2019



Magnetic Synapse Concept @
(a) Pinned layer OUT 2t

Free
layer

Domain wall (DW)

I II |

'i [ :
‘e

Ol | N[O || WIN|=| O

G Gl
U] [
UK R
b A 4

-l
o

(b)

= —
»
O N N

1 1.5
£ 313 3
g
8 J 24, s
a . 2 % P s : §1.2 § 1
3 Pulse number g TMR = 166% §
3 14| RA=20Q-pm? 3 | Linear notch-free
g 8 8

= 1 05

0 2 - 6 8 10 -500 0
Pulse number DW distance from median (nm)
Otitoaleke Akinola, Xuan Hu, Christopher H Bennett, Matthew Marinella, Joseph S Friedman, Jean Anne C Incorvia J. Phys. D, 2019. 49
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Effects of Protons on TrueNorth )
Digital ASIC Inference

. 0 1 2 3 4 5 6 7 8 9

30 [ ] (Pre-rad) [J] (Post-rad) }}
25
20

=  MNIST inference on
IBM TrueNorth ASIC
15

=  Some SRAM flips occur
10

= Affects different digits 5
differently

False Positives

5
10
15
20
25

30
Number of False | Number of False 35
Negatives Positives

2
10
5
9
29
16
13

= On average accuracy
not significantly
affected

False Negatives

Digit

o

9
18 31

OO0 NV A WIN =

R.M. Brewer et al, TNS 67, 108-115, 2019




Effect of Single Events Upsets on i
|nfe rence — Re RAM Effects of SEU: Smaller

Network Topology
Simulation Value of  Total lon Accuracy
. Variables Variables Number (%)
= Based on SPICE model of SEU in 0 0 5726
Operation 10 3 97.26
1T1R cell 0§ g
. . Technology 45 nm 1 97.26
= SEU has little effect on inference ok Gmm ¥ T2
05V 3 97.26
= RRAM less susceptible to SEU ELviles 077 9726
than SRAM Swichng 090V 3 o726
voltage 1.25V 3 97.26

Effects of SEU: Larger

1T1IR CIrCUIt MOdeI RRAM Con.dUCtance Network Topology
BL Transient Simulation Value of  Total lon Accuracy
Variables Variables Number (%)

o 0 0 98.74

TE & Operation 10 90 98.73

RRAM 2 80 years 20 180 98.72

BE 3 30 270 98.70

S 60 ==LET ®2.5 Technology 45 nm 43 98.74

r Radiation G e B node 65 nm 90 98.73

wL—| — " = IR E—T

photocurrent ¢ ~LET =5.0 ' *

20 =~=LET=5.5 BL voltage 0.7V 90 98.74

- | —— 09V 90 98.74

SL 00 2‘0 4‘0 = = RRAM 055V 90 98.66

. . . Switching 090V 90 98.70

Simulation Time (ps) voltage 125V 90 98.73

Ye et al, TNS 66, 97-103, Jan 2019




Effect of Total lonizing Dose on M
Inference — CBRAM

Neurons: activation function (x,4) Synapses: welght in memory

= Ag/Ge;,Se,, CBRAM exposed to
100 keV Li | 3

o3’

= Primary mechanism is TID

20 Pixels :
. J A
= Only small accuracy degradation ) ouputLayer
nput Layer
. ~ idd
until fluences of ¥~30Mrad(GeSe) Hiddentayer
Effects of TID: Larger Effects of TID: Smaller
Network Topology 100 Network Topology
80t 8o}
> 60} > 60}
g g
3 aof o 40f
b 784-1024- 2
20b 1024-1024-10 syl S0-200-10 .
Topology Topology
0 ) —— S S———
0 20 40 60 80 0 20 40 60 80

TID (Mrad(GeSe)) TID (Mrad(GeSe))




Effect of Displacement Damage on M
Training — ReRAM

Sandia
National
Laboratories

= 2.5 MeV Silon irradiation, neural training between steps

= Training accuracy for higher resistance devices may be
degraded following ion irradiation at high fluence

= |nline with TaOx ReRAM heavy ion degradation results

Flgence {ions Jem™)
e a4
w}ﬁm [ » 1®’E@ L] Ptﬁ}i% T L. 100 """""""" 3 rreeT T T eey hidd |
[12A SB4B Hi46Lo19] 3 ] _os}
LR ‘ 90¢F 1 £ |
v F A 08}
€ 2 sol ] 8
E = f Accuracy Degradation {  Zoz
S 4.0x10” 2 F ; <
5 5 70F { 2
5 2 g 06}
| - F {1 8 |
= siox1r* 60 F PreRad] § ¢ |
S : —1e10 | | Sosf
——1E13 E
- ——1E14 1 3
s 50 I Y TR TR NP SEE R R PUPPY EPEPPT T EEEPEPPETITY EEEPEPPTrrY PRI Tery B
Ll o A0DED mm 120000 460000 200080 0 5 1 0 15 20 25 30 35 40 1E10 1E11 1E12 |.E|3 1EN
Pulse Number {#) Fluence (lons / cm’)

Training Epoch (#)

R Jacobs-Gedrim, DR Hughart et al, TNS, 20718




Outline =

= Motivation and Background
= Analog Accelerator Concepts & Performance Model
= Accelerator Accuracy Modeling & Characterization

= Future Directions
= Radiation Effects
= Summary




Summary =

= As CMOS scaling slows (or ends), a new direction will be needed to achieve
the continue the exponential improvements in performance per watt (or
energy efficiency)

= Deep neural networks and related algorithms being adopted for many big
data and embedded applications

= Analog crossbar VMM and training operations can extend performance per
watt 10-1000x beyond digital CMOS limits

= |deal analog “synapses” are a topic of continued research: lonic floating
gate and magnetic domain wall devices may mitigate issues:

= |FG has demonstrated offers significant potential as a low energy, high accuracy
neural network accelerator synapse

= Future challenges: continue to improve and scale IFG — and demonstrate CMOS
integration
= In-memory computing shows promise for radiation-induced fault tolerant
computing
= Additional research in this area is needed
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Conclusions and Future Work ()

Input Filters

N, channels \7 v v K,xK,
T\‘ ’ =
i }«\.\ _/\3«\ }«\.
:_ — _\}(\\ NN Output
L] a1V SV N, channels
g . ML CTT T T

bias: | 1

#rows =K xK XN, +1

— %:’J
S?,.
[
[

# columns = N,




ReRAM Analog Characterization L=

RESET

6.0x10" . 6.0x10™ |
0.2
o
@ 5.0x10* @5.0x10° g
° A o | ise = ]
g 18} ?;.ﬁ ﬂi‘sn? g > o8l m: mﬂéﬁ? ]
E s 08 Amp =114V S Aol Amp =-1.18V ]
S 4.0x10* §°°r . S 4.0x10°} 4zt "
e S 8ap = AxID® 2x10° 0 Zx10° 4xie®
] ezh [e] Time (S}
3.0x10* s e e e L 3.0x10"F
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Pulse Number (#) Pulse Number (#)
SET Programming RESET Programming
i Repeat Repeat
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> >
RESET RESET




Pulse Width Analog Measurements @&

100 on->off cycles,
(200k pulses)

™ P 60 T =
f l Pusten Humber{®

|
2000 pulses per
on->off cycle




Multi-ReRAM Synapse: Periodic Carry

If we need more bits per synapse, use multiple memristors

 Three 10 level ReRAMs could represent 1-1000!
« Adding to the weight requires reading every

ReRAM to account for any carries and serially
programming each ReRAM: VERY EXPENSIVE

x100 x10 %1

>3

>4 A

»"’A. ]
)

|

—_—

* Use >10 levels to represent a base 10 system

» Ignore carry and program the crossbar in parallel.

» Periodically (once every few hundred cycles) read
the ReRAM and perform the carry

/
Extra levels 10 levels
store the } represent the
carry weight
conductance




Periodic Carry Compensates for Write Noise () i

1 115  1/25 1/125

~Nfueny”

1 -1/5 -1/25 -1/125

~1.0-0.50.0 0.5 1.0
Read and reset every 100 pulses Weight

Do 300,000 small (0.02% of weight range) updaies
* net of 1500 positive training pulses

Noise Sigma = 1.4% for single device Learn from a 0.5% Signal

* (from Gnoise/Grange = O'l\/AG/Gmnge )
» Write noise applied during updates and carries




Periodic Carry Mitigates Write Nonlinedfiis,

Write Nonlinearity Alternating Pulses Cause Weight Decay

1.0 m : 10
<% *
0.5 |- - s5L &

[

p .""l ;t, ") p—— o |
QR

€

20.0 |
O @
= S
_@ o . . .
" Positive Alternating -

A _5 - |
I' \. -5
-1.0 | ! ] " Pulses Pulses

0 10 20 30 40 S ) S 1 E S
Pulse Number 0 10 20 30 40 50 60 70 80

Pulse Number

Use center linear range of weights 30

1 115  1/25 1/125 w25

Periodic

ity
=]
o u

» Train with 1% signal
» |deal resultis 0.6

\AJJBQ /

Probabil
o U

) 15 ‘
3= 3= == —-0.4-0.20.0 0.2 04
1 -1/5 -1/25 -1/125 Weight



TaO, Results )

1 1/4 g9 130, —File Types 99 _ Ta0,—MNIST
| P Ideal Numeric
N > L I b o >
O § : deal Numeric - 5 A —
Q) 590 k= .. = 590
5 O Periodic Carry | o
< - < B
— : : Single Device -
?mglef Deche z
0 0 | | 32
1 -1/4 0 10 20 30 40 0 10 20 30 40
Training Epoch Training Epoch

Carry once every
1000 updates

A/D and D/A is modeled, Serial operations modeled
«  When resetting weight, need to adjust pulse size based on current state to compensate for nonlinearity
* When reading a single weight, need to adjust readout range to be smaller (change capacitor on the integrator)




Electrochemical Neuromorphic s
Organic Device (eNode)

a Open ’ 2 600 : i |
_pPRmS CK:,\F Vpr& o 800
: et @_l 0 2500 5000 7,500 10,000 12500 15,000
L ] ‘ S
- @_ 550 1 I 2
N i N <
5 600 ] _ §
g 650 1 T ] A
£ 700 - f - 5
S ] : =
T 750 - - 1
o | i ~
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. >
E o
- vpus.l '|'pn55r £ -
> ! T ¥ T T T i T ¥ T ¥ T 7 T ¥ T
4,000 4,500 5,000 5,500
Pulse #

van de Burgt et al, Nature Mater., 2017




Electrochemical Neuromorphic s
Organic Device (eNode)

b 1.0 E 1.0
2 -
0.8 | 0.8
'2; 1 0.6 o @ 0.6 Q
2 04 7 g 04 "
D ‘ -
0.2 - 0.2
-1 0.0 : 0.0
600 700 BOO 600 700 800
Conductance (pS) Conductance (pS)
| File types ¢ Small digits f Large digits
99 95 99
o o 3 o 3
= 3 90 = 3 90
o ¥ ¥]
=T < <L
= Exp. derived ] =— Exp. derived B = Exp. derived
= |deal numeric : = |deal numeric 1 = |deal numeric
OF—T—F 71T 7T 1717 0 +— T T T T 1 0T 7T 7T T 71T 71
0 10 20 30 40 0 110 20 30 40 0 10 20 30 40
Training Epoch Training Epoch Training Epoch

van de Burgt et al, Nature Mater., 2017




Programming Demonstration @

F G
-4 -4
10 T 10 ' F
. | 8bit
1 N . S L
S . _- 4 bit @10
@1 0_7 - 2 bit LC>;.~_|0—6 !
::j10 B &
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10_8 —I 10
oL m . NN | TN
IFG SRAM IFG SRAM IFG SRAM
E
99 MNIST
& 98
3 .
< 97F © o ideal array
¢ o IFG array
96

O 10 20 30 40
Training epoch



Accuracy

Three Terminal Devices Tend to

Have Higher Accuracy

100
25

~N s 00 00 WO
o U © U1 O

0

] | |

10 20
Training Epoch

Delta G (mS)

30 40

ReRAM

=

SONOS

-11V pulses, +10V pulses
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Digital Accelerators: Apple A1l =

= Apple’siPhone 8 and X main SoC processor
= TSMC 10nm process

= No formal technical papers or presentations
given yet

= 600 GigaOps/s claimed, no other info

= Rough order of magnitude analysis still
possible:

= Assume “Op” is 8-bit fix point
= Entire smartphone CPU <600mW

= Almost certainly > 1 TeraOp/W, or
<1pl/op
= Next challenge: moving beyond this!

www.ifixit.com




Why should we continue these gaindP&.

= Google Deep Learning Study

= What would they like to do?

v

Feature 1 # ° "ﬁ “ * “‘

16000 core, 1000 machine GPU cluster
Trained on 10 million 200x200 pixel images ... k& |
Training required 3 days o ——
Training dataset size: no larger than what e

can be trained in 1 week s § R 3 1AL A TANATY

~2 billion photos uploaded to internet per day (2014) 3
Can we train a deep net on one day of image data? nge wih s hamteky
Assume 1000x1000 nominal image size, linear scaling ol
(both assumptions are unrealistically optimistic)
Requires 5 ZettalPS to train in 3 days

(ZettalPS=10?! IPS; ~5 billion modern GPU cores)
World doesn’t produce enough power for this! =

Data is increasing exponentially with time Q. Le, IEEE ICASSP 2013

= Need >10'6-108instruction-per-second on 1 IC

= Less than 10 f) per instruction energy budEet



General Purpose Neural Architecture

Run any neural algorithm on the cositive [D/A| A \
same hardware . _
weights

] [ ] &~ Router
|R Bus ‘Jl}_{_ Bus J-E] @ L @ Y )
é (
Neural E Digital Neural E Digital D/A % i’;>ﬁ A/D
Core(s) Core Core(s) Core —%‘ &
. J .

IR = Bus JB_( Bus J'}_{J D/A 1ap

Neural Digital Neural Digital )
Core(s) Core Core(s) Core .
g JARLY b negative

A/D

R Bus R Bus R Weights
L] L] L]
> /
Neuromorphic core: Digital Core:
« Evaluate vector matrix multiplies along * Process neural core inputs/outputs
rows or columns * For NxN crossbar, the crossbar accelerates
* Train based on input vectors O(N?) operations leaving only O(N) operations

for the digital core
SELSE 2020




Modeling Device Requirements

Small Images

Asymmetric Nonlinearity
T T T

Negative Pulses

99 I I T I Symmetric Nonlinearity
L | g
<k Own=0______ I SRS I
© 90 1 8 Q
< o Indeper'1dent g 2
(=== Proportional W . ) Wmin|"  Positive Pulses
o Inverse min Positive Pulses | Negative Pulses 0 05
E 0 0.5 1 0.5 0
(a) 0.0 0.1 0.2 03 O. 4 Nomalized Pulse Number
Normalized Sigma (Oyy)
Small Large File Types
Images Images
Read Noise o (% Range) 3% 5% 9%
Write Noise o (% Range) 0.3% 0.4% 0.4%
Asymmetric Nonlinearity (v) 0.1 0.1 0.1
Symmetric Nonlinearity (v) >20 5 5
Maximum Current 160 nA 13 nA 40 nA
Minimum Retention (@ 85°C) 7 days 7 days 7 days
Minimum Nudge Endurance 10’ 10’ 10’

1

0.5 0

Normalized Pulse Number



ReRAM Measurements

= DC Current-voltage “loops” sweeps
are not time-controlled
= Excessive heating and early wearout
= Do not provide info on dynamics
= Physical switching < 10ns

= Need pseudo RF setup to measure
= Ground/signal, conductor backed
= Agilent B1530 module
= 10 ns RT/FT, 10 ns PW
= 1V nominal, ~140 mV overshoot

Vie
O anions
TiN exchange
P00 _~~channel
TaO (5-10 nm) (+) charged
vacancies
TiN

(V)

Voltag

) -
o
3

Oscilloscope

RSU

. Rise =12.8 ns

- Amp =114V

Fall=11.4 ns

-4x10° -2x10® O
Time (S)

2x10® 4x10°%




Si0,-Cu e

Conductance (S)
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=  For comparison all devices at 100 ns due to impedance limitation

= Device operation voltages found by increasing amplitude by 0.1 V until switching
occurred — must survive 200,000 nudges so lowest possible voltage used

= Chalcogenide SET = +0.8 V RESET =-0.8V
= Si0,-Cu SET =+1.4 V RESET =-1.6 V

= TaO, SET +1.0V RESET=-1.0V
-



] Sandia
Learning Netoral

Algorithm

Wi WMo Wi

Neural Core Wy Wy Wy
Simulator Wy Wy, Wi,

@ National
Laboratories CROSS SIM

Crossbar Simulator OO0E -

Physical Numeric
ZZROSS SIM Crossbar Hardware Crossbar

il Grassii Circuit Model Crossbar Simulator
Detailed but Fast but

CrossSim s a crossbar simulator designed to model resistive memory v \
for both and (in a future release) =X\

RS B B
digital memories. It provides a clean python API so that different V. =X o\ B -
algorithms can be built upon crossbars while modeling realistic device 2 ;\Jw;l\ Wl Wl woN S I ow a p p rOXI m ate
properties and variability. The crossbar can be modeled using multiple V1=X3—@ R T e ey
fast approximate numerical models including both analytic noise h B — Wil Wil Wi3t Wiy
models as well as experimentally derived lookup tables. A slower, but V =X O 5| % % %
more accurate circuit simulation of the devices using the parallel spice Wart Wyt Wit Wy M d AI L} t h .
simulator Xyce is also being developed and will be included in a future L 2 ¥ 9 $ eas u re g o rl m I c
release
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Download

Download the user manual here: CrossSim_manual.pdf
Download CrossSim v0.2 here: cross_sim-0.2.0 targz
Download example scripts here: gxamples tar gz
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Contact Us

Please email Sapan Agarwal for any questions or if you would like to contribute to the source code: sagarwa@sandia gov
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Selected Publications Using CrossSim
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