O
NATIONAL ENERGY TECHNOLOGY LABORATORY

Advanced
Analytics

‘ MetOcean

Exploratory
Statistics

Evaluating Offshore Infrastructure
Integrity
29 April 2021

2, U.S. DEPARTMENT OF | N NATIONAL Office of Fossil Energy

) ENERGY TL[Esmowoey

I DOE/NETL-2021/2643




Disclaimer

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference
therein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed therein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

Cover Illustration: The study took an integrated approach to modeling infrastructure
integrity. The cover illustration provides a graphical overview of the process taken to
combine data, exploratory and predictive analysis to estimate offshore shore integrity.

Suggested Citation: Nelson, J.; Dyer, A.; Romeo, L.; Wenzlick, M.; Zaengle, D.; Duran,
R.; Sabbatino, M.; Wingo, P.; Barkhurst, A.; Rose, K.; Bauer, J. Evaluating Offshore
Infrastructure Integrity; DOE/NETL-2021/2643; NETL Technical Report Series; U.S.
Department of Energy, National Energy Technology Laboratory: Albany, OR, 2021;

p 70. DOI: 10.2172/1780656.

An electronic version of this report can be found at:

https://edx.netl.doe.gov/offshore




Evaluating Offshore Infrastructure Integrity

Jake Nelson'?, Alec Dyer'*, Lucy Romeo!®, Madison Wenzlick!, Dakota
Zaengle', Rodrigo Duran'®, Michael Sabbatino'*, Patrick Wingo'**, Aaron
Barkhurst’, Kelly Rose', Jennifer Bauer!

1 U.S. Department of Energy, National Energy Technology Laboratory, 1450 Queen Avenue
SW, Albany, OR 97321

3 Oak Ridge Institute for Science and Education, 1450 Queen Avenue SW, Albany, OR
97321

4 NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR 97321
5> NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26507, USA
¢ Theiss Research, 7411 Eads Avenue, La Jolla, CA 92037
7 Matric, 430 Drummond St. #2, Morgantown, WV 26505

DOE/NETL-2021/2643

29 April 2021

NETL Contacts:
Jennifer Bauer, Principal Investigator
Lucy Romeo, Co-Principal Investigator
Kelly Rose, Technical Portfolio Lead

Bryan Morreale, Executive Director, Research & Innovation Center



This page intentionally left blank.



Evaluating Offshore Infrastructure Integrity

Table of Contents
ABSTIRACT e ovuiirecerecorecescsssssssssssesssssssessssssssssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssssssss 1
1. INTRODUGCGTION.cccctteccereccesseccsssescsseccsssssssssscssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 2
1.1 AGING ASSETS: OFFSHORE OIL AND GAS INFRASTRUCTURE......ccovvvenn. 3
1.2 FACTORS INVOLVED IN INFRASTRUCTURE DEGRADATION ....covoeviveeeveen, 4
1.3 ESTIMATING INFRASTRUCTURE INTEGRITY: EXISTING MODELS AND
M E T H O DS oo et e et e e e ee e e e e e e e eeseaaeeaaseaaasseasasaassasnssesnassssssssnasessassesseesnaseeen 8
1.4 CURRENT STATE OF INFRASTRUCTURE IN THE GULF OF MEXICO............... 9
2. IMIETHODS aaeeireeeereeccsseceeseecessescsssssssssscsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnssssssssssns 13
2.1 DATA ACQUISITION AND PROCESSING.....cooiiiiiiciieieee ettt 14
2.2 DA T A AN A LY SIS oottt ettt e et e e e eee e eeeaeaseaaasaeeseanassssasssnasesnaesennasennaeees 23
3. OBSERVATIONS AND RESULTS cctvttttcercesccosccssccsscsssosssssssosssssssessssssssssssssssssssssesssesssess 29
3.1 COR R EL ATTION AN A LY SISttt et e e e ee e et e e s et eeseaesaeaasssaesasnaeeenaasannaaes 29
3.2 SP AT TAL REG R E S SION oo et e e e aa e 33
3.3 SPATIAL DISTRIBUTION OF RISK ....ooiiiiiieiiiee et ee e eee e eeeeaaeseeaeesasesssneesennns 34
3.4 PREDICTIVE ANALYTICS RESULTS oo ea e 35
4. DISCUSSITON ..covecereeceereccesseccssessesssscsssscssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 39
4.1 EXPLORATORY DAT A AN ALY SIS oo et 39
4.2 PREDICTIVE AN A LY T S oottt et e e e etee e e eeeeaeseaaaeseeassenassesasesnaeeeen 39
. CONCLUSITONS cottttcereceseccssscssscsssesssssssssssssesssesssssssesssssssesssessssssssssssssssssssssssssssssesssssssssssosnns 42
0. REFERENCES .. oo tttiettecccsseccssseccsssscsssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssses 45

APPENDIX A: INFRASTRUCTURE AND INCIDENT DATA USED IN THE ANALYSIS

APPENDIX B: METOCEAN DATA BY VARIABLE WITH INFORMATION ON
SPATIAL RESOLUTION, EXTENT, TEMPORAL RESOLUTION, AND SOURCE

APPENDIX C: VARIABLES USED TO MODEL AMBIENT CONDITIONS THAT
HAVE BEEN FOUND TO CONTRIBUTE TO THE CORROSION OF METAL IN AN
OFFSHORE ENVIRONMENT

APPENDIX D: VARIABLES PICKED BY THE GBC MODEL FOR TRAINING THAT
HAVE A SIGNIFICANT IMPACT ON THE PREDICTIVE POWER

APPENDIX E: VARIABLES USED IN THE ANN MODEL FOR TRAINING

APPENDIX F: LOCAL PARAMETER ESTIMATES FOR THE GWR MODEL
VARIABLES OF INTEREST ALONG WITH THE LOCAL R2 VALUES




Evaluating Offshore Infrastructure Integrity

List of Figures

Figure 1: Map of the locations of platforms in the northern Gulf of Mexico symbolized by
structure type including fixed, mobile offshore production units (MOPU), and unknown. 11
Figure 2: Workflow for processing, combining, and analyzing platform data in the two phase

APPTOACK. L.ttt ettt ettt e et e et at e e b e e teeenb e e bt e enaeebeeaeeenbeenseas 13
Figure 3: Number of incidents from 2006—2018 per type of platform. ..........ccceeeviercieiniennnneen. 15
Figure 4: Number of structural- and weather-related incidents per platform record, colored by

1917 012U UPRRPPRRRN 18
Figure 5: Normalized cumulative incident severity by platform and type. .........cceceevveeiiienennne. 19
Figure 6: Maximum sea-surface velocity magnitude (m/s) from a data-assimilating ocean model

(HyCOM GoM) from twelve years of data (2003—2014). .....cooeeecrieiieniieiienieeieeeeeee e 21
Figure 7: Violin plots of platform age at removal by overall structure type using known removed

PlatfOrmMS data.........ooiiiiiiiiiiee et ns 23
Figure 8: Correlation of explanatory variables for all structure types. .......cccceevveeeeveercieencieeennen. 30
Figure 9: Correlation matrix of explanatory variables for fixed platform structure type. ............ 31
Figure 10: Correlation matrix of explanatory variables for MOPUs structure type..................... 32
Figure 11: Correlation matrix of explanatory variables for unknown structure type. .................. 33
Figure 12: displays the risk index applied to existing platforms, based on significant relationships

identified while statistically analzing removed platform data. ..........c..cccceveiiiniininiincnn. 35
Figure 13: Local parameter estimates for the Category 4 hurricane variable. The relationship

changes as 0ne moves from €ast 10 WESL. .......ccuievuierieiiiieierie ettt 37
Figure 14: Out of sample prediction for the GWR model using a test-train data split.................. 38

List of Tables

Table 1: Breakdown of the Possible Types, Causes, and Damages from Incidents....................... 6
Table 2: Descriptive Statistics for the Platforms in the GoM (BOEM, 2019)........ccccccevvvrenennnen. 10
Table 3: Age at Removal Statistics for Removed Platforms by Overall Structure Type ............. 12
Table 4: Explanatory Variables Related to the Platform Characteristics, the Range of Each
Variable’s Value, and the Data TYPE......ccoviiiiieiiiiieiiecie et 22
Table 5: Coefficients and Significance Table Estimating Age at Removal for Platforms that Have
Already Been REMOVEA ........coouiiiiiiiiiiicce ettt et e eae e e 34
Table 6: Training Set and Testing Set Accuracy Scores for the GBC and ANN Models ............ 35
Table 7: Classification Reports for the GBC and ANN Models.........cccceevvieeniieeciiencieeeiieeeeen 36
Table 8: Top 5 Most Important Features of the GBC Model-Selected Variables Based on the
Gini Index of the ANN Input Variables Based Off of Cross-Entropy LosS .........cccceeeunennee. 36

Table 9: GWR Model Statistics for Each of the Calculated Coefficient Values.....cccccceeeeeeeerenenn. 38

il



Evaluating Offshore Infrastructure Integrity

Acronyms, Abbreviations, and Symbols

Term ‘ Description
API American Petroleum Institute
ANN Artificial neural network
BOEM Bureau of Energy Management
BP British Petroleum
BOEM Bureau of Ocean Energy Management
BSEE Bureau of Safety and Environmental Enforcement
CAIS Caisson
cp Cathodic protection
CSIL Cumulative Spatial Impact Layer™
CcT Complaint tower
DHSG Deepwater Horizon Study Group
DOE Department of Energy
DWH Deepwater Horizon
EDX Energy Data eXchange®
EIA Energy Information Administration
EOR Enhanced oil recovery
ESDA Exploratory spatial data analysis
FPSO Floating Production, Storage, and Offloading Systems
GBC Gradient boosting classifier
GoM Gulf of Mexico
GWR Geographically-weighted regression
ISO International Standards Organization
KPI Key Performance Indicators
LSTM Long short-term memory (networks)
MetOcean Meteorological and Oceanographic
ML Machine learning
MMS Minerals Management Service
MODU Mobile Offshore Drilling Unit
MOPU Mobile Offshore Production Unit
MTLP Mini Tension-leg Platform
NETL National Energy Technology Laboratory

il



Evaluating Offshore Infrastructure Integrity

Acronyms, Abbreviations, Symbols (cont.)

Term Description
NN Neural network
OCR Optical character recognition
ONRR Office of Natural Resource Revenue
ORM Offshore Risk Modeling suite
pH Potential of hydrogen
QA/QC Quality assurance quality control
SEMI Semi-submersible
SIM Structural Integrity Management
SSTMP Subsea Template Manifold
SWOT Strengths, Weakness, Opportunities, and Threats
TLP Tension-leg platform
u.s. United States of America
USCG U.S. Coast Guard
VIF Variance inflation factor
WP Well protector

iv




Evaluating Offshore Infrastructure Integrity

Acknowledgments

This work was completed as part of National Energy Technology Laboratory (NETL) research
for the U.S. Department of Energy’s (DOE) Complementary Research Program under Section
999 of the Energy Policy Act of 2005. Parts of this technical effort were performed in support of
the National Energy Technology Laboratory’s ongoing research under the Offshore
Unconventional Resources — DE FE-1022409 by NETL’s Research and Innovation Center,
including work performed by Leidos Research Support Team staff under the (RSS contract
89243318CFE000003). The authors wish to acknowledge Roy Long (NETL Strategic Center for
Natural Gas and Oil) and Elena Melchert (DOE Office of Fossil Energy) for programmatic
guidance, direction, and support.




Evaluating Offshore Infrastructure Integrity

This page intentionally left blank.

vi



Evaluating Offshore Infrastructure Integrity

ABSTRACT

Drilling in the offshore environment involves a complex network of infrastructure including
pipelines, platforms, rigs, subsea installations, ports, and terminals. Government and industry
partners have developed this network over many decades and it remains a critical part of the
United States (U.S.) energy portfolio. Many of the major components of this system have been
designed with a 20- to 30-year lifespan, yet consistent and growing energy demands support the
need to extend the design life of existing infrastructure or repurpose it for secondary needs (i.e.
enhanced oil recovery, carbon storage, and new wells). As a result, a growing portion of the
offshore infrastructure in the U.S. is approaching or has exceeded its original design life. A
critical step in ensuring the continued safe and effective operation of offshore infrastructure is
developing a comprehensive understanding of the state of offshore infrastructure and the factors
that effect it.

The purpose of this project is to assess the current state of existing infrastructure and identify the
factors involved in infrastructure degradation through the development and application of big
data analytics, machine learning, and advanced spatio-temporal analysis. The project leverages
existing data at NETL and combines it with new information on offshore oil and gas structures
and the ambient offshore environment in an effort to identify patterns associated with
infrastructure integrity. Building on the identified trends and patterns, this project incorporates
exploratory analytics and spatial analysis tools in conjunction with machine learning and
statistical models to characterize the condition of existing platforms in the offshore environment
and predict their risk of failure.
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1. INTRODUCTION

Hydrocarbon exploration and production in the offshore environment remains an important part
of the United States (U.S.) energy portfolio. Offshore production activities require a dense
network of complex infrastructure that includes platforms, pipelines, rigs, support vessels, and
myriad other components that work in tandem to facilitate the exploration, extraction, and
transportation of hydrocarbons from underwater reservoirs. While some of these components
receive routine maintenance and replacement, inventory surveys suggest that the majority of
active infrastructure in the more developed production regions were installed more than two
decades ago (Stacey et al., 2008), far exceeding the intended design life. Steps can be taken to
manage this aging infrastructure which is critical as both government and industry experts are
increasingly looking towards methods and technologies that can extend the infrastructures design
life. These efforts are aimed at minimizing cost while maximizing the production potential of
existing reservoirs and drilling technology (i.e. horizontal drilling). In addition, existing
infrastructure can also be repurposed for alternative uses including enhanced oil recovery (EOR)
that add additional value to the existing structures and reservoirs. That said, any efforts made
towards extending infrastructure design life must be matched with approaches and innovations
that effectively reduce the possibility of deleterious events. This cross-fertilization ensures that
continued operation is done with an eye towards safe production that maximizes efficiency.

With increased access to data and information on the offshore production environment, along
with information directly related to operational efficiency, there are increased opportunities to
build a comprehensive understanding of the current state of infrastructure (i.e. platforms). In this
work, “current state” refers to the current operational capacities of the infrastructure given the
age of the infrastructure and exposure to ambient environmental conditions. Given that a
comprehensive dataset on the current state of infrastructure is not available, a significant data
collection effort is required along with the development and application of spatio-temporal
methods and models. Specifically, a data inventory of the age of the infrastructure, the intended
design life and the location of each platform is critical for understanding how variations in the
operating environment and structural characteristics influence the lifespan of the infrastructure.

This is to say, as offshore infrastructure ages the integrity of the infrastructure is called into
question. The infrastructure is subject to various stressors overtime which can decrease the
longevity of the equipment. When referring to integrity it is important to be specific as the
concept is multifaceted. To the extent that it is applied in this research, integrity refers to the
degree in which a system is impaired. An infrastructure system of high integrity is one where the
systems of components that make up the macrostructures of the offshore network are operating
in a way that do not impede the performance of the system as a whole. Conversely, a low
integrity system is one where changes in the materials within the macrostructures impede the
system from performing at its optimum.

Impediments to offshore integrity can come from many sources. These include corrosion,
structural stress from the environment, age, or simply fatigue from consistent use of the
equipment. Although all of these sources can decrease integrity, some may contribute more
prominently to system degradation than others. In an effort to prevent catastrophic failure, this
work aims at identifying the factors related to decreases in infrastructure integrity and evaluate
their overall impact on the infrastructure’s lifespan. By identifying these factors, the results of
this and subsequent work can be used to alert decision makers, planners, and other stakeholders
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to locations where the potential for failure is higher relative to other locations in the offshore
environment.

There are two objectives for this study which were carried out in two phases. First, this study
sought to develop an integrity assessment framework and apply it to offshore infrastructure in the
Gulf of Mexico (GoM). Second, this study worked to fill knowledge- and technology-gaps
surrounding the current state of offshore infrastructure through analyses that identify the
antecedents of possible infrastructure failure based on the results of the integrity evaluation.

Where integrity is concerned, the first phase of the analysis developed a conceptual framework
for measuring infrastructure integrity. Data was collected to match the framework while
inferential statistics were used to operationalize the framework. Throughout this first phase, the
framework was continually updated to reflect the availability and type of data. The second phase
consisted of the implementation and testing of the conceptual framework using the newly
amassed data, exploratory and predictive analysis methods. Specifically, the antecedents to
changes in integrity and lifespan were evaluated using geostatistical and machine learning (ML)
techniques.

With the ability to relate these findings back to a specific location (i.e. structure or lease block),
this project serves as an important step towards enhanced risk mitigation for offshore oil
production and exploration. Furthermore, the development of datasets and analysis to achieve the
project objectives will aid in building a more robust understanding of the current state of
offshore infrastructure. This will ultimately increase the resilience and efficiency of offshore
hydrocarbon production systems. Although the study focuses specifically on the infrastructure in
the GoM, the conceptual framework and analysis are generalizable to diverse settings.

1.1 AGING ASSETS: OFFSHORE OIL AND GAS INFRASTRUCTURE

“Aging is not about how old your equipment is; it is about what you know about its condition,
and how that is changing over time” (Nabavian and Morshed, 2010).

According to the International Standards Organization (ISO), design life is defined as “the
assumed period for which a structure is to be used for its intended purpose with anticipated
maintenance but without substantial repair from aging processes being necessary” (ISO, 2015).
As far as the offshore oil and gas infrastructure is concerned, there is a (general) expected design
life of 20 to 30 years, but this number greatly depends on the operating environment, the
frequency of dry-dock repair, and maintenance of drilling equipment. A report in 2010 estimated
that out of the roughly 6,500 platforms in operation worldwide, 30% of them have been in
operation for over 20 years, far exceeding their original design life (Nabavian and Morshed,
2010). This finding is corroborated in a second report citing data on infrastructure in the North
Sea, which suggests that a significant number of offshore platforms have exceeded their original
design life of about 25 years (Stacey et al., 2008). Across many regions in the world, the general
trend of offshore infrastructure exceeding its design life is becoming strikingly apparent (Ersdal
and Selnes, 2010; Solland et al., 2011). Interestingly, no explicit ties between infrastructure age
and failure have been made. However, age may serve as a proxy for several other mechanisms
that negatively affect integrity over time.

For example, a 2016 report on offshore oil spill occurrence classifies infrastructure age within
equipment failure and corrosion as causes of spills. The report also points to increases in
incidents resulting from weather or natural causes and external factors which increase over time
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(BOEM, 2016). Relatedly, a Strengths, Weaknesses, Opportunities, and Threats (SWOT)
analysis conducted by the National Oil Spill Detection Response Agency in Nigeria identified
over-aged pipelines and production infrastructure as possible causes of spill incidence (Rim-
Rukeh, 2015). Moreover, Burgherr (2007) found that tankers less than 10 years of age were
related to fewer spills than tankers that were over 20 years of age. Although this is not directly
tied to installed infrastructure, it does lend some support to a potential correlation between age
and infrastructure failure.

In response to these findings, researchers and practitioners have turned their attention toward
several related areas of research. One is aimed at life cycle management and maintenance
strategies to increase operating capabilities while decreasing fatigue and undue stress on the
equipment (Moan, 2018; Soom et al., 2018). The Structural Integrity Management (SIM) process
focuses on a lifecycle process that ensures the fitness of fixed offshore platforms (O’Connor et
al., 2005) which has evolved significantly over the last 25 years and has been applied to platform
management strategies worldwide (Guédé, 2019; Nichols and Khan, 2015). Other life-cycle
management strategies include the work by Aeran et al. (2017), which focused on corrosion
models and the work by Tygesen et al. (2019), who used Bayesian ML to update offshore
maintenance schedules.

1.2 FACTORS INVOLVED IN INFRASTRUCTURE DEGRADATION

An essential component for characterizing the current state of offshore infrastructure is the
evaluation of factors known or thought to be involved in the decline of infrastructure integrity.
This includes meteorological and oceanographic (MetOcean) conditions, structural materials,
and incidents (loss of well control, collisions, fires, and equipment failures), among others.
Taken together, these factors can influence the expected design life and lead to catastrophic
failures if not mitigated. The following details the most influential factors that have been found
to contribute to the structural integrity of offshore infrastructure.

1.2.1 Ocean and Atmospheric Conditions

Knowledge of MetOcean conditions are critical to industries operating in the offshore
environment. Ambient conditions such as wave height, ocean-current speed, and wind speed—
known as ambient loadings—are major considerations when determining criteria for offshore
platform design and for safe operating conditions. An under-designed offshore structure may
result in loss of life, injury, and considerable structural damage. Other MetOcean variables, such
as those related to corrosion rates, may have less of an immediate effect on offshore structures,
yet may also cause catastrophic failure over longer periods of time.

The effects from wave, current, and wind actions are known hazards to offshore infrastructure
(ISO, 2011). The environmental loadings caused by environmental conditions can cause
immediate damage during storms (including complete destruction), or progressively fatigue a
structure, leading to increased risk of failure and incidents (Moan, 2018; Sharp et al., 2015). For
example, in extreme wave conditions water may cause additional damage or fatigue to a
structure through slamming and in-deck loading (Moan, 2018). For offshore jacket structures, the
structural loading effects from waves are increased if wave height reaches deck level (Guédé,
2019) and waves from storms and ocean currents, as well as the GoM Loop Current and
associated eddies are important considerations for the design of tension leg platforms (BSEE,
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2018). Although waves pose the most immediate effect, high wind speeds can also increase
fatigue, albeit gradually, to structural components (Sharp et al., 2015).

The effects of the environment are well known, and as a result an abundance of standards and
regulations are in place to ensure the robustness of offshore infrastructure (ISO, 2011). However,
establishing these regulations has been a process of trial and error. Past standards and regulations
have required revisions when extreme MetOcean conditions have caused catastrophic damage
(e.g. Berek et al., 2007). In 2005 alone, hurricanes Katrina and Rita destroyed 115 platforms and
damaged 52 others (Zhang, 2017). Indeed, many offshore platform incidents have occurred in
regions that are prone to the most extreme MetOcean events (see Figures 1). An additional
concern is the less-understood cumulative effect of these loadings on offshore structures that
accumulate over years and decades. Again, this underpins the increasing importance of
understanding platform age and the variables effecting design life.

There exists an extensive amount of research surrounding the effects of MetOcean conditions
and corrosion rates. Mechanical properties such as strength, ductility, and impact strength will
degrade gradually which can lead to failure under certain environmental conditions (Bhandari et
al., 2015). While the material used for offshore structures vary, in practice most structures are
made of steel and steel-reinforced concrete, making steel the main focus of corrosion studies
(Melchers, 2016). Some of the ambient conditions that are known to affect corrosion by seawater
include: salinity, dissolved oxygen concentration, temperature, potential of hydrogen (pH),
carbonate solubility, pollutants and biological growth, bacteria, pressure, wave action, and water
velocity (Matsushima, 2011; Melchers, 2016). Others have identified the influence of water
temperature on steel corrosion, noting an increased corrosion rate with higher water temperatures
(Bhandari et al., 2015; Nunez, 2007). These findings support the notion that structures in warm,
coastal oxygenated waters will have higher corrosion rates than deep water structures (Guedes
Soares et al., 2011).

While the effects of water velocity are not fully understood, several researchers have identified a
positive correlation between water velocity and the rate of pitting corrosion in marine
environments (Bhandari et al., 2015; Guedes Soares et al., 2011; Melchers, 2005). Importantly,
pitting corrosion is the type of corrosion more likely to cause catastrophic failure; however, a
majority of rigs have a cathodic protection (CP) system and other forms of protection to defend
against this type of corrosion (Sharp et al., 2015). That said, corrosion remains a prominent
threat to the integrity of offshore systems. It is also worth noting that a large portion of the
corrosion studies that establish quantitative relations between ambient conditions and corrosion
are done under laboratory conditions; the results do not immediately translate to in-situ ambient
conditions supporting the need to explore the relationship between corrosive ocean conditions,
offshore integrity, and platform lifespan.

1.2.2 Incidents

Incidents are defined as situations in which personnel working on the platform are injured or a
part of the platform itself has been damaged. Over the past 15 years there has been an increase in
available incident data following changes in reporting regulations that mandated the reporting of
both serious and potentially serious incidents by the Minerals Management Service (MMS,
2006). Muehlenbachs et al. (2013) indicate that incidents fall into several types of categories
related to causes, effects, and resulting damages (Table 1). The type of incident can fall into one
or more of these categories, and the causes and damages as well may include one or many of
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these descriptors. In other words, incidents can occur due to day-to-day activities, for example
during drilling and workover events, or from irregular events such as lightning strikes and ship
collisions. The effects of such incidents, and even the incidents themselves (fires, explosions,
collisions, and dropped objects on offshore structures) are an important feature of structural
management systems and may even suggest latent measures of overall integrity (Moan, 2018;
Sharp et al., 2015).

Table 1: Breakdown of the Possible Types, Causes, and Damages from Incidents

Types of Incidents Causes of Incidents Resulting Damages
Blowout Completion equipment Cranes
Vessel collision Equipment failure Structural damage

Development or production

Fire operations Overboard drilling fluid
Explosion Human error

Injury/Fatality Slip, trip or fall

Pollution Weather

Reported incidents may also include a loss of well control or a well kick that may result in the
release of hydrocarbons to the surrounding environment (a blowout). The most common activity
associated with a blowout is drilling, especially during the exploration phase (Kaiser and
Pulsipher, 2007). When blowouts occur, oil and gas emanating from the well or riser pipes can
cause fires or explosions, leading to potentially serious structural damages depending on the
intensity (ISO, 2011; Sharp et al., 2015). An example of a historical blowout is Deepwater
Horizon (DWH) (Graham et al., 2012).

1.2.3 Physical Conditions

The age of a platform can be used as a proxy to understand the physical condition of a structure.
As one would expect, the effects of fatigue and corrosion become greater over time, leading to
higher instances of degradation unless these effects are actively managed (Muehlenbachs et al.,
2013; Stacey et al., 2008). With design codes becoming stricter over the years, installation year
has been found to be a strong predictor of structural integrity (Moan, 2018; Stacey et al., 2008).
The older the installation date, the less integrity. As more information has been gathered, newer
design codes are adapted to consider the increased intensity of weather events, including higher
wave heights and stronger wind speeds. This has materialized in taller deck heights, reinforced
welding requirements, and redundant safety systems. Guédé (2019) has identified several
additional physical conditions of fixed offshore platforms that affect the susceptibility of failure
including structural configuration, and foundation system, and also confirmed the year of design
as an indicator of integrity. Although these were specific to fixed platforms, some may also
apply to floating structures. In particular, the existence of damaged components, corroded
components, corrosion protection system, marine growth, and physical or environmental
loadings may all be indicative of floating platform integrity (Guédé, 2019; Sharp et al., 2015).
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Regarding the location of a structure, Muehlenbachs et al. (2013) found a relationship between
the operational water depth of a structure and the number of self-reported incidents between
1996 and 2010. These results contradicted the findings of Jablonowski (2007) who found that
water depths deeper than 121.9 m (400 ft) are insignificant in predicting the likelihood of an
incident on drilling rigs from 1990 to 1998. Still, Shultz and Fischbeck (1999) found a negative
relationship between water depth and accidents between 1986 and 1995, confirming the findings
in Muehlenbachs et al. (2013). Deeper water depths have also been found to have long term
corrosion affects but are subject to other parameters including oxygen concentration,
temperature, metal type, pollution, salinity, and water velocity, to name a few (Bhandari et al.,
2015). These findings support the investigation of both platform age and depth in the analysis of
integrity.

1.2.4 Organization Factors

Organizational responsibility and accountability in managing offshore structures plays a role in
the safe operation of each structure. Consider the 2010 DWH incident; post spill, a myriad of
factors involved in the demise of the offshore platform came to light. Apart from the faulty
blowout preventer, a rushed and poorly sealed cement job, and the failure to cap and contain the
released hydrocarbon, several reports pointed to “a multi-decade history of organizational
malfunctions and shortsightedness” (Deepwater Horizon Study Group (DHSG), 2011). Across
the oil and gas industry writ large, a culture of “trip-and-fall” reactionary compliance had
developed and it was not until something occurred that companies sought to achieve regulatory
compliance. Concerning the DWH disaster, British Petroleum (BP) had pursued similar decision-
making strategies, opting toward saving time and money, rather than heeding warning signs of
decreasing integrity. The DHSG ultimately identified the failure of a system for checks and
balances between regulators and industry as responsible for the disaster. When it came to
identify and taking action to ensure the safe operation of offshore oil and gas exploration and
production, regulatory oversight was simply not there (DHSG, 2011).

The cascade of poor decision-making related to the DWH operations was not unique to BP or the
DWH case. For years, industry and federal regulators had been working in tandem to create a
risk prone, rather than averse, organizational environment. This has been pointed out by many
public administration, organizational behavior, and risk analysis scholars (Bozeman, 2011;
Reader and O’Connor, 2014). Since the DWH additional regulatory checks and balances have
been established to improve safety. For example, the MMS, who at the time of the DWH were
the sole governing body for offshore oil and gas operations, was broken up into three distinct
departments — the Bureau of Ocean Energy Management (BOEM), the Bureau of Safety and
Environmental Enforcement (BSEE), and the Office of Natural Resources Revenue (ONRR).
Each of these entities was given different mandates surrounding the oversight of offshore oil and
gas activity. With this came an increased semblance of checks and balances which, going
forward, should help regain a more conscious and risk averse approach to oil and gas
development. Still, incidents and spills remain a part of offshore oil and gas operations. Whether
it is due to operating in extreme conditions, or due to remnants of a risk-prone safety culture, it is
important to consider organizational factors as an influential part of infrastructure integrity.
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1.3  ESTIMATING INFRASTRUCTURE INTEGRITY: EXISTING MODELS AND
METHODS

In addition to the codes and regulations set by industry (American Petroleum Institute (API)) and
federal agencies (BOEM, BSEE) to ensure the safe operation of offshore oil and gas activity
(API, 2014; Visser, 2011), researchers are using novel approaches and technological
advancements to develop strategies aimed at incident prevention. Many of these methods are
shared across stakeholder groups that focus on structural management plans, design
specifications, operational data, and routine inspections.

In the U.S., there are various classification organizations (i.e. API and ISO) that develop and set
safety and operational codes for structures in offshore environments. These standards must be
met at various stages of a structure’s life including “design criteria formulated in terms of
serviceability and safety limit states, considering payloads, environmental, and accidental loads”
and “life cycle feature, with strong links between design, and inspection, monitoring,
maintenance, and repair” (Moan, 2018). Stacey et al. (2008) have categorized codes into several
areas aimed at extending the life of offshore infrastructure. These include assessment issues,
fatigue life extension, corrosion protection, and inspection, maintenance, and survey. The
standards create structural redundancies and optimized inspection plans that are necessary to
reduce the operational risks posed by operating in harsh offshore environments. While many of
these standards provide a model for a risk-based approach to structural management, in some
cases “no detail is given on how to implement those methods” (Guédé, 2019).

Contrasting industry standards, researchers are incorporating performance indicators, qualitative
and quantitative assessments, and state-of-the-art modeling methods to create management
programes, risk rankings, and routine inspection schedules and techniques (Guédé, 2019;
Jablonowski, 2007; Sharp et al., 2015; Tygesen et a., 2019; Yang and Frangopol, 2018). For
example, Guédé (2019) utilizes API guidelines to develop analysis methods for global and local
risk assessments for fixed offshore structures. These methods use design specifications, present
conditions, modifications, and loading exposure to assess risk. Independent variables include
design year, last inspection, damaged members, topside weight change, and wave-in-deck
exposure. Additionally, Sharp et al. (2015) developed Key Performance Indicators (KPIs) for
both fixed and mobile units that identify hazards and chain of events to incidents using a hazard
analysis method. The approach leverages design specifications, inspection, and MetOcean data.

The availability of computationally diverse ML algorithms offers new capabilities for the
petroleum industry to predict the lifespan and structural integrity of offshore oil and gas
infrastructure. There is a wide selection of relevant ML algorithms including random forests (Ho,
1995), support vector machines (Cortes and Vapnik, 1995), artificial neural networks (Jain et al.,
1996), and decision trees (Quinlan, 1986). Specific to offshore infrastructure, ML models have
helped in predicting stress factors from various environmental forces. These include Gaussian
process models to improve predictions for the effects of fluid forces from waves and currents on
structural integrity (Worden et al., 2017) and applying artificial neural networks (ANN) to
characterize complicated physical subsurface stresses from drilling activities and their affiliated
effects on infrastructure (Elkatatny et al., 2017; Onalo et al., 2018).

Recently, in conjunction with the concerns of aging infrastructure, these models have been
applied to understanding the lifespan of offshore infrastructure. Almedallah and Walsh, (2019a)
evaluated asset lifespan by combining data science and econometrics to determine the feasibility
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of maintaining an old system or installing a new one. Furthermore, studies have combined the
different factors affecting drilling and production into their computational models. Almedallah
and Walsh, (2019b) highlight the importance of incorporating well and facility data into
optimization models that minimize development and production costs. Similarly, Tygesen et al.
(2019) assessed the maintenance schedules of offshore infrastructure by developing a Bayesian
neural network model that updates fatigue predictions in real time using structure and sea
condition observations.

The analytical approach to lifespan assessment of offshore structures proposed in this paper
builds off several of these studies by incorporating structural characteristics along with historic
MetOcean, structural- and weather-related incident data into unique ML and statistical models.

1.4  CURRENT STATE OF INFRASTRUCTURE IN THE GULF OF MEXICO

Following a low in September 2011, offshore oil production and exploration has maintained a
steady year-over-year increase in number of barrels produced. As of March 2019, daily oil
production in the GoM was 1.9 million barrels, an increase of about 300,000 barrels per day
compared to March 2018 (EIA, 2019). According to publicly available platform data from
BOEM (2019), there are roughly 2,000 exploratory or production platforms operating in the
GoM and only 50 of those were installed after September 2011. This indicates, at least in part,
that most of the increase in production can be attributed to older wells—some of which are
approaching 50 years in operation. As a whole, the average age of currently installed platforms
in the GoM is just over 34 years (BOEM, 2019), on par with the ages of offshore infrastructure
reported in other areas of the world (Animah and Shafiee, 2016). Assuming that the average
design life of the infrastructure in the GoM is also similar to other areas of the world, it would
mean that a portion of the operating infrastructure has surpassed its design life.

Rigs and platforms are the two main types of infrastructure operating in the GoM. BSEE defines
rigs as “a major component that is added atop an offshore structure or platform, or is a part of a
‘self-contained’ mobile drilling unit such as a drillship, semisubmersible, jackup, or mobile
offshore drilling unit (MODU)” (Hawkins, 2019). Similarly, a platform is “a raised offshore
structure that can support many different functions for offshore oil and gas operations. Platforms
typically have one or more wells and can either be manned or unmanned” (Hawkins, 2019).
Within each of these categories are several different types of rigs and platforms (Table 2).
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Table 2: Descriptive Statistics for the Platforms in the GoM (BOEM, 2019)

Platform Type Current Count Removed Count ‘ Operating Depth

Fixed Fixed: 1,320 Fixed: 2,461 <=1,540 m
Caisson (CAIS): 408 CAIS: 2,173
Subsea Template (SSTMP): 0 Subsea Template (SSTMP): 1
Well Protector (WP): 5 Well Protector (WP): 637
Compliant Tower (CT): 3 Compliant Tower (CT): 0
Mobile Offshore MOPU: 1 MOPU: 3 >500 m
Production Unit Floating Production, Storage, and | Floating Production, Storage,
(MOPU) Offloading Systems (FPSO): 2 and Offloading Systems (FPSO):
Spar: 18 0
Tension-leg Platform (TLP): 14 Spar: 1
Mini TLP (MTLP): 4 Tension-leg Platform (TLP): O
Semi-Submersible (SEMI): 11 Mini TLP (MTLP): 1
Semi-Submersible (SEMI): 2
Unknown 228 0 varies

There are at least nine different platform and rig types operating in the GoM (Table 2). The
majority of the platforms are fixed and situated in water depths of less than or equal to 1,540 m
(5,050 ft). The deepest operating platforms are semi-submersible, operating in depths of about
3,000 m (9,800 ft) and located up to 200 mi. from shore. Platforms operating at the greatest
depths and distances from shore are not as common, yet they account for a large portion of the
total offshore oil production in the GoM (Figure 1) (EIA, 2019).
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Figure 1: Map of the locations of platforms in the northern Gulf of Mexico symbolized by structure type
including fixed, mobile offshore production units (MOPU), and unknown. !

Table 3 provides information on the age at which platforms in the GoM are removed from their
installed location. This does not necessarily mean they are decommissioned. In some cases, the
removed platforms are moved to other locations to continue their operations elsewhere. Some
may receive a workover after removal, some may not. The average age at which the platforms
are removed is 6.5 years and 20.6 years for MOPU and fixed platforms, respectively.

! Platform data was acquired by BOEM (2019) and is current as of December 2019. Platforms
with a removal date are considered removed, otherwise are currently in use as of the data
acquisition date.
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Table 3: Age at Removal Statistics for Removed Platforms by Overall Structure Type

Fixed MOPU

Count 5,271 8

Remaval(years) 2 68
Standard Deviation 13.4 25
Min 0 2.6
Max 71.6 10.5

12
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2. METHODS

The approach for analyzing the integrity of offshore platforms in the GoM proceeded in two
phases. Phase 1 was exploratory with a focus on identifying possible data sources for the analysis
of infrastructure integrity and subsequently evaluating ways the data could be collected,
processed, and incorporated. The initial data discovery was guided by previous work on
infrastructure integrity (Section 1.2). Data includes offshore rig and platform incidents (BSEE,
2019a), platform structural and location records (BSEE, 2019b), and MetOcean data (Appendix
B). Figure 2 (Phase 1) details the steps taken to compile the data into a usable database for
analyses. After collection, Phase 1 also focused on exploratory analysis to build an initial
understanding of the relationship between the removal age of a platform and other environmental
and structural correlates that were identified as integral to the integrity of offshore infrastructure.

Variables were analyzed through exploratory statistics and spatial regression. This provided
insights in the factors that were statistically related to the conceptualization of lifespan—age at
removal. Data and results of the analysis were then released to an internal Offshore Analytical
Platform for visualization.

Phase 1 Phase 2
: Run
Calculate incident ; exploratory
severity : statistics to (;?ali;“cl?rf
i determine e
e : fietlds Otf Integrate
i interes i
Data QA/QC & structural- and Mastectr; gata Summarize/ | resoLJ:]tlisn:to
i acquisition scrubbing weather-related similar fiZI ds Reformat analytical
incidents toolbox
Develop
! machine
Summarization of 1 learning model
meteorological : for enhanced
and oceanographic H predictive
data by platform : analytics
locations {

Figure 2: Workflow for processing, combining, and analyzing platform data in the two phase
approach.

The Phase 2 leveraged the data and findings from Phase 1, introduced additional data to fill any
identified gaps, and used several analyses to predict age at removal and risk likelihood.
Specifically, Phase 2 implemented predictive ML models and geostatistics. These methods
included gradient boosting classification (GBC), ANN, and geographically-weighted regression
(GWR). In addition, Phase 2included the refinement of the lifespan variable, aimed at building a
more explicit connection between the information provided in the incident dataset and the
project’s overall goal of characterizing offshore infrastructure integrity. The refinement of the
lifespan variable also aimed at creating a more robust dataset for use by the ML models. Work
on improving the models is ongoing as the team continues to collect and prepare new sources of
data related to offshore infrastructure integrity.
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2.1 DATA ACQUISITION AND PROCESSING

The research team identified several publicly available data sources describing offshore
infrastructure, platform, and rig incidents from BOEM and BSEE. This data was acquired and
regularly updated using customized Python scripts (Appendix A). As for environmental
variables, the research team consulted with subject matter experts to identify and acquire
MetOcean data (Appendix B). All datasets went through a rigorous quality assurance and quality
control (QA/QC) procedure to check for errors in formatting, spelling, and record redundancy.
All data was standardized (structure names in infrastructure and incident data tables) for
compilation and included in the exploratory and advanced statistical and spatial analytics. Any
data collection and processing that occurred during the Phase 2 of the study was aimed at filling
data gaps that were identified during Phase 1. A version of this dataset will be released through
NETL’s Energy Data eXchange website (EDX) at the end of Phase 2 for future use (Romeo et
al., 2021).

2.1.1 Infrastructure Records

Information on platform and rig complexes were acquired through BSEE (2019b). Data were
available as a series of related tables that required joining. The tables “Platform Masters”,
“Platform Structures”, and “Platform Locations” were joined based on the key fields “Complex
ID” and “Structure Number”.? The “Platform Masters” table contained 6,927 records (December
2019) and included information on flagged status (i.e. drilling, abandoned, production),
equipment counts, and lease block. The “Platform Structures” table contained 7,074 records
(December 2019) and included fields for installation, revision and, if applicable, removal date,
authority information, and structure type (i.e. fixed, tension-leg platform). The “Platform
Locations” table, made up of 7,293 records (December 2019), included latitude and longitude for
each record, providing for spatially explicit analyses. All formatting was performed using Python
scripts that have been designed to automatically update NETL’s resources as new data became
available.

The resulting table contained 7,293 records with information on structure name, production
status, equipment counts, locational information, water depth, installation, and if applicable,
removal dates. This table was divided into two separate tables for platforms and rigs. Phase 1 of
this project was specifically focused on platforms. Future work will focus on rigs. The resulting
platform table contained 7,293 records. In addition to the flat file, it was also converted into a
spatial format (shapefile), which is displayed by structural type in Figure 1.

2.1.2 Incident Data

In addition to platform information, BSEE also maintains a database of incident records for
production platforms, drilling rigs, and pipelines operating in U.S. waters. Incidents are defined
to include all serious accidents, fatalities, injuries, explosions, and fires that take place on the
offshore infrastructure. As previously mentioned, reporting requirements for incidents changed
in 2006 when BSEE began to require operators to report all incidents that had the potential to be

2 These tables can be found on the BSEE data portal and are named as such.
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serious. This included situations that caused damage to the facility, worker injuries requiring
days away from work, and also damage to the property that exceeded $25,000. Following 2006,
incident reporting also began to include weather-related damage to infrastructure. A breakdown
for the number of incidents associated with each category of platform is detailed in Figure 3.
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Figure 3: Number of incidents from 2006—-2018 per type of platform.

Incident reports from 2006 through 2013 were acquired through from BSEE’s oil and gas
operational reports and incidents ranging from 2013 through 2018 were acquired as data tables
from BSEE (Appendix A). The latter included self-reported incidents that occur on offshore oil
and gas platforms in the GoM. Incident records from all sources were merged based on similar
attributes. Additional attributes included structure name and type, lease block, damage cost,
fatalities, injuries, loss of well control, fire and explosions, collisions, and whether or not a spill
occurred. Incidents ranged from false alarms to deadly explosions, while other incidents resulted
in no structural damage. The combined incident table currently contains 3,908 incident records
for both platforms and rigs, of which 2,598 are structural- and weather-related (December 2019).

2.1.2.1 Incident Classification

To determine whether an incident may affect structural integrity, the analysis began by
classifying them into three groups—structural, weather-related, and human-related—based on
impact and cause. The incident dataset contained rudimentary indications of what and who was
involved, but minimal information on what ultimately led to the incident. Therefore, a set
protocol was developed and applied to semi-automatically classify each incident based on the
description, identified keywords, and any prior categorization (human-related). Structural and
weather-related incidents were used in the integrity analyses, while human-caused incidents were
only included if the incident may have been structural or weather-related.

To ensure the precision of the classifications, a short test-case was completed using 50 randomly
selected incidents that were manually classified separately by four researchers. Each researcher
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recorded key terms that directly corresponded to whether an incident was structural, weather-
related, or human-related. Once complete, the classifications were compared among researchers
and any discrepancies were noted. Findings from the comparison were used to build a coding
protocol for the remainder of the unclassified incidents. The keywords and phrases generated
from the test-case were compiled into a lookup table for automatic classification. For example,
“wind” or “large swell” indicated weather, while “injured person” or “slip” were human-related
terms. The resulting classification rules and term library were written into a Python script and
used to classify the remaining incidents.

The script classified incidents by creating a list of all the structural, weather, human, and “no
damage” key terms. At this initial stage, all incidents are assumed to be structural (i.e. the
structural category receives a 1 and the other categories receive a 0 in the dataset). Then the
script progressed iteratively through each incident while scanning the incident descriptions for
key terms related to human, weather, and no damage in the lookup table. In the case where the
script encountered structural key words along with key words related to the other categories, the
script alerted the team member who manually determined the final classification based on the
coding protocol below>. This process continued until all incidents had been classified. The
protocol for the classification of incidents were as follows:

1. The structural category is defined as whether or not the incident caused damage to
the structure or equipment

2. The weather and human categories are defined as whether or not the incident was
caused by weather or human error

3. When an incident involves an injury but no equipment damage or impact to
operations, the incident is classified as human-related

4. Human-related cannot be assumed if not explicitly stated (i.e. if it was an incident
involving a crane and not explicitly called out as a human-made an error, it was not
assumed human-caused)

5. All incidents with a cost associated are structural

6. Ifno equipment damage is stated explicitly and there is no weather-related damage
then an incident can be all 0, and will not be included in the analysis

7. If'there is a fire and the incident does not explicitly state that there was no damage, it
is classified as a 1 for structural (and other categories if applicable)

8. Fire with no damage is classified as only human-related if it was caused by a human
(scaffolding left in front of exhaust vent)

9. Lightning causing a fire is classified as both structural and weather related

Following this process, 90% of the classifications were structural, 10% weather-related, and 22%
human-related, keeping in mind that classifications are not mutually exclusive. In total, 2,655
incident records were included in the analyses.

3 Classifications are not mutually exclusive.
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2.1.2.2 Severity Index

The incident descriptions made clear that not all incidents were created equal. Some were more
severe than others which required the development of a severity index. The team initially
summarized severity on a per incident basis. Structural and weather-related incidents were given
a severity score using the variables posited to relate back to structural integrity. Specifically, the
variables included fire explosion ranked by category (i.e. Catastrophic = 5, Major = 4, Minor = 3,
Incidental = 2), presence of explosion or fire (0/1), loss of well control (0/1), oil spill (0/1), or
H>S released (0/1), and if there was equipment involved or equipment failure noted (0/1).
Severity values were further informed by whether a collision had occurred, whether there was
any property or external damage, the property damage cost (Major or over $25,000 = 3, Minor or
less than or equal to $25,000 = 2), and whether the incident required muster or required facility
shut-in. The initial score ranged in value from 0 to 4.82. To account for multiple incidents on a
single platform, severity scores were summarized and standardized by platform for a final value
between 0 and 1.

2.1.2.3 Incident-to-Infrastructure Matching

Incident data was structured as a flat file with no explicit spatial information. Moreover, there
was no unique identifier linking the incidents to specific platforms within the BSEE and BOEM
data (Appendix A). The team took a unique approach to matching by developing a Python script
(also adaptable for incident-to-rig matching operations) that matched incidents to platform based
on structure name, type (i.e. fixed, CAIS, MOPU), date of the incident, and, if applicable, the
removal date. Matches were then validated at the lease block level. In total, this method matched
1,702 structural and weather-related incidents (64%) to 425 platforms. Of the 2,598 structural
and weather-related incidents, 36% were left unmatched, possibly due to missing data, data entry
errors, and inconsistent formatting.

The matched data was formatted in two ways. First, the most widely applied dataset contained a
single record per platform, with summarized incident attribute counts. It included information on
each platforms age (calculated as years from installation to present or installation to removal),
equipment counts (as a proxy for complexity), locational information (latitude and longitude
coordinates and lease block), incident count, and standardized incident severity scores (as shown
in Figures 4 and 5). Second, the dataset was formatted by incident record with platform
information associated to each incident. This dataset contained more descriptive information for
each incident along with platform location and structural information.
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Figure 4: Number of structural- and weather-related incidents per platform record, colored
by type. *

4 Incident records acquired from BSEE (2019a) and matched to platform records for
visualization and analytics.
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Figure 5: Normalized cumulative incident severity by platform and type.’

2.1.3 Metocean Data

An extensive collection of MetOcean data was acquired (Appendix B), including datasets for the
main sources of ambient loadings (wind, wave, and currents), data associated with corrosion in
the GoM, and storm data which includes information on global hurricanes. Figure 6 illustrates
the spatial extent and temporal changes of sea-surface velocity as an example.

Specific data for ambient loading included current velocity (m/s), wind speed (m/s), significant
wave height of combined wind waves and swell (m), mean wave period (s), primary wave
direction (°), and wave power (kW/m) all at the water surface, or the standard 10 m above sea
level in the case of wind. The mean, median, minimum, maximum, 25" percentile, 75"
percentile, and 90" percentile was calculated for each MetOcean variable at each platform
location. Two of the MetOcean variables required additional processing: the wind and current
speed, which is the magnitude of the u- and v-components, and the wave power, which is
calculated using wave height (%) and wave period (p) (Herbich, 2000):

wave power 0.5h% X p

5> Cumulative incident severity calculated using structure- and weather-related incidents from
BSEE (2019a) and is normalized.
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In addition to the MetOcean variables, storm data were processed and spatially summarized
using the NETL’s Cumulative Spatial Impact Layer™ (CSIL) tool to reflect the number of times
each platform was potentially impacted by a tropical storm or hurricane (Romeo et al., 2019a;
Romeo et al., 2019b). Separate summaries were made for each hurricane category (1-5) as well
as tropical storms. In order to determine whether a storm impacted a platform, first the radius of
each storm center needed to be estimated. Following Mei et al., (2013), the track distances were
pulled from the storm data and applied to each storm track. An interaction between storm and
platform was recorded if a platform fell within the radius of the storm. When calculating the
number of days, the mean time between storm observations (0.23 days) was considered (i.e.
storms had to last longer than 0.23 days in order to increase the number of days a platform was
affected by a storm). In addition to storm radii, the storm track data also included wave height
for a given radii, maximum sustained wind speed, and maximum reported wind gust. The count,
minimum, maximum, and mean for each of those variables were summarized for each platform.

It is important for the time series analysis to cover the full temporal range of each platform’s
lifespan; however, the current availability of MetOcean data is not adequate to cover the full
platform temporal range (1942 to 2020). Specific MetOcean datasets were picked to best cover
this temporal range. Currently, the wind and wave-related data covers a range from 1979 to
2019, the storm data ranges from 1842 to 2019, and the surface current data ranges from 1993 to
2019. When available, MetOcean statistics were calculated for the time period between the
install and removal dates of each platform. If a platform did not have a removal date, it was
assumed that the platform was still active and the data was processed to the most current
MetOcean date. After all of the MetOcean and hurricane data was summarized for each platform,
the statistics were matched to the infrastructure-incident dataset to create a summary table of the
physical characteristics, incident history, and MetOcean conditions for each platform record.
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Figure 6: Maximum sea-surface velocity magnitude (m/s) from a data-assimilating ocean
model (HyCOM GoM) from twelve years of data (2003-2014).

2.1.4 Corrosion Data

Ocean ambient conditions influence the rate at which the materials of a structure will corrode. In
particular, current velocity, temperature, salinity, dissolved oxygen, and microbial activity are
known to affect the corrosion rate of metals. A full list of the variables used to model corrosion
are included in Appendix C. Nitrate, phosphate, and silicate were used here as a proxy for
microbial activity and biological growth since nutrients usually imply living organisms. The
research team found that the effects of corrosion directly impact the integrity of an offshore
structure over long periods of time. Therefore, it is hypothesized that adding corrosion data into
the models will increase performance and contribute to a more robust result. There are two
methods used to incorporate corrosion information into the models.

The first method used corrosion equations based from the literature. The most basic equation for
modeling corrosion is the “power-law” model (Melchers, 2016):

c=0.14 x t%75

where ¢ is the number of years and c is the corrosion value. The corrosion value can be calculated
for each platform record, which will be the corrosion variable to add into the models.

The second method follows the approach taken for wind, wave, and current velocity data, which
is to include statistics for ambient conditions per platform location directly into the model. The
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advantage of this approach is that it will test to see if the models can indirectly detect a signal of
corrosion and its hypothesized effect on the dependent variables (integrity measures).

2.1.4.1 Dependent Variable

This analysis considers platform age as the dependent variable of interest. Platforms with longer
lifespans are generally considered to have higher integrity (or maintained operational integrity
over a longer period of time), while structures with shorter lifespans are assumed to have
experienced conditions that degraded their integrity at a higher rate, resulting in removal at a
younger age. The variable was calculated as the difference of the installation year and removal
year. As such, only platforms that have been decommissioned or removed are included in the
initial assessment.

2.1.4.2 Explanatory Variables

As detailed in the previous sections, the selection of explanatory variables was based on a
literature review followed by a cataloging of data availability. Of particular interest was the
structural factors found across the platforms (Table 4), the wind, wave, current, and storm
information derived from MetOcean data (Appendix B), and data that may contribute to
corrosion (Appendix C).

Table 4: Explanatory Variables Related to the Platform Characteristics, the Range of Each
Variable’s Value, and the Data Type

Variable Type of Variable Range of Values

Fixed, CAIS, SSMT, WP, CT, MOPU, MODU,

Structure Type Sreesied FPSO, TLP, MTLP, Spar, SEMI, unknown
Water depth Continuous 1-10,000 (ft)

Incident count Continuous 0-28

Overall incident severity Continuous 0-1

Average age of platforms during

incidents Continuous 0.2-63.5
ﬁgc(iedoefnrslatform at last recorded Continuous 0.3-63.5
Rig count Continuous 0-1
Crane count Continuous 0-5
Slant slot count Continuous 0-11
Slot Count Continuous 0-62
Slot drill count Continuous 0-60
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2.2  DATA ANALYSIS

Phase 1 of the data analysis evaluated potential correlation and spatio-temporal trends among the
dependent variable (2.1.5.1) and explanatory variables (2.1.5.2) through statistical and spatial
analytics and visualization. Explanatory variables were also examined for cross-correlation to
determine any covariance and the possibility of variance inflation.

Leveraging lessons learned from Phase 1, Phase 2 employed ML algorithms and predictive
analytics to model the expected lifespan of platforms and identify potential areas or platforms of
greater risk.

2.2.1 Phase 1 — Exploratory Analysis

Inferential statistics in the form of correlational analyses identified whether any significant
patterns existed between the independent and dependent variables. Considering that different
platform structures have different purposes, platforms were analyzed by their type (fixed,
mobile, and other, Figure 1). The fixed category contains several sub-types including CAIS,
SSTMP, WP, and CT. Similarly, the mobile category included MOPU, MODU, FPSO, Spar,
TLP, MTLP, and SEMI as sub-categories. Unknown structure types included all platform
records where structure type was not provided. In terms of when these platforms are removed,
MOPU tend to be more mobile than fixed platforms which contributes to their lower age at
removal when compared to fixed platforms (Figure 7).
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Figure 7: Violin plots of platform age at removal by overall structure type using known
removed platforms data.
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2.2.1.1 Correlation Analysis and Initial Risk Index Generation

Statistical tests were used to evaluate which platform and incident variables were correlated in a
statistically significant way to the platform’s lifespan. This began by identifying whether there
were statistically significant differences between the different platform types using T-Tests on
age at removal (removed platforms). Then, a covariance matrix was used to test the explanatory
variables (Table 4) for independence. This was done using each structure type and then for the
dataset as a whole (Figures 8—11). High covariance between some of the explanatory variables
led to the removal of some variables from further analytics. The remaining variables were
evaluated against age at removal using several statistical tests. The specific test that was applied
to each variable varied based on key test assumptions (i.e. variable types, ranges).

Numerical Data: The Kendall rank correlation test was used to evaluate the similarities in
paired data of numerical values (Abdi, 2007). This test determines the strength of the association
between the values for each tested pair of variables. In this instance, it was used to compare
several of the explanatory variables (water depth, incident severity, average age of incident(s),
last age of incident, crane count, slot count, slant slot count, slot drill count, classified wave
height, and classified wind speed) with age at removal, stratified by type. Each of the tested
variables had a continuous scale and followed a monotonic relationship, meeting the assumptions
of the test. Statistical significance was determined by the tau value and sign (positive or negative
relationship).

Categorical Data (2 Categories): In addition to measuring the statistical significance of
structure type by lifespan, rig count and slant slot count were evaluated against age at removal
using T-Tests and the analysis was stratified by structure type. Both rig count and slant slot count
had two categories. The T-Test was used to compare the means between the observations within
the categories to determine whether the variation was statistically significant (Table 4) (Kim,
2015). Statistical significance was determined by a p-value <0.05.

Categorical Data (3+ Categories): The Kruskall-Wallis Test is a non-parametric test commonly
used for comparing a categorical variable to a numerical variable (McDonald, 2009). This test is
appropriate for data that are not normally distributed. Thus, it was an appropriate approach for
comparing crane count, slot count, slot drill count, slant slot count, classified current speed,
classified wave height, and classified windspeed against age at removal. These explanatory
variables had more than two categories and therefore this test was used to determine whether
there was a significant difference in median age at removal between the categories. Statistical
significance was determined by a p-value <0.05.

Risk Index: Statistically significant results from each of the tests were then used to create a risk
index, which was applied to the remaining existing platforms. This index represented integrity,
where lower risk indicates higher integrity, and lower integrity indicates higher risk. The first
step in calculating the integrity index is to normalize the platform age by subtracting the average
age at removal by type t from the platform i current age:

Age;s = CurrentAge; — Avg(RemovalAge,)

The age (Age;;) value was then scaled depending on a positive or negative result. If Age;; was
negative it was divided by the minimum age of the platforms of type t and multiplied by
negative one. If the value was positive it was divided by the max age of platform type t:
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Age;
%* -1, ifAge; <0
AgeNorm = f(Agew)y ™%
ifAge;s >0
= ifAge; >

Next, the risk values considered the crane count, slot count, and slot drill count for each platform
i. This was determined by the total number installed on the platform (j) and then scaled by the
platform type (t):
j*.75,  if t = CAIS
_ .. )i*=1,  ift=FIXED
CraneCount,; = f(t,]) ix -5, if t = WP
j* .25, if t =oth

j*.75, if t =CAI
j*-1, ift=FIX
j* .25, ift=wP
j* .25, if t =other

SlotCount,; = f(t,))

i*—1, if t =CAIS
i*—1, if t =FIXED
i* —.75, ift=WP
i*x —.25, if t =other

SlotDrillCounty; = f(t,))

The risk related to incidents was determined as the sum of the scaled (0 — 1) incident severity and
scaled incident count. Lastly, the risk associated with oceanographic conditions was determined
with the classified values for current velocity, wave height, and wind speed, and the scaled depth
values (0 —1).

Incidentindex; = z IncSeverity;, IncCount;
i=1

Ambientindex; = z CurrVel,WaveHeight, WindSpeed, Depth;

=1

The formal risk index for each platform was then calculated as follows:

Risk;; = zAgeNormit,CraneCountit,SlotCountit,SlotDrillCountit, IncidentIndex;, AmbientIndex;

i=1

2.2.1.2 Exploratory Spatial Regression

Exploratory spatial data analysis (ESDA) is the process of investigating data to understand
patterns and associations between variables that are explicitly tied to the geography of the data.
Most spatial data exhibit some pattern of correlation related to where they are located. Features
that are closer together in geographic space tend to be more closely related than features that are
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further apart (Tobler, 1970). This characteristic of spatial data is effectively termed as spatial
autocorrelation.

Failing to consider autocorrelation can have a detrimental effect on the interpretation of the
modeling results. Specifically, it can alter both the significance and magnitude of the effect of
the independent variables. That said, the Phase 1 analysis used spatial regression as an
exploratory analysis tool to identify whether spatial autocorrelation was present in the dataset
and to begin to understand the magnitude of the effect that the explanatory variables had on
integrity. Spatial autoregressive models are a type of exploratory spatial regression and are
particularly well suited for controlling for the effect of space on the dependent variables. The
spatial autoregressive model takes the form:

yi = Bo+XB +pw;y; + €

where y; is the dependent variable, £3, is the intercept, X is an n x k£ matrix of independent
variables, f is a k x 1 vector of coefficients, and pw;y; is the spatial weights matrix reflecting the
lagged dependent variable.

Following the correlational analysis, several independent variables were considered, including
the incident severity, current speed, wave height, and dummy variables representing structure
types WP, CAIS, and other, with fixed platforms as the reference group. In total, four models
were estimated—two ordinary least square models that included tests for spatial autocorrelation
(Moran’s I) and variance inflation factors (multicollinearity among independent variables), as
well as two spatial lag models with the additional independent variables of platform depth,
incident count, wind speed, and distance to shore (Table 4).

2.2.2 Phase 2 — Predictive Analytics

While there are many predictive algorithms that could be applied for the goals of this project, the
team developed a GBC model, ANN model, and Long Short-Term Memory (LSTM) neural
network (NN) for two purposes. First, these models enable us to explore the tradeoffs between
statistical ML models and neural networks. Second, this multi-faced approach serves as a
robustness check of the results.

The GBC and ANN models were used to predict the proxy variable for integrity, Age at
Removal, which was recast into removal age classes of 0—11 years, 11-20 years, 20-30 years,
3042 years, or 42—72 years. Both classification models were designed to predict the age bin a
platform should fall into given the associated features and their relationship to age at removal.
The GBC uses variables from the training of the model that are identified through an iterative
feature evaluation technique. The ANN uses all features except individual incident presence
absence labels (Appendix C and D). These models have computational characteristics that
benefit this classification problem, but also have characteristics that introduce uncertainty. In
order to assess the best approach moving forward, these two models are compared using multiple
evaluation metrics to determine which algorithm is better fit for this classification problem.

In addition to the above ML approaches, an additional spatial-analytic predictive model was
developed and employed. GWR is a relatively new technique that is sensitive to spatial non-
stationarity across the dependent and independent variables. The GWR model considers local
spatial variation in the data and estimates model coefficients for each observation. Moreover, a
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predictive model can be developed using a train-test approach after creating a GWR model.
Phase 1 provided the necessary information for variable selection and the GWR model was
developed using distance to shore, Category 4 hurricane days, max wave power (log), max wave
period, and max wave height.

Finally, a LSTM NN model is currently under development to predict risk likelihood and
estimate incident impact on lifespan. Unique to LSTM NN models is the use of time series
predictions (Malhotra et al., 2015; Pham et al., 2017). For this project, a LSTM NN model is
beneficial because it takes as input both categorical and continuous features. With this
information, LSTM NN models are able to capture incidents overtime and their relationship to
the combination of environmental and structural conditions that converged at the time of the
incident. However, with the size of the current dataset and number of input features available, the
LSTM NN model is unable to adequately learn and make predictions. The model can be
improved with a larger number of features and records or, alternatively, a model may be created
similar to the ANN mentioned above with the addition of incident dates and infrastructure info at
those dates to predict risk under current circumstances.

2.2.2.1 Evaluating Model Performance

While the GBC and ANN algorithms have a different architecture, there are still common ML
methods that can be used to evaluate the performance of each classification model and compare
the two. Comparing each model’s ability to predict each class provides a deeper understanding of
how well certain age at removal year ranges can be predicted.

Here, the percent of correct predictions on the training and testing sets for both models are used
to evaluate which model has an overall higher accuracy at predicting the age at removal for a
platform. The evaluation metrics precision, recall, and F'I score are used to determine how well
each model can predict the age at removal class. The precision metric indicates the ability of the
classifier to not mislabel a class, the recall metric indicates the ability of a classifier to find all
correct labels, and the F1 score is a weight of the precision and recall metrics.

As far as the GWR model is concerned, it is a completely statistical approach to prediction.
Drawing from linear relationships between variables and the spatial patterns present in the data,
the model predicts values at unknown locations using the coefficient values from a training
dataset. To evaluate model performance, an R? can be calculated between the y (observed) and y-
hat (predicted) values for the out-of-sample prediction. In addition, a correlation coefficient
between the observed and predicted values is also computed.

Each variable in the model will have a certain amount of predictive power when determining the
age at removal. This is important to understand as it can indicate which variables are strong and
poor predictors of integrity within a given study area. Importantly, not all offshore environments
are the same, and the results from one system may not carry over to another. To gain a better
understanding of a specific operating environment, decision makers need to know which
variables are contributing the most to the degradation of infrastructure integrity. They can then
monitor these specific variables and make more informed decisions regarding the deployment of
resources, mitigation efforts, or increased monitoring.

For the GBC model, a Gini number is used to identify the variables with the most predictive
power. For the ANN model, Feature Permutation Importance (Breiman, 2001) as a measure of
the change in cross-entropy loss when the feature is randomly permuted from the model is used
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to determine the most influential features. Finally, the variables in the GWR model can be
standardized and the magnitude of the standardized variables can be used to determine
importance.
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3. OBSERVATIONS AND RESULTS

This work was aimed at two objectives. First, it sought to assess the integrity of existing offshore
infrastructure by collecting data on the offshore environment, associating structural and
environmental characteristics to infrastructure, and analyzing the relationships between those
variables and the proxy variable used to measure integrity. Second, this work set out to identify
areas or specific infrastructure that are at-risk of potential failure given the identified
relationships between infrastructure integrity and the associated structural and environmental
variables. These two objectives were met using a two-phase approach. Phase 1 explored the
relationship between each explanatory variable and their individual contributions to integrity
using several inferential statistical techniques. Phase 2 developed and tested methodological
approaches capable of predicting the date that platforms were removed.

3.1 CORRELATION ANALYSIS

Correlation tables were prepared for each of the explanatory variables and for each structure

type. In addition, Figure 8 details the correlation matrix for each of the explanatory variables
over all structures. Within the correlation plots, red values indicate a negative correlation and
blue values indicate a positive correlation. The hue of the color represents the strength of the
correlation.

Across each of the platforms, there are some clear patterns that emerge. The strongest
correlations for all structure types are between slot count, slant slot count, and age at last incident
(Figure 8). Slot count and slot drill count are not surprisingly correlated and slant slot count and
average age at incident are highly correlated (.88). The number of incidents is strongly correlated
with cumulative incident severity (.91) because it was used in the creation of the severity
variable. The number of incidents is moderately correlated with water depth (.53), indicating that
there is some association between deeper platforms having more incidents.
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Figure 8: Correlation of explanatory variables for all structure types.

Cumulative_Incident_Severity 022 0.32 0.3%

Recall that fixed structure types are most abundant in the offshore GoM and have a correlation
pattern that is similar, yet distinct, from the pattern depicted when all structure types are
considered (Figure 9). Slot count and slant slot count remain highly correlated (.93), and so too
does cumulative incident severity and number of incidents. The correlation between water depth
and number of incidents has dropped (from .53 to .47), but this is to be expected given the
geographic concentration of fixed structures in shallow waters. Interestingly, there is a
substantial drop in correlation between rig count and number of incidents when only considering
fixed platforms (from .31 to .16).
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Figure 9: Correlation matrix of explanatory variables for fixed platform structure type.

MOPUs generally operate in deeper water and are more complex structures, resulting in a
different correlation pattern than fixed or all structures combined (Figure 10). In a similar
manner to fixed platforms, the correlation between water depth and number of incidents is
significantly lower when only considering MOPU (.11). Where water depth was positively
correlated to slot drill count for fixed structures (Figure 9) and for all structures (Figure 8), it
displays a moderate negative correlation for MOPU (-.34). For number of incidents, rig count,
crane count, and slot count are all positively correlated and positive—perhaps indicating that a
more complicated structure is associated with more incidents.
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Figure 10: Correlation matrix of explanatory variables for MOPUs structure type.

Due to the unknown structure type, there were very few structural correlates that could be
examined (Figure 11). Information on rig count, crane count, and water depth, were examined
along with number of incidents. Interestingly, unlike the other structures, these variables were
negatively correlated with number of incidents.
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Figure 11: Correlation matrix of explanatory variables for unknown structure type.

3.2 SPATIAL REGRESSION

Table 5 shows the magnitude and direction for each coefficient. The first two models do not
account for spatial autocorrelation but did test for it. The test statistic (Moran’s I) and VIF
(variance inflation factor) are both significant, indicating strong spatial autocorrelation across the
dependent variable and high multicollinearity among some of the explanatory variables. The
second OLS model drops several of the correlated variables and with that a significant drop in
the VIF.

Model 3 includes controls for spatial autocorrelation and indicates a positive and significant
effect of severity of incident on age at removal. This is not an expected result as it was assumed
that incident severity would decrease lifespan (contribute negatively to integrity). The coefficient
on wave height is significant and negative indicating that as wave height increases, platforms
have a shorter lifespan. The model explains 33% of the variance.

Model 4 also accounts for spatial autocorrelation and indicates a small improvement in explained
variance with the addition of variables for platform type using fixed as the reference category (R?
=.37). Severity and wave height retain their direction and significance. All platform variables

are significant and negative indicating a younger age at removal compared to their fixed-type
counterparts.

After controlling for spatial effects, the results indicate that several of the explanatory variables
of interest exert a significant independent effect on the age at removal. With the exception of the
coefficient on severity, the independent variables act on the age at removal in the expected
direction. In particular, as current speed and wave height increase, a significant decrease in the
age at removal can be expected.
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Table 5: Coefficients and Significance Table Estimating Age at Removal for Platforms that
Have Already Been Removed

Model 1 (OLS) Model 2 (OLS) Model 3 (SL) Model 4 (SL)
Severity -5.1 88.99** 77.07** 68.43%*
Current velocity at surface -8.75 2.54 0.302 -2.96
Wave Height -5.3 -8.05** -3.25%* -8.09%**
wp -1.07*
CAIS -6.09**
Other -13.57**
Log(depth) 2.92%*
Incident Count 6.27**
Wind Speed -11.05**
Distance to shore -0.03**
Lag_Age .629** .618**
Constant 25.33** 23.77** 8.99%* 14.03**
Moran’s | 46.5%* 47.32%*
R-squared 0.05 0.03 0.33 0.37
VIF 34.56 3.82
P-value : .01**, .05%, .10

33 SPATIAL DISTRIBUTION OF RISK

The risk index for each platform calcualted using the equations in 2.2.1.1, are plotted in Figure
12. The resulting risk index values ranged from -0.86 to 4.37 where lower values indicate higher
integrity (lower risk of failure), and higher values indicate lower integrity (higher risk of failure).
Existing platfrom risk indices were then sorted into 5 classes using Jenks nautral breaks
optimization (Jenks and Caspall, 1971), which minimized the average deviation from the mean
per class. Platforms with lower risk rankings (green squares) are clustered in shallow waters
along the shelf, with notable clusters appearing along Louisiana’s coastline. Platforms classified
as higher risk, shown in red, are generally located further offshore and in deeper waters. Out of
the 2,089 existing platforms displayed in Figure 12, 37.9% (n =791) were classified as having
low to low-medium (light green) risk and 22.5 (n = 469) were clasified as having medium-high
(orange) to high risk.
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Figure 12: displays the risk index applied to existing platforms, based on significant
relationships identified while statistically analzing removed platform data.

34 PREDICTIVE ANALYTICS RESULTS

3.4.1 Machine Learning Models

Table 6 shows the current prediction accuracy of the GBC and ANN models using the training
and test sets. Again, these measures are used to evaluate each model’s overall performance and
test for the presence of bias or variance. The GBC model has a training set accuracy of 100% and
a testing set accuracy of 85.6%. The ANN model has a training set accuracy of 90.1% and a
testing set accuracy of 84.3%. The GBC model has a higher accuracy overall on the test set by
1.3%. The higher accuracy for the training set for the GBC model (14.4%) and ANN model
(5.8%) indicate predictions with a fairly large degree of variance and suggest overfitting of the
training data. It is also possible that there is avoidable bias present in both models; however, this
cannot be confirmed because the human-level accuracy is not known.

Table 6: Training Set and Testing Set Accuracy Scores for the GBC and ANN Models

Training Set Testing Set
Model Accuracy Accuracy
GBC 100% 85.6%
ANN 90.1% 84.3%

The values of precision, recall, and the F1 score in Table 7 are used as evaluative metrics for
each age at removal class. The GBC model performed slightly better in all metrics for the 20-30
year, 3042 year, and 42—72 year classes. In general, the difference in evaluation metric values
for each model and class are somewhat negligible, with an average difference of only 2.35%. In
comparison to the other classes, both of the model’s predictive performance for the 11-20 year
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and 20-30 year ranges were lower. The models are best at predicting the 0—11 year and 42—72
year ranges.

Table 7: Classification Reports for the GBC and ANN Models.®

Class 0-11 years 11-20 years 20-30 years 30-42 years 42-72 years
Precision (ANN) 0.924 0.747 0.818 0.847 0.941
Precision (GBC) 0.913 0.786 0.821 0.855 0.948
Recall (ANN) 0.843 0.867 0.779 0.868 0.851
Recall (GBC) 0.902 0.811 0.786 0.897 0.901
F1 score (ANN) 0.882 0.803 0.798 0.857 0.894
F1 score (GBC) 0.908 0.798 0.803 0.875 0.924

Table 8 lists the top features for both ML models based on the Gini number for the GBC model
and the feature permutation importance for the ANN model. In general, both models found the
storm data to be important variables for predicting age at removal. The GBC model identified
total hurricane counts, underwater completion count, maximum sustained wind speed, rig count,
and Category 3 hurricane count yearly max as most important. From the ANN model, Category 1
hurricane count, yearly mean, Category 1 hurricane sum, longitude, Category 3 hurricane count
yearly mean, and Category 3 hurricane sum are most important. Even though different hurricane-
related variables were found to be important, the storm variables related to Category 1 and 3
hurricanes were generally the most important. The top 5 variables for the ANN model are
location-specific, meaning that these variables change based on geographic location. Only 3 of
the top 5 variables for the GBC are location-specific while the other two, underwater completion
count and rig count, are specific to the platform characteristics.

Table 8: Top 5 Most Important Features of the GBC Model-Selected Variables Based on the
Gini Index of the ANN Input Variables Based Off of Cross-Entropy Loss

Rank GBC ANN
1 Total hurricane counts Category 1 hurricane count yearly mean
2 Underwater completion count Category 1 hurricane sum
3 Maximum sustained wind speed Longitude
4 Rig count Category 3 hurricane count yearly mean
5 Category 3 hurricane count yearly max Category 3 hurricane sum

® The results are for the prediction of age at removal classes for the testing data and include the
precision, recall, F1 score, and support metrics.
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3.4.2 Geographically Weighted Regression

The GWR model performed well. Across all platforms, the model accounts for nearly 90% of the
variance (R? = .895) using distance to shore, Category 4 hurricane days, max wave power (log),
max wave period, and max wave height. On a platform-wise basis, the R? ranges from .51-.97.
With the exception of Category 4 hurricane days, the coefficient values range from negative and
positive (Table 9). This is an indication of spatial non-stationarity which is further illustrated
after plotting the coefficient values for each of the variables of interest for each platform
(Appendix E). Depending on the location, the effect of each coefficient on age at removal will
change—sometimes being associated with a decrease in removal age and other times being
associated with an increase in removal age.

Figure 13: Local parameter estimates for the Category 4 hurricane variable. The relationship
changes as one moves from east to west.

Where Category 4 hurricane days is concerned, the positive coefficient indicates that a one unit
increase in Category 4 hurricane days is associated with an increase in age at removal on
average. This is somewhat expected, given that older platforms will experience more hurricanes
simply because they were installed earlier. However, the increase in age at removal varies over
all platforms. There are clear pockets of platforms that respond differently to the number of
Category 4 hurricane days (Figure 13). More specifically, platforms in the western GoM have a
larger positive relationship with hurricane 4 days than platforms in the eastern GoM. This is
likely a reflection of the severity and frequency of hurricanes across the GoM. Platforms around
the Mississippi Delta are more likely to experience more severe hurricanes at a higher frequency
than platforms in the eastern GoM which can contribute to an earlier removal age.
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Table 9: GWR Model Statistics for Each of the Calculated Coefficient Values

GWR Gaussian Model

Variable Mean STD Min Median Max
Intercept -10.155 27.699 -158.655 -1.832 110.483
Distance to Shore -0.049 0.301 -1.529 -0.025 1.591
Cat 4 Hurr. Days 5.136 1.757 1.011 4.671 12.432
Max Wave Power (log) 5.056 10.418 -49.395 3.63 103.644
Max Wave Period 0.335 1.108 -2.847 0.295 5.951
Max Wave Height -3.34 6.894 -104.782 -2.492 20.271
R2 0.895
AIC 28,160.32

The GWR model took a similar approach to prediction as the ML models. Specifically, a training
dataset was used to calculate the spatial effects and coefficient estimates for each variable at each
platform location. Then, the model was applied to an out-of-sample test dataset to predict age at

removal. The R? for the observed and predicted values was .895 (Figure 14) and the correlation
coefficient was .92.
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Figure 14: Out of sample prediction for the GWR model using a test-train data split.
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4. DISCUSSION

Much of the infrastructure in the offshore environment is approaching or has already passed its
original design life. As infrastructure ages it becomes more susceptible to failure, and this
increases the older it gets. In order to maintain the highest degree of safety in offshore operations
as possible, it is important to continue developing novel approaches to guide safety interdiction
efforts and enhance decision making surrounding the mitigation of infrastructure failure. This
research set out to meet these needs through a concerted data collection effort, statistical
analysis, and the application of predictive analytics. The developed approaches continue to be
enhanced, but have proven to be robust in their ability to predict the age at which a platform is
removed.

4.1 EXPLORATORY DATA ANALYSIS

The results from the exploratory data analysis identified strong correlations between several of
the predictor variables. Many of these were specific to the structural components and included
slot count, slant slot count, slot drill count, rig count, and crane count. Furthermore, these
correlations varied by structure. As a whole, there were far more fixed structures operating in the
GoM and the use of a full infrastructure dataset that includes all structure types may obfuscate
the relationships between MOPU and the factors involved in those structures ages. However, it is
important to recognize that MOPU structure types are inherently mobile. When modeling age at
removal, the fact that these structures can more easily be removed may bias the results. That
being said, future model iterations may need to consider structure integrity by type. For now, the
lack of data on important variables of interest (i.e. incidents) prevents that analysis from coming
to fruition.

Incident data were critical for the conceptualization of integrity and will likely remain an
important variable going forward. It is important to note that the correlations between structural,
environmental, and incident variables showed promise. The development and integration of the
incident data was difficult and was heavily dependent on the team’s ability to connect ancillary
information across multiple sets and sources to match incidents to specific platforms and rigs.

The exploratory spatial regression model also relied on incident data, among other things, and
took the correlation analysis one step further by focusing on the combined effects of several
variables of interest. Unfortunately, the model was plagued by multicollinearity which forced a
step back to remove several correlated variables. Still, the regression results were telling and
corroborated the evidence presented through the correlation analysis—that platform types and
subtypes are a significant predictor of age at removal. Specifically, all platforms that are not
fixed are removed earlier than their fixed counterparts. The spatial regression also identified a
significant negative relationship with wave height. This suggests that structures exposed to taller
waves are, on average, removed earlier. This is an important finding as it aligns with findings
from previous studies (Guéd¢, 2019) and supplied support for its inclusion in later model
iterations (GWR).

4.2  PREDICTIVE ANALYTICS

The ML algorithms were powerful tools for evaluating the integrity of the existing offshore
platforms. Using the structural characteristics, historic incidents, and MetOcean conditions
throughout a platform’s life proved to be sufficient to predict the age at removal range of a
platform. These results are in line with those found in statistical tests. Performance for GBC and
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ANN models, at 85.6% and 84.3% respectively, is satisfactory considering how complex these
offshore infrastructure systems are.

While the prediction accuracies are suitable for the goal of this task, there is still room for
improvement. Further work can be done to reduce the variance (overfitting) and also increase the
prediction accuracy for both models. Additional data can be fed into the models to make them
more robust. For example, a more comprehensive MetOcean database with better temporal
representation or additional incident records could be included. This may allow the algorithms to
better model the effects of physical and environmental conditions on infrastructure lifespan. A
complete analysis on these efforts will be necessary to fully develop understanding of the power
of ML algorithms to predict the lifespan of offshore platforms. In turn, this may also inform the
ability to predict the lifespan of other types of offshore infrastructure (pipelines, wells, risers).

The GWR model identified a clear distinction between eastern and western platforms. Figure 13
presented this relationship with respect to the estimated coefficient values for the total number of
days a platform endured a Category 4 hurricane throughout its lifespan. This pattern is also
exemplified when plotting the coefficient values for the other parameter estimates, although the
relationship is not as strong (Appendix F). For the Category 4 hurricane variable, the coefficients
increase as one moves from the east to the west. Furthermore, this relationship remains positive
across the GoM. In general, this means that platforms have a positive association with hurricanes
which, at first blush, is not intuitive. Hurricanes should obviously reduce the lifespan of a
platform if it is assumed that hurricanes exacerbate rates of integrity through structural stress.
Another interpretation is that structures in the eastern GoM have a shorter lifespan as a result of
their interaction with Category 4 hurricanes. It could very well be that Category 4 hurricanes
impact structures in the eastern GoM more frequently and more directly, such that it is harder to
fully recover or make the necessary repairs before the next hurricane occurs. Moreover, the
wear-and-tear from hurricanes could be a factor in earlier removals.

Although the mean value for max wave power and max wave period is positive in Table 9, the
values range from negative to positive at the level of the individual platform. Plotting the values
(Appendix F) for those variables reveal several clusters where these values are associated with
negative coefficient estimates for the platforms indicating a decrease in age at removal. In
particular, the platforms in the eastern GoM are expected to be removed earlier than the
platforms in the western GoM for these variables. Furthermore, the pattern for wave height is
even more revealing, showing that wave height is associated with a decrease in removal age for
most of the significant coefficient values in the GoM. That is, higher waves decrease the age at
removal. Although this is true for most of the GoM, there are several clusters of platforms in the
near-shore environment where wave height is associated with a positive removal age. These
model results suggest that in the north-central GoM platforms are removed earlier than platforms
in the western GoM, perhaps due to more harsh environmental conditions. It should be noted that
extreme waves are not typically seen in shallow coastal waters.

Interestingly, all of the predictive models picked up on some form of hurricane variable as an
important factor in determining age at removal. The ML models have the benefit of using as
much information as possible when making predictions whereas the GWR model is subject to the
same deficiencies as ordinary least square regression techniques. That is to say, GWR must be
selective in the variables used in the model. Yet, the fact that each model capitalized on some
form of hurricane days is telling from a predictive standpoint underpinning the importance of
further exploration of this variable in future model development. One notable caveat concerning
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the hurricane variables is that they are highly correlated with one another. As a result, the use of
all hurricane variables—while useful from a predictive standpoint—is not necessarily adding a
substantial amount of new information from a planning or policy point of view. There is clearly a
relationship between removal age and hurricane interaction, but this relationship appears to be
similar across all variables. Thus, it may be fruitful to explore which of the hurricane variables is
the most useful and then remove the others. Additionally, the spatial structure of hurricane
response can be explored. For example, typically the strongest winds and the highest waves are
found in the northeast quadrant of a hurricane. In addition to the stronger winds this region of a
hurricane may favor wave growth when the hurricane moves at comparable speed relative to
waves, causing the fetch region to increase (dynamic fetch).

Another interesting finding was that the ANN picked up on longitude as one of the top 5
strongest predictors of age at removal. The GWR corroborates this result to a large extent with
its identification of significant east to west variation when considering the relationship between
factors (variables) and their removal age. Moreover, although longitude is not noted in Table 9
for the GBC, it was routinely identified as a strong predictor. Whether this pattern is an
indication of lower integrity for eastern GoM structures, or whether it reflects the spatial
structure of MetOcean extreme events, is yet to be fully understood, but this evidence does
provide some useful insights into where integrity may be compromised at an early stage of a
platform’s lifespan.

There is still some work to be done regarding the predictive power and associated relationships
between the MetOcean variables and the age at removal variable. Neither GBC, ANN, or GWR
identified the same MetOcean variables to be the strongest predictors. Where the GWR is
concerned, this is partly due to the threat of multicollinearity. Many of the MetOcean variables
showed a moderate to high degree of correlation, so the selection was based on minimizing the
possibility of variance inflation. As a result, only three MetOcean variables were included in the
GWR model.

As for the ANN and GBC, the ANN identified only hurricane variables as the strongest
predictive factors while the GBC was more diverse. Specifically, the GBC identified the most
diverse set of predictors that spanned both structural (rig count and underwater completion
count), environmental (max sustained wind speed), and hurricane related variables. This is
possibly due to the GBC pre-processing step to remove highly correlated predictors which
reduced the amount of collinearity and allowed for more variance among the set of predictors.
Taken together, these results underpin the importance of considering a constellation of
theoretically viable factors in determining when a platform is removed. Although there is strong
predictive power with hurricanes, there are clearly other factors involved that may add more
substantive explanatory information to the models by offering more concrete guidance on what
factors effect integrity.
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5. CONCLUSIONS

The purpose of this project was to develop and apply big data analytics, ML, and advanced
spatio-temporal analysis to assess the current state of existing infrastructure. In this first phase of
research, the team uncovered several important factors related to the integrity of offshore
infrastructure. This included both structural and environmental correlates, as well as other
information on tropical storms and hurricanes. Furthermore, this work supports the continued
exploration of integrity from several vantage points. Here, three predictive models with varying
strengths and weaknesses were developed. Although different, these models work together to
corroborate findings and support the re-evaluation of contradictory information. This happened
in several instances which has made this investigation into offshore integrity more robust.
Several important strides were made through this work, that will support a deeper understanding
of offshore integrity and the factors that effect it.

First, to the best of the research team’s knowledge there is no publicly available dataset related to
offshore infrastructure integrity. This is likely due to the fact that the integrity of individual
structures is proprietary information. The costs of collecting the data using advanced monitoring
is perhaps one reason for this deficiency. Moreover, a dataset that spanned all GoM structures is
even less likely. To that extent, this report has outlined a possible method for investigating
offshore integrity across a broad geographic range using a unique set of variables that are
hypothesized to relate to integrity. What’s more, this method is not unique to the GoM and could
theoretically be deployed to any offshore (or even onshore) location in the world. With this
information in hand, the state of offshore infrastructure can be made more transparent, enabling
more proactive approaches to impact mitigation, response planning, and infrastructure
management.

Second, the correlation analysis was used to investigate the relationship between the components
associated with each structure and a measure of integrity visa vis incidents and incident severity.
Multiple structural factors were significantly correlated with integrity; however, the correlation
analysis also revealed that several of these structural components were correlated with one
another. These results informed later models and identified pathways toward more parsimonious
model formulations.

Third, the predictive models developed in this work show a respectable degree of accuracy when
it comes to predicting the age at which platforms are removed. Admittedly, a lot of that
predictive power comes from only a few variables, several of which are related to hurricanes and
storms. Conceptually, the interaction between storms and age at removal makes sense; more
storms put higher stress on structural components which leads to earlier removal. However, it
would also be true that as structures age they will inherently experience more storms. At this
point it cannot be determined from this analysis with certainty whether tropical storms are
causing the platforms to be removed. If in the model tropical storms are contributing to the
removal, it would be prudent to understand the significance of that role in relation to other
potential factors that contribute to the deterioration of integrity.

When it comes to next steps, there are many. The continued identification of data that can be
leveraged to explain integrity is perhaps the most prudent. This includes the ongoing work of
translating historical structure incidents into a useable data format and adding well and
geohazard information to the analysis for a more system-wide approach. The current models rely
heavily on a small subset of factors that may or may not be causing a decrease in integrity.
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Future recommended research includes causal relations, for example with statistical tests such as
Granger Causality (e.g. Runge et al., 2019), or through information theory estimates (San Liang,
2014, 2015). Much of this future work will rely on the ability to collect and integrate new data
and sources of information, but it will also depend on the ability to enhance the measure of
integrity should there be a need in the future.
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APPENDIX A: INFRASTRUCTURE AND INCIDENT DATA USED IN THE ANALYSIS

Table includes information on source, and temporal resolution per dataset.

Temporal
Type Name Source Attributes Resolution
Records from
1942—-present
Platform and Structure type, Updated
Infrastructure Rig BSEE status, location, monthly, last
Information equipment, dates acquired
December 9,
2019
Annual reports
Incident Stats from 2006 —
Incidents and . BSEE 2013
Summaries Last updated
Archive January 17,
2020
Reports from
USCG Incident | USCG 2002 to
Investigation (https://cgmix. present
Incidents - Updated
Report uscg.mil/lIR/IIR
Database Search.aspx) monthly, last
acquired
March 2, 2020
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APPENDIX B: METOCEAN DATA BY VARIABLE WITH INFORMATION ON
SPATIAL RESOLUTION, EXTENT, TEMPORAL RESOLUTION, AND SOURCE

Temporal
Spatial Resolution and Resolution and
VELELIE Extent Range
Ocean currents at the sea surface and at depth from Horizontal ~4 km, depth=0M | Every 3 hours,
HyCOM (U.S. Navy operational ocean model). GoM 2003-2019
Varies —
IBTrACS—-Worldwide storms 1842 2.019' .
Global coverage resolution varies
WAVEWATCH 111® 30- Hi t—Peak W Peri ~
. 30-year _lndc.as _ea. _ ave Period, 16 km R 8 Ee,
Wave Period, mean wave direction, significant wave 1979-2009
height and the wind used to force the model S
WAVEWATCH 111® Production Hindcast—Peak Wave -~
Period, Wave Period, mean wave direction, significant 16 km Every 3 hours,
' ' 518 GoM 2005-2019

wave height and the wind used to force the model

B-1



Evaluating Offshore Infrastructure Integrity

This page intentionally left blank.

B-2



Evaluating Offshore Infrastructure Integrity

APPENDIX C: VARIABLES USED TO MODEL AMBIENT CONDITIONS THAT

HAVE BEEN FOUND TO CONTRIBUTE TO THE CORROSION OF METAL IN AN

OFFSHORE ENVIRONMENT

Horizontal Time Coverage Time Coverage
Resolution Start End Reference
Micro moles (Baridn ael
Nitrate 1 degree 1900-01-01 2017-12-31 per kilogram v
2019b)
of sea water
Micro moles (Garcia et al
Dissolved oxygen 1 degree 1900-01-01 2017-12-31 per kilogram 2019a) v
of sea water
il el (Garcia et al
Phosphate 1 degree 1900-01-01 2017-12-31 per kilogram 2019b) Y
of sea water
Micro moles (Garcia et al
Silicate 1 degree 1900-01-01 2017-12-31 per kilogram v
2019b)
of sea water
Z t al.
salinity 0.25 degree 1955-01-01 2017-12-31 unitless ( W;ggl ge) s
Temperature 0.25 degree 1955-01-01 2017-12-31 Degrees | (Locarnini etal,
P 2 aee Celsius 2019)
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APPENDIX D: VARIABLES PICKED BY THE GBC MODEL FOR TRAINING THAT

HAVE A SIGNIFICANT IMPACT ON THE PREDICTIVE POWER

The parentheses indicate the categorical value of the field converted to a binary variable.

Latitude

Abandon Flag (N)

LACT meter flag (N)

Longitude

Condensate production flag (N)

Maximum sustained wind speed max

Crane count

Injection Code (G)

Maximum sustained wind speed
average

Slot drill count

Heliport Flag (N)

Oxygen mean 65% depth

District code

Production equipment flag (N)

Oxygen mean 25% depth

Distance to shore

Power source type (Diesel)

Oxygen mean surface

Rig count Compressor Flag (N) Oxygen std. dev. 65% depth
Water depth Commingling production flag (N) Oxygen std. dev. 25% depth
Deck count Number of incidents Phosphorus mean 65% depth

Underwater completion count

Cumulative incident severity

Salinity mean 65% depth

MMS company number

Average age at incident

Salinity std. dev. 65% depth

Bed count

Total hurricane impacts

Salinity std. dev. 25% depth

Structure type code (CAIS)

Tropical storm days max yearly

Salinity std. dev. Surface

Structure type code (WP)

Category 1 hurricane max yearly

Silicate std. dev. Surface

Authority status (PROD)

Category 2 hurricane max yearly

Temperature mean 65% depth

Authority status (TERMIN)

Category 3 hurricane max yearly

Temperature mean 25% depth

Wave count

Temperature std. dev. surface
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APPENDIX E: VARIABLES USED IN THE ANN MODEL FOR TRAINING

LATITUDE

LONGITUDE

CraneCount

SlotDrillCount

DISTRICTCODE

Severity_CurrentScale

Avg Age_at_Inc

DistanceToShore

Numberofincidents

SlotCount RigCount SlantSlotCount
WaterDepth DeckCount SatelliteCompletionCount
UnderwaterCompletionCount MmsCompanyNum BedCount

TotalStorms CatNoneCount TropicalSum

TropicalMinYearly

TropicalMaxYearly

TropicalMeanYearly

TropicalDaysSum

TropicalDaysMinYearly

TropicalDaysMaxYearly

TropicalDaysMeanYearly C1Sum ClMinYearly
C1lMaxYearly C1lMeanYearly C1DaysSum
Cl1DaysMinYearly ClDaysMaxYearly ClDaysMeanYearly
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APPENDIX F: LOCAL PARAMETER ESTIMATES FOR THE GWR MODEL
VARIABLES OF INTEREST ALONG WITH THE LOCAL R2 VALUES (BOTTOM)
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