
 

 

 

 

 

Evaluating Offshore Infrastructure 
Integrity 

29 April 2021 

 
 

 

 

 

 

 

 

 

Office of Fossil Energy 

DOE/NETL-2021/2643 



 

Disclaimer 
This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference 
therein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed therein do not 
necessarily state or reflect those of the United States Government or any agency 
thereof. 

 

 

 

 

 

Cover Illustration: The study took an integrated approach to modeling infrastructure 
integrity. The cover illustration provides a graphical overview of the process taken to 
combine data, exploratory and predictive analysis to estimate offshore shore integrity.  

 

 

 

 

Suggested Citation: Nelson, J.; Dyer, A.; Romeo, L.; Wenzlick, M.; Zaengle, D.; Duran, 
R.; Sabbatino, M.; Wingo, P.; Barkhurst, A.; Rose, K.; Bauer, J. Evaluating Offshore 
Infrastructure Integrity; DOE/NETL-2021/2643; NETL Technical Report Series; U.S. 
Department of Energy, National Energy Technology Laboratory: Albany, OR, 2021;  
p 70. DOI: 10.2172/1780656. 

 

 

 

An electronic version of this report can be found at:  

https://edx.netl.doe.gov/offshore 



 
Evaluating Offshore Infrastructure Integrity 

 

Jake Nelson1,3, Alec Dyer1,4, Lucy Romeo1,5, Madison Wenzlick1,4, Dakota 
Zaengle1,4, Rodrigo Duran1,6, Michael Sabbatino1,4, Patrick Wingo1,4, Aaron 

Barkhurst7, Kelly Rose1, Jennifer Bauer1  

 
1 U.S. Department of Energy, National Energy Technology Laboratory, 1450 Queen Avenue 

SW, Albany, OR  97321 
3 Oak Ridge Institute for Science and Education, 1450 Queen Avenue SW, Albany, OR  

97321 
4 NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR  97321 

5 NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26507, USA 
6 Theiss Research, 7411 Eads Avenue, La Jolla, CA  92037 
7 Matric, 430 Drummond St. #2, Morgantown, WV  26505 

 

DOE/NETL-2021/2643 

29 April 2021 

 

NETL Contacts: 

Jennifer Bauer, Principal Investigator 

Lucy Romeo, Co-Principal Investigator 

Kelly Rose, Technical Portfolio Lead 

Bryan Morreale, Executive Director, Research & Innovation Center 

 

 

 

  



 

This page intentionally left blank. 

 

 



Evaluating Offshore Infrastructure Integrity 

i 

Table of Contents 
ABSTRACT ....................................................................................................................................1  
1. INTRODUCTION ..................................................................................................................2  

1.1 AGING ASSETS: OFFSHORE OIL AND GAS INFRASTRUCTURE ........................3 
1.2 FACTORS INVOLVED IN INFRASTRUCTURE DEGRADATION ..........................4 
1.3 ESTIMATING INFRASTRUCTURE INTEGRITY: EXISTING MODELS AND 
METHODS ..................................................................................................................................8  
1.4 CURRENT STATE OF INFRASTRUCTURE IN THE GULF OF MEXICO ...............9 

2. METHODS ...........................................................................................................................13  
2.1 DATA ACQUISITION AND PROCESSING...............................................................14 
2.2 DATA ANALYSIS ........................................................................................................23  

3. OBSERVATIONS AND RESULTS ...................................................................................29 
3.1 CORRELATION ANALYSIS.......................................................................................29 
3.2 SPATIAL REGRESSION .............................................................................................33 
3.3 SPATIAL DISTRIBUTION OF RISK ..........................................................................34 
3.4 PREDICTIVE ANALYTICS RESULTS ......................................................................35 

4. DISCUSSION .......................................................................................................................39  
4.1 EXPLORATORY DATA ANALYSIS .........................................................................39 
4.2 PREDICTIVE ANALYTICS.........................................................................................39 

5. CONCLUSIONS ..................................................................................................................42  
6. REFERENCES .....................................................................................................................45  
 

APPENDIX A: INFRASTRUCTURE AND INCIDENT DATA USED IN THE ANALYSIS 

APPENDIX B: METOCEAN DATA BY VARIABLE WITH INFORMATION ON 
SPATIAL RESOLUTION, EXTENT, TEMPORAL RESOLUTION, AND SOURCE 

APPENDIX C: VARIABLES USED TO MODEL AMBIENT CONDITIONS THAT 
HAVE BEEN FOUND TO CONTRIBUTE TO THE CORROSION OF METAL IN AN 
OFFSHORE ENVIRONMENT 

APPENDIX D: VARIABLES PICKED BY THE GBC MODEL FOR TRAINING THAT 
HAVE A SIGNIFICANT IMPACT ON THE PREDICTIVE POWER 

APPENDIX E: VARIABLES USED IN THE ANN MODEL FOR TRAINING 

APPENDIX F: LOCAL PARAMETER ESTIMATES FOR THE GWR MODEL 
VARIABLES OF INTEREST ALONG WITH THE LOCAL R2 VALUES 

 



Evaluating Offshore Infrastructure Integrity 

ii 

List of Figures 
Figure 1: Map of the locations of platforms in the northern Gulf of Mexico symbolized by 

structure type including fixed, mobile offshore production units (MOPU), and unknown.  11 
Figure 2: Workflow for processing, combining, and analyzing platform data in the two phase 

approach. ............................................................................................................................... 13  
Figure 3: Number of incidents from 2006–2018 per type of platform. ........................................ 15 
Figure 4: Number of structural- and weather-related incidents per platform record, colored by 

type.  ...................................................................................................................................... 18  
Figure 5: Normalized cumulative incident severity by platform and type. .................................. 19 
Figure 6: Maximum sea-surface velocity magnitude (m/s) from a data-assimilating ocean model 

(HyCOM GoM) from twelve years of data (2003–2014). .................................................... 21 
Figure 7: Violin plots of platform age at removal by overall structure type using known removed 

platforms data. ....................................................................................................................... 23  
Figure 8: Correlation of explanatory variables for all structure types. ......................................... 30 
Figure 9: Correlation matrix of explanatory variables for fixed platform structure type. ............ 31 
Figure 10: Correlation matrix of explanatory variables for MOPUs structure type. .................... 32  
Figure 11: Correlation matrix of explanatory variables for unknown structure type. .................. 33 
Figure 12: displays the risk index applied to existing platforms, based on significant relationships 

identified while statistically analzing removed platform data. ............................................. 35 
Figure 13: Local parameter estimates for the Category 4 hurricane variable. The relationship 

changes as one moves from east to west. .............................................................................. 37 
Figure 14: Out of sample prediction for the GWR model using a test-train data split. ................ 38 

 

List of Tables 

Table 1: Breakdown of the Possible Types, Causes, and Damages from Incidents ....................... 6 
Table 2: Descriptive Statistics for the Platforms in the GoM (BOEM, 2019) .............................. 10 
Table 3: Age at Removal Statistics for Removed Platforms by Overall Structure Type ............. 12 
Table 4: Explanatory Variables Related to the Platform Characteristics, the Range of Each 

Variable’s Value, and the Data Type .................................................................................... 22 
Table 5: Coefficients and Significance Table Estimating Age at Removal for Platforms that Have 

Already Been Removed ........................................................................................................ 34 
Table 6: Training Set and Testing Set Accuracy Scores for the GBC and ANN Models ............ 35  
Table 7: Classification Reports for the GBC and ANN Models. .................................................. 36 
Table 8: Top 5 Most Important Features of the GBC Model-Selected Variables Based on the 

Gini Index of the ANN Input Variables Based Off of Cross-Entropy Loss ......................... 36 
Table 9: GWR Model Statistics for Each of the Calculated Coefficient Values .......................... 38  
 



Evaluating Offshore Infrastructure Integrity 

iii 

Acronyms, Abbreviations, and Symbols 
Term Description 

API American Petroleum Institute 

ANN Artificial neural network 

BOEM Bureau of Energy Management 

BP British Petroleum 

BOEM Bureau of Ocean Energy Management 

BSEE Bureau of Safety and Environmental Enforcement  

CAIS Caisson 

CP Cathodic protection 

CSIL Cumulative Spatial Impact Layer™ 

CT Complaint tower 

DHSG Deepwater Horizon Study Group 

DOE Department of Energy 

DWH Deepwater Horizon 

EDX Energy Data eXchange® 

EIA Energy Information Administration 

EOR Enhanced oil recovery 

ESDA Exploratory spatial data analysis 

FPSO Floating Production, Storage, and Offloading Systems  

GBC Gradient boosting classifier 

GoM Gulf of Mexico 

GWR Geographically-weighted regression 

ISO International Standards Organization 

KPI Key Performance Indicators 

LSTM Long short-term memory (networks) 

MetOcean Meteorological and Oceanographic 

ML Machine learning 

MMS Minerals Management Service 

MODU Mobile Offshore Drilling Unit 

MOPU Mobile Offshore Production Unit 

MTLP Mini Tension-leg Platform 

NETL National Energy Technology Laboratory 



Evaluating Offshore Infrastructure Integrity 

iv 

Acronyms, Abbreviations, Symbols (cont.) 

Term Description 

NN Neural network 

OCR Optical character recognition 

ONRR Office of Natural Resource Revenue 

ORM Offshore Risk Modeling suite 

pH Potential of hydrogen 

QA/QC Quality assurance quality control 

SEMI Semi-submersible 

SIM Structural Integrity Management 

SSTMP Subsea Template Manifold 

SWOT Strengths, Weakness, Opportunities, and Threats 

TLP Tension-leg platform 

U.S. United States of America 

USCG U.S. Coast Guard 

VIF Variance inflation factor 

WP Well protector 

 

 

 

 

 

 

 



Evaluating Offshore Infrastructure Integrity 

v 

Acknowledgments 
This work was completed as part of National Energy Technology Laboratory (NETL) research 
for the U.S. Department of Energy’s (DOE) Complementary Research Program under Section 
999 of the Energy Policy Act of 2005. Parts of this technical effort were performed in support of 
the National Energy Technology Laboratory’s ongoing research under the Offshore 
Unconventional Resources – DE FE-1022409 by NETL’s Research and Innovation Center, 
including work performed by Leidos Research Support Team staff under the (RSS contract 
89243318CFE000003). The authors wish to acknowledge Roy Long (NETL Strategic Center for 
Natural Gas and Oil) and Elena Melchert (DOE Office of Fossil Energy) for programmatic 
guidance, direction, and support.  
 
 
  



Evaluating Offshore Infrastructure Integrity 

vi 

 

This page intentionally left blank. 

 

 

 

 

 



Evaluating Offshore Infrastructure Integrity 

1 

ABSTRACT 

Drilling in the offshore environment involves a complex network of infrastructure including 
pipelines, platforms, rigs, subsea installations, ports, and terminals. Government and industry 
partners have developed this network over many decades and it remains a critical part of the 
United States (U.S.) energy portfolio. Many of the major components of this system have been 
designed with a 20- to 30-year lifespan, yet consistent and growing energy demands support the 
need to extend the design life of existing infrastructure or repurpose it for secondary needs (i.e. 
enhanced oil recovery, carbon storage, and new wells). As a result, a growing portion of the 
offshore infrastructure in the U.S. is approaching or has exceeded its original design life. A 
critical step in ensuring the continued safe and effective operation of offshore infrastructure is 
developing a comprehensive understanding of the state of offshore infrastructure and the factors 
that effect it.  

The purpose of this project is to assess the current state of existing infrastructure and identify the 
factors involved in infrastructure degradation through the development and application of big 
data analytics, machine learning, and advanced spatio-temporal analysis. The project leverages 
existing data at NETL and combines it with new information on offshore oil and gas structures 
and the ambient offshore environment in an effort to identify patterns associated with 
infrastructure integrity. Building on the identified trends and patterns, this project incorporates 
exploratory analytics and spatial analysis tools in conjunction with machine learning and 
statistical models to characterize the condition of existing platforms in the offshore environment 
and predict their risk of failure.  
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1. INTRODUCTION 

Hydrocarbon exploration and production in the offshore environment remains an important part 
of the United States (U.S.) energy portfolio. Offshore production activities require a dense 
network of complex infrastructure that includes platforms, pipelines, rigs, support vessels, and 
myriad other components that work in tandem to facilitate the exploration, extraction, and 
transportation of hydrocarbons from underwater reservoirs. While some of these components 
receive routine maintenance and replacement, inventory surveys suggest that the majority of 
active infrastructure in the more developed production regions were installed more than two 
decades ago (Stacey et al., 2008), far exceeding the intended design life. Steps can be taken to 
manage this aging infrastructure which is critical as both government and industry experts are 
increasingly looking towards methods and technologies that can extend the infrastructures design 
life. These efforts are aimed at minimizing cost while maximizing the production potential of 
existing reservoirs and drilling technology (i.e. horizontal drilling). In addition, existing 
infrastructure can also be repurposed for alternative uses including enhanced oil recovery (EOR) 
that add additional value to the existing structures and reservoirs. That said, any efforts made 
towards extending infrastructure design life must be matched with approaches and innovations 
that effectively reduce the possibility of deleterious events. This cross-fertilization ensures that 
continued operation is done with an eye towards safe production that maximizes efficiency.  

With increased access to data and information on the offshore production environment, along 
with information directly related to operational efficiency, there are increased opportunities to 
build a comprehensive understanding of the current state of infrastructure (i.e. platforms). In this 
work, “current state” refers to the current operational capacities of the infrastructure given the 
age of the infrastructure and exposure to ambient environmental conditions. Given that a 
comprehensive dataset on the current state of infrastructure is not available, a significant data 
collection effort is required along with the development and application of spatio-temporal 
methods and models. Specifically, a data inventory of the age of the infrastructure, the intended 
design life and the location of each platform is critical for understanding how variations in the 
operating environment and structural characteristics influence the lifespan of the infrastructure.  

This is to say, as offshore infrastructure ages the integrity of the infrastructure is called into 
question. The infrastructure is subject to various stressors overtime which can decrease the 
longevity of the equipment. When referring to integrity it is important to be specific as the 
concept is multifaceted. To the extent that it is applied in this research, integrity refers to the 
degree in which a system is impaired. An infrastructure system of high integrity is one where the 
systems of components that make up the macrostructures of the offshore network are operating 
in a way that do not impede the performance of the system as a whole. Conversely, a low 
integrity system is one where changes in the materials within the macrostructures impede the 
system from performing at its optimum.  

Impediments to offshore integrity can come from many sources. These include corrosion, 
structural stress from the environment, age, or simply fatigue from consistent use of the 
equipment. Although all of these sources can decrease integrity, some may contribute more 
prominently to system degradation than others. In an effort to prevent catastrophic failure, this 
work aims at identifying the factors related to decreases in infrastructure integrity and evaluate 
their overall impact on the infrastructure’s lifespan. By identifying these factors, the results of 
this and subsequent work can be used to alert decision makers, planners, and other stakeholders 
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to locations where the potential for failure is higher relative to other locations in the offshore 
environment.  

There are two objectives for this study which were carried out in two phases. First, this study 
sought to develop an integrity assessment framework and apply it to offshore infrastructure in the 
Gulf of Mexico (GoM). Second, this study worked to fill knowledge- and technology-gaps 
surrounding the current state of offshore infrastructure through analyses that identify the 
antecedents of possible infrastructure failure based on the results of the integrity evaluation. 

Where integrity is concerned, the first phase of the analysis developed a conceptual framework 
for measuring infrastructure integrity. Data was collected to match the framework while 
inferential statistics were used to operationalize the framework. Throughout this first phase, the 
framework was continually updated to reflect the availability and type of data. The second phase 
consisted of the implementation and testing of the conceptual framework using the newly 
amassed data, exploratory and predictive analysis methods. Specifically, the antecedents to 
changes in integrity and lifespan were evaluated using geostatistical and machine learning (ML) 
techniques.  

With the ability to relate these findings back to a specific location (i.e. structure or lease block), 
this project serves as an important step towards enhanced risk mitigation for offshore oil 
production and exploration. Furthermore, the development of datasets and analysis to achieve the 
project objectives will aid in building a more robust understanding of the current state of 
offshore infrastructure. This will ultimately increase the resilience and efficiency of offshore 
hydrocarbon production systems. Although the study focuses specifically on the infrastructure in 
the GoM, the conceptual framework and analysis are generalizable to diverse settings.  

1.1 AGING ASSETS: OFFSHORE OIL AND GAS INFRASTRUCTURE 

“Aging is not about how old your equipment is; it is about what you know about its condition, 
and how that is changing over time” (Nabavian and Morshed, 2010). 

According to the International Standards Organization (ISO), design life is defined as “the 
assumed period for which a structure is to be used for its intended purpose with anticipated 
maintenance but without substantial repair from aging processes being necessary” (ISO, 2015). 
As far as the offshore oil and gas infrastructure is concerned, there is a (general) expected design 
life of 20 to 30 years, but this number greatly depends on the operating environment, the 
frequency of dry-dock repair, and maintenance of drilling equipment. A report in 2010 estimated 
that out of the roughly 6,500 platforms in operation worldwide, 30% of them have been in 
operation for over 20 years, far exceeding their original design life (Nabavian and Morshed, 
2010). This finding is corroborated in a second report citing data on infrastructure in the North 
Sea, which suggests that a significant number of offshore platforms have exceeded their original 
design life of about 25 years (Stacey et al., 2008). Across many regions in the world, the general 
trend of offshore infrastructure exceeding its design life is becoming strikingly apparent (Ersdal 
and Selnes, 2010; Solland et al., 2011). Interestingly, no explicit ties between infrastructure age 
and failure have been made. However, age may serve as a proxy for several other mechanisms 
that negatively affect integrity over time.  

For example, a 2016 report on offshore oil spill occurrence classifies infrastructure age within 
equipment failure and corrosion as causes of spills. The report also points to increases in 
incidents resulting from weather or natural causes and external factors which increase over time 
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(BOEM, 2016). Relatedly, a Strengths, Weaknesses, Opportunities, and Threats (SWOT) 
analysis conducted by the National Oil Spill Detection Response Agency in Nigeria identified 
over-aged pipelines and production infrastructure as possible causes of spill incidence (Rim-
Rukeh, 2015). Moreover, Burgherr (2007) found that tankers less than 10 years of age were 
related to fewer spills than tankers that were over 20 years of age. Although this is not directly 
tied to installed infrastructure, it does lend some support to a potential correlation between age 
and infrastructure failure.  

In response to these findings, researchers and practitioners have turned their attention toward 
several related areas of research. One is aimed at life cycle management and maintenance 
strategies to increase operating capabilities while decreasing fatigue and undue stress on the 
equipment (Moan, 2018; Soom et al., 2018). The Structural Integrity Management (SIM) process 
focuses on a lifecycle process that ensures the fitness of fixed offshore platforms (O’Connor et 
al., 2005) which has evolved significantly over the last 25 years and has been applied to platform 
management strategies worldwide (Guédé, 2019; Nichols and Khan, 2015). Other life-cycle 
management strategies include the work by Aeran et al. (2017), which focused on corrosion 
models and the work by Tygesen et al. (2019), who used Bayesian ML to update offshore 
maintenance schedules. 

1.2 FACTORS INVOLVED IN INFRASTRUCTURE DEGRADATION 

An essential component for characterizing the current state of offshore infrastructure is the 
evaluation of factors known or thought to be involved in the decline of infrastructure integrity.  
This includes meteorological and oceanographic (MetOcean) conditions, structural materials, 
and incidents (loss of well control, collisions, fires, and equipment failures), among others. 
Taken together, these factors can influence the expected design life and lead to catastrophic 
failures if not mitigated. The following details the most influential factors that have been found 
to contribute to the structural integrity of offshore infrastructure.  

1.2.1 Ocean and Atmospheric Conditions 

Knowledge of MetOcean conditions are critical to industries operating in the offshore 
environment. Ambient conditions such as wave height, ocean-current speed, and wind speed—
known as ambient loadings—are major considerations when determining criteria for offshore 
platform design and for safe operating conditions. An under-designed offshore structure may 
result in loss of life, injury, and considerable structural damage. Other MetOcean variables, such 
as those related to corrosion rates, may have less of an immediate effect on offshore structures, 
yet may also cause catastrophic failure over longer periods of time.  

The effects from wave, current, and wind actions are known hazards to offshore infrastructure 
(ISO, 2011). The environmental loadings caused by environmental conditions can cause 
immediate damage during storms (including complete destruction), or progressively fatigue a 
structure, leading to increased risk of failure and incidents (Moan, 2018; Sharp et al., 2015). For 
example, in extreme wave conditions water may cause additional damage or fatigue to a 
structure through slamming and in-deck loading (Moan, 2018). For offshore jacket structures, the 
structural loading effects from waves are increased if wave height reaches deck level (Guédé, 
2019) and waves from storms and ocean currents, as well as the GoM Loop Current and 
associated eddies are important considerations for the design of tension leg platforms (BSEE, 
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2018). Although waves pose the most immediate effect, high wind speeds can also increase 
fatigue, albeit gradually, to structural components (Sharp et al., 2015).  

The effects of the environment are well known, and as a result an abundance of standards and 
regulations are in place to ensure the robustness of offshore infrastructure (ISO, 2011). However, 
establishing these regulations has been a process of trial and error. Past standards and regulations 
have required revisions when extreme MetOcean conditions have caused catastrophic damage 
(e.g. Berek et al., 2007). In 2005 alone, hurricanes Katrina and Rita destroyed 115 platforms and 
damaged 52 others (Zhang, 2017). Indeed, many offshore platform incidents have occurred in 
regions that are prone to the most extreme MetOcean events (see Figures 1). An additional 
concern is the less-understood cumulative effect of these loadings on offshore structures that 
accumulate over years and decades. Again, this underpins the increasing importance of 
understanding platform age and the variables effecting design life.  

There exists an extensive amount of research surrounding the effects of MetOcean conditions 
and corrosion rates. Mechanical properties such as strength, ductility, and impact strength will 
degrade gradually which can lead to failure under certain environmental conditions (Bhandari et 
al., 2015). While the material used for offshore structures vary, in practice most structures are 
made of steel and steel-reinforced concrete, making steel the main focus of corrosion studies 
(Melchers, 2016). Some of the ambient conditions that are known to affect corrosion by seawater 
include: salinity, dissolved oxygen concentration, temperature, potential of hydrogen (pH), 
carbonate solubility, pollutants and biological growth, bacteria, pressure, wave action, and water 
velocity (Matsushima, 2011; Melchers, 2016). Others have identified the influence of water 
temperature on steel corrosion, noting an increased corrosion rate with higher water temperatures 
(Bhandari et al., 2015; Nunez, 2007). These findings support the notion that structures in warm, 
coastal oxygenated waters will have higher corrosion rates than deep water structures (Guedes 
Soares et al., 2011).  

While the effects of water velocity are not fully understood, several researchers have identified a 
positive correlation between water velocity and the rate of pitting corrosion in marine 
environments (Bhandari et al., 2015; Guedes Soares et al., 2011; Melchers, 2005). Importantly, 
pitting corrosion is the type of corrosion more likely to cause catastrophic failure; however, a 
majority of rigs have a cathodic protection (CP) system and other forms of protection to defend 
against this type of corrosion (Sharp et al., 2015). That said, corrosion remains a prominent 
threat to the integrity of offshore systems. It is also worth noting that a large portion of the 
corrosion studies that establish quantitative relations between ambient conditions and corrosion 
are done under laboratory conditions; the results do not immediately translate to in-situ ambient 
conditions supporting the need to explore the relationship between corrosive ocean conditions, 
offshore integrity, and platform lifespan.  

1.2.2 Incidents 

Incidents are defined as situations in which personnel working on the platform are injured or a 
part of the platform itself has been damaged. Over the past 15 years there has been an increase in 
available incident data following changes in reporting regulations that mandated the reporting of 
both serious and potentially serious incidents by the Minerals Management Service (MMS, 
2006). Muehlenbachs et al. (2013) indicate that incidents fall into several types of categories 
related to causes, effects, and resulting damages (Table 1). The type of incident can fall into one 
or more of these categories, and the causes and damages as well may include one or many of 
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these descriptors. In other words, incidents can occur due to day-to-day activities, for example 
during drilling and workover events, or from irregular events such as lightning strikes and ship 
collisions. The effects of such incidents, and even the incidents themselves (fires, explosions, 
collisions, and dropped objects on offshore structures) are an important feature of structural 
management systems and may even suggest latent measures of overall integrity (Moan, 2018; 
Sharp et al., 2015).  

 

Table 1: Breakdown of the Possible Types, Causes, and Damages from Incidents 

Types of Incidents Causes of Incidents Resulting Damages 

Blowout Completion equipment Cranes 

Vessel collision Equipment failure Structural damage 

Fire 
Development or production 
operations 

Overboard drilling fluid 

Explosion Human error  

Injury/Fatality Slip, trip or fall  

Pollution Weather  

 

Reported incidents may also include a loss of well control or a well kick that may result in the 
release of hydrocarbons to the surrounding environment (a blowout). The most common activity 
associated with a blowout is drilling, especially during the exploration phase (Kaiser and 
Pulsipher, 2007). When blowouts occur, oil and gas emanating from the well or riser pipes can 
cause fires or explosions, leading to potentially serious structural damages depending on the 
intensity (ISO, 2011; Sharp et al., 2015). An example of a historical blowout is Deepwater 
Horizon (DWH) (Graham et al., 2012).  

1.2.3 Physical Conditions 

The age of a platform can be used as a proxy to understand the physical condition of a structure. 
As one would expect, the effects of fatigue and corrosion become greater over time, leading to 
higher instances of degradation unless these effects are actively managed (Muehlenbachs et al., 
2013; Stacey et al., 2008). With design codes becoming stricter over the years, installation year 
has been found to be a strong predictor of structural integrity (Moan, 2018; Stacey et al., 2008). 
The older the installation date, the less integrity. As more information has been gathered, newer 
design codes are adapted to consider the increased intensity of weather events, including higher 
wave heights and stronger wind speeds. This has materialized in taller deck heights, reinforced 
welding requirements, and redundant safety systems. Guédé (2019) has identified several 
additional physical conditions of fixed offshore platforms that affect the susceptibility of failure 
including structural configuration, and foundation system, and also confirmed the year of design 
as an indicator of integrity. Although these were specific to fixed platforms, some may also 
apply to floating structures. In particular, the existence of damaged components, corroded 
components, corrosion protection system, marine growth, and physical or environmental 
loadings may all be indicative of floating platform integrity (Guédé, 2019; Sharp et al., 2015).  
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Regarding the location of a structure, Muehlenbachs et al. (2013) found a relationship between 
the operational water depth of a structure and the number of self-reported incidents between 
1996 and 2010. These results contradicted the findings of Jablonowski (2007) who found that 
water depths deeper than 121.9 m (400 ft) are insignificant in predicting the likelihood of an 
incident on drilling rigs from 1990 to 1998. Still, Shultz and Fischbeck (1999) found a negative 
relationship between water depth and accidents between 1986 and 1995, confirming the findings 
in Muehlenbachs et al. (2013). Deeper water depths have also been found to have long term 
corrosion affects but are subject to other parameters including oxygen concentration, 
temperature, metal type, pollution, salinity, and water velocity, to name a few (Bhandari et al., 
2015). These findings support the investigation of both platform age and depth in the analysis of 
integrity.  

1.2.4 Organization Factors 

Organizational responsibility and accountability in managing offshore structures plays a role in 
the safe operation of each structure. Consider the 2010 DWH incident; post spill, a myriad of 
factors involved in the demise of the offshore platform came to light. Apart from the faulty 
blowout preventer, a rushed and poorly sealed cement job, and the failure to cap and contain the 
released hydrocarbon, several reports pointed to “a multi-decade history of organizational 
malfunctions and shortsightedness” (Deepwater Horizon Study Group (DHSG), 2011). Across 
the oil and gas industry writ large, a culture of “trip-and-fall” reactionary compliance had 
developed and it was not until something occurred that companies sought to achieve regulatory 
compliance. Concerning the DWH disaster, British Petroleum (BP) had pursued similar decision-
making strategies, opting toward saving time and money, rather than heeding warning signs of 
decreasing integrity. The DHSG ultimately identified the failure of a system for checks and 
balances between regulators and industry as responsible for the disaster. When it came to 
identify and taking action to ensure the safe operation of offshore oil and gas exploration and 
production, regulatory oversight was simply not there (DHSG, 2011).  

The cascade of poor decision-making related to the DWH operations was not unique to BP or the 
DWH case. For years, industry and federal regulators had been working in tandem to create a 
risk prone, rather than averse, organizational environment. This has been pointed out by many 
public administration, organizational behavior, and risk analysis scholars (Bozeman, 2011; 
Reader and O’Connor, 2014). Since the DWH additional regulatory checks and balances have 
been established to improve safety. For example, the MMS, who at the time of the DWH were 
the sole governing body for offshore oil and gas operations, was broken up into three distinct 
departments – the Bureau of Ocean Energy Management (BOEM), the Bureau of Safety and 
Environmental Enforcement (BSEE), and the Office of Natural Resources Revenue (ONRR). 
Each of these entities was given different mandates surrounding the oversight of offshore oil and 
gas activity. With this came an increased semblance of checks and balances which, going 
forward, should help regain a more conscious and risk averse approach to oil and gas 
development. Still, incidents and spills remain a part of offshore oil and gas operations. Whether 
it is due to operating in extreme conditions, or due to remnants of a risk-prone safety culture, it is 
important to consider organizational factors as an influential part of infrastructure integrity.  
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1.3 ESTIMATING INFRASTRUCTURE INTEGRITY: EXISTING MODELS AND 
METHODS 

In addition to the codes and regulations set by industry (American Petroleum Institute (API)) and 
federal agencies (BOEM, BSEE) to ensure the safe operation of offshore oil and gas activity 
(API, 2014; Visser, 2011), researchers are using novel approaches and technological 
advancements to develop strategies aimed at incident prevention. Many of these methods are 
shared across stakeholder groups that focus on structural management plans, design 
specifications, operational data, and routine inspections. 

In the U.S., there are various classification organizations (i.e. API and ISO) that develop and set 
safety and operational codes for structures in offshore environments. These standards must be 
met at various stages of a structure’s life including “design criteria formulated in terms of 
serviceability and safety limit states, considering payloads, environmental, and accidental loads” 
and “life cycle feature, with strong links between design, and inspection, monitoring, 
maintenance, and repair” (Moan, 2018). Stacey et al. (2008) have categorized codes into several 
areas aimed at extending the life of offshore infrastructure. These include assessment issues, 
fatigue life extension, corrosion protection, and inspection, maintenance, and survey. The 
standards create structural redundancies and optimized inspection plans that are necessary to 
reduce the operational risks posed by operating in harsh offshore environments. While many of 
these standards provide a model for a risk-based approach to structural management, in some 
cases “no detail is given on how to implement those methods” (Guédé, 2019).  

Contrasting industry standards, researchers are incorporating performance indicators, qualitative 
and quantitative assessments, and state-of-the-art modeling methods to create management 
programs, risk rankings, and routine inspection schedules and techniques (Guédé, 2019; 
Jablonowski, 2007; Sharp et al., 2015; Tygesen et a., 2019; Yang and Frangopol, 2018). For 
example, Guédé (2019) utilizes API guidelines to develop analysis methods for global and local 
risk assessments for fixed offshore structures. These methods use design specifications, present 
conditions, modifications, and loading exposure to assess risk. Independent variables include 
design year, last inspection, damaged members, topside weight change, and wave-in-deck 
exposure. Additionally, Sharp et al. (2015) developed Key Performance Indicators (KPIs) for 
both fixed and mobile units that identify hazards and chain of events to incidents using a hazard 
analysis method. The approach leverages design specifications, inspection, and MetOcean data.  

The availability of computationally diverse ML algorithms offers new capabilities for the 
petroleum industry to predict the lifespan and structural integrity of offshore oil and gas 
infrastructure. There is a wide selection of relevant ML algorithms including random forests (Ho, 
1995), support vector machines (Cortes and Vapnik, 1995), artificial neural networks (Jain et al., 
1996), and decision trees (Quinlan, 1986). Specific to offshore infrastructure, ML models have 
helped in predicting stress factors from various environmental forces. These include Gaussian 
process models to improve predictions for the effects of fluid forces from waves and currents on 
structural integrity (Worden et al., 2017) and applying artificial neural networks (ANN) to 
characterize complicated physical subsurface stresses from drilling activities and their affiliated 
effects on infrastructure (Elkatatny et al., 2017; Onalo et al., 2018).  

Recently, in conjunction with the concerns of aging infrastructure, these models have been 
applied to understanding the lifespan of offshore infrastructure. Almedallah and Walsh, (2019a) 
evaluated asset lifespan by combining data science and econometrics to determine the feasibility 
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of maintaining an old system or installing a new one. Furthermore, studies have combined the 
different factors affecting drilling and production into their computational models. Almedallah 
and Walsh, (2019b) highlight the importance of incorporating well and facility data into 
optimization models that minimize development and production costs. Similarly, Tygesen et al. 
(2019) assessed the maintenance schedules of offshore infrastructure by developing a Bayesian 
neural network model that updates fatigue predictions in real time using structure and sea 
condition observations.  

The analytical approach to lifespan assessment of offshore structures proposed in this paper 
builds off several of these studies by incorporating structural characteristics along with historic 
MetOcean, structural- and weather-related incident data into unique ML and statistical models. 

1.4 CURRENT STATE OF INFRASTRUCTURE IN THE GULF OF MEXICO 

Following a low in September 2011, offshore oil production and exploration has maintained a 
steady year-over-year increase in number of barrels produced. As of March 2019, daily oil 
production in the GoM was 1.9 million barrels, an increase of about 300,000 barrels per day 
compared to March 2018 (EIA, 2019). According to publicly available platform data from 
BOEM (2019), there are roughly 2,000 exploratory or production platforms operating in the 
GoM and only 50 of those were installed after September 2011. This indicates, at least in part, 
that most of the increase in production can be attributed to older wells—some of which are 
approaching 50 years in operation. As a whole, the average age of currently installed platforms 
in the GoM is just over 34 years (BOEM, 2019), on par with the ages of offshore infrastructure 
reported in other areas of the world (Animah and Shafiee, 2016). Assuming that the average 
design life of the infrastructure in the GoM is also similar to other areas of the world, it would 
mean that a portion of the operating infrastructure has surpassed its design life.  

Rigs and platforms are the two main types of infrastructure operating in the GoM. BSEE defines 
rigs as “a major component that is added atop an offshore structure or platform, or is a part of a 
‘self-contained’ mobile drilling unit such as a drillship, semisubmersible, jackup, or mobile 
offshore drilling unit (MODU)” (Hawkins, 2019). Similarly, a platform is “a raised offshore 
structure that can support many different functions for offshore oil and gas operations. Platforms 
typically have one or more wells and can either be manned or unmanned” (Hawkins, 2019). 
Within each of these categories are several different types of rigs and platforms (Table 2).  
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Table 2: Descriptive Statistics for the Platforms in the GoM (BOEM, 2019) 

Platform Type Current Count Removed Count Operating Depth 

Fixed Fixed: 1,320 

Caisson (CAIS): 408 

Subsea Template (SSTMP): 0 
Well Protector (WP): 5 

Compliant Tower (CT): 3 

Fixed: 2,461 

CAIS: 2,173 

Subsea Template (SSTMP): 1 
Well Protector (WP): 637 

Compliant Tower (CT): 0 

<= 1,540 m 

Mobile Offshore 
Production Unit 
(MOPU) 

MOPU: 1 
Floating Production, Storage, and 
Offloading Systems (FPSO): 2 

Spar: 18 

Tension-leg Platform (TLP): 14 

Mini TLP (MTLP): 4 
Semi-Submersible (SEMI): 11 

MOPU: 3 
Floating Production, Storage, 
and Offloading Systems (FPSO): 
0 

Spar: 1 

Tension-leg Platform (TLP): 0 
Mini TLP (MTLP): 1 

Semi-Submersible (SEMI): 2 

>500 m 

Unknown 228 0 varies 

 

There are at least nine different platform and rig types operating in the GoM (Table 2). The 
majority of the platforms are fixed and situated in water depths of less than or equal to 1,540 m 
(5,050 ft). The deepest operating platforms are semi-submersible, operating in depths of about 
3,000 m (9,800 ft) and located up to 200 mi. from shore. Platforms operating at the greatest 
depths and distances from shore are not as common, yet they account for a large portion of the 
total offshore oil production in the GoM (Figure 1) (EIA, 2019).  
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Figure 1: Map of the locations of platforms in the northern Gulf of Mexico symbolized by structure type 
including fixed, mobile offshore production units (MOPU), and unknown. 1 

 

Table 3 provides information on the age at which platforms in the GoM are removed from their 
installed location. This does not necessarily mean they are decommissioned. In some cases, the 
removed platforms are moved to other locations to continue their operations elsewhere. Some 
may receive a workover after removal, some may not. The average age at which the platforms 
are removed is 6.5 years and 20.6 years for MOPU and fixed platforms, respectively.  

 

 

 

 

 

 

 

 

1 Platform data was acquired by BOEM (2019) and is current as of December 2019. Platforms 
with a removal date are considered removed, otherwise are currently in use as of the data 
acquisition date. 
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Table 3: Age at Removal Statistics for Removed Platforms by Overall Structure Type 

 Fixed MOPU 

Count 5,271 8 

Average Age at 
Removal (years) 

20.6 6.5 

Standard Deviation 13.4 2.5 

Min 0 2.6 

Max 71.6 10.5 
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2. METHODS 

The approach for analyzing the integrity of offshore platforms in the GoM proceeded in two 
phases. Phase 1 was exploratory with a focus on identifying possible data sources for the analysis 
of infrastructure integrity and subsequently evaluating ways the data could be collected, 
processed, and incorporated. The initial data discovery was guided by previous work on 
infrastructure integrity (Section 1.2). Data includes offshore rig and platform incidents (BSEE, 
2019a), platform structural and location records (BSEE, 2019b), and MetOcean data (Appendix 
B). Figure 2 (Phase 1) details the steps taken to compile the data into a usable database for 
analyses. After collection, Phase 1 also focused on exploratory analysis to build an initial 
understanding of the relationship between the removal age of a platform and other environmental 
and structural correlates that were identified as integral to the integrity of offshore infrastructure.  

Variables were analyzed through exploratory statistics and spatial regression. This provided 
insights in the factors that were statistically related to the conceptualization of lifespan—age at 
removal. Data and results of the analysis were then released to an internal Offshore Analytical 
Platform for visualization.  

 

 
Figure 2: Workflow for processing, combining, and analyzing platform data in the two phase 
approach. 

 

The Phase 2 leveraged the data and findings from Phase 1, introduced additional data to fill any 
identified gaps, and used several analyses to predict age at removal and risk likelihood. 
Specifically, Phase 2 implemented predictive ML models and geostatistics. These methods 
included gradient boosting classification (GBC), ANN, and geographically-weighted regression 
(GWR). In addition, Phase 2included the refinement of the lifespan variable, aimed at building a 
more explicit connection between the information provided in the incident dataset and the 
project’s overall goal of characterizing offshore infrastructure integrity. The refinement of the 
lifespan variable also aimed at creating a more robust dataset for use by the ML models. Work 
on improving the models is ongoing as the team continues to collect and prepare new sources of 
data related to offshore infrastructure integrity. 
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2.1 DATA ACQUISITION AND PROCESSING  

The research team identified several publicly available data sources describing offshore 
infrastructure, platform, and rig incidents from BOEM and BSEE. This data was acquired and 
regularly updated using customized Python scripts (Appendix A). As for environmental 
variables, the research team consulted with subject matter experts to identify and acquire 
MetOcean data (Appendix B). All datasets went through a rigorous quality assurance and quality 
control (QA/QC) procedure to check for errors in formatting, spelling, and record redundancy. 
All data was standardized (structure names in infrastructure and incident data tables) for 
compilation and included in the exploratory and advanced statistical and spatial analytics. Any 
data collection and processing that occurred during the Phase 2 of the study was aimed at filling 
data gaps that were identified during Phase 1. A version of this dataset will be released through 
NETL’s Energy Data eXchange website (EDX) at the end of Phase 2 for future use (Romeo et 
al., 2021). 

2.1.1 Infrastructure Records 

Information on platform and rig complexes were acquired through BSEE (2019b). Data were 
available as a series of related tables that required joining. The tables “Platform Masters”, 
“Platform Structures”, and “Platform Locations” were joined based on the key fields “Complex 
ID” and “Structure Number”.2 The “Platform Masters” table contained 6,927 records (December 
2019) and included information on flagged status (i.e. drilling, abandoned, production), 
equipment counts, and lease block. The “Platform Structures” table contained 7,074 records 
(December 2019) and included fields for installation, revision and, if applicable, removal date, 
authority information, and structure type (i.e. fixed, tension-leg platform). The “Platform 
Locations” table, made up of 7,293 records (December 2019), included latitude and longitude for 
each record, providing for spatially explicit analyses. All formatting was performed using Python 
scripts that have been designed to automatically update NETL’s resources as new data became 
available. 

The resulting table contained 7,293 records with information on structure name, production 
status, equipment counts, locational information, water depth, installation, and if applicable, 
removal dates. This table was divided into two separate tables for platforms and rigs. Phase 1 of 
this project was specifically focused on platforms. Future work will focus on rigs. The resulting 
platform table contained 7,293 records. In addition to the flat file, it was also converted into a 
spatial format (shapefile), which is displayed by structural type in Figure 1.  

2.1.2 Incident Data  

In addition to platform information, BSEE also maintains a database of incident records for 
production platforms, drilling rigs, and pipelines operating in U.S. waters. Incidents are defined 
to include all serious accidents, fatalities, injuries, explosions, and fires that take place on the 
offshore infrastructure. As previously mentioned, reporting requirements for incidents changed 
in 2006 when BSEE began to require operators to report all incidents that had the potential to be 

 

 
2 These tables can be found on the BSEE data portal and are named as such.  
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serious. This included situations that caused damage to the facility, worker injuries requiring 
days away from work, and also damage to the property that exceeded $25,000. Following 2006, 
incident reporting also began to include weather-related damage to infrastructure. A breakdown 
for the number of incidents associated with each category of platform is detailed in Figure 3. 

 

 
Figure 3: Number of incidents from 2006–2018 per type of platform. 

 

Incident reports from 2006 through 2013 were acquired through from BSEE’s oil and gas 
operational reports and incidents ranging from 2013 through 2018 were acquired as data tables 
from BSEE (Appendix A). The latter included self-reported incidents that occur on offshore oil 
and gas platforms in the GoM. Incident records from all sources were merged based on similar 
attributes. Additional attributes included structure name and type, lease block, damage cost, 
fatalities, injuries, loss of well control, fire and explosions, collisions, and whether or not a spill 
occurred. Incidents ranged from false alarms to deadly explosions, while other incidents resulted 
in no structural damage. The combined incident table currently contains 3,908 incident records 
for both platforms and rigs, of which 2,598 are structural- and weather-related (December 2019).  

 Incident Classification 

To determine whether an incident may affect structural integrity, the analysis began by 
classifying them into three groups—structural, weather-related, and human-related—based on 
impact and cause. The incident dataset contained rudimentary indications of what and who was 
involved, but minimal information on what ultimately led to the incident. Therefore, a set 
protocol was developed and applied to semi-automatically classify each incident based on the 
description, identified keywords, and any prior categorization (human-related). Structural and 
weather-related incidents were used in the integrity analyses, while human-caused incidents were 
only included if the incident may have been structural or weather-related.  

To ensure the precision of the classifications, a short test-case was completed using 50 randomly 
selected incidents that were manually classified separately by four researchers. Each researcher 

0

50

100

150

200

250

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

In
ci

de
nt

 C
ou

nt

Year

2006-2018 Platform Incidents by Type

FIXED MOPU UNKNOWN



Evaluating Offshore Infrastructure Integrity 

16 

recorded key terms that directly corresponded to whether an incident was structural, weather-
related, or human-related. Once complete, the classifications were compared among researchers 
and any discrepancies were noted. Findings from the comparison were used to build a coding 
protocol for the remainder of the unclassified incidents. The keywords and phrases generated 
from the test-case were compiled into a lookup table for automatic classification. For example, 
“wind” or “large swell” indicated weather, while “injured person” or “slip” were human-related 
terms. The resulting classification rules and term library were written into a Python script and 
used to classify the remaining incidents.  

The script classified incidents by creating a list of all the structural, weather, human, and “no 
damage” key terms. At this initial stage, all incidents are assumed to be structural (i.e. the 
structural category receives a 1 and the other categories receive a 0 in the dataset). Then the 
script progressed iteratively through each incident while scanning the incident descriptions for 
key terms related to human, weather, and no damage in the lookup table. In the case where the 
script encountered structural key words along with key words related to the other categories, the 
script alerted the team member who manually determined the final classification based on the 
coding protocol below3. This process continued until all incidents had been classified. The 
protocol for the classification of incidents were as follows: 

1. The structural category is defined as whether or not the incident caused damage to 
the structure or equipment 

2. The weather and human categories are defined as whether or not the incident was 
caused by weather or human error 

3. When an incident involves an injury but no equipment damage or impact to 
operations, the incident is classified as human-related 

4. Human-related cannot be assumed if not explicitly stated (i.e. if it was an incident 
involving a crane and not explicitly called out as a human-made an error, it was not  
assumed human-caused) 

5. All incidents with a cost associated are structural  
6. If no equipment damage is stated explicitly and there is no weather-related damage 

then an incident can be all 0, and will not be included in the analysis 
7. If there is a fire and the incident does not explicitly state that there was no damage, it 

is classified as a 1 for structural (and other categories if applicable) 
8. Fire with no damage is classified  as only human-related if it was caused by a human 

(scaffolding left in front of exhaust vent) 
9. Lightning causing a fire is classified as both structural and weather related 

Following this process, 90% of the classifications were structural, 10% weather-related, and 22% 
human-related, keeping in mind that classifications are not mutually exclusive. In total, 2,655 
incident records were included in the analyses. 

 

 
3 Classifications are not mutually exclusive. 
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 Severity Index 

The incident descriptions made clear that not all incidents were created equal. Some were more 
severe than others which required the development of a severity index. The team initially 
summarized severity on a per incident basis. Structural and weather-related incidents were given 
a severity score using the variables posited to relate back to structural integrity. Specifically, the 
variables included fire explosion ranked by category (i.e. Catastrophic = 5, Major = 4, Minor = 3, 
Incidental = 2), presence of explosion or fire (0/1), loss of well control (0/1), oil spill (0/1), or 
H2S released (0/1), and if there was equipment involved or equipment failure noted (0/1). 
Severity values were further informed by whether a collision had occurred, whether there was 
any property or external damage, the property damage cost (Major or over $25,000 = 3, Minor or 
less than or equal to $25,000 = 2), and whether the incident required muster or required facility 
shut-in. The initial score ranged in value from 0 to 4.82. To account for multiple incidents on a 
single platform, severity scores were summarized and standardized by platform for a final value 
between 0 and 1.  

 Incident-to-Infrastructure Matching 

Incident data was structured as a flat file with no explicit spatial information. Moreover, there 
was no unique identifier linking the incidents to specific platforms within the BSEE and BOEM 
data (Appendix A). The team took a unique approach to matching by developing a Python script 
(also adaptable for incident-to-rig matching operations) that matched incidents to platform based 
on structure name, type (i.e. fixed, CAIS, MOPU), date of the incident, and, if applicable, the 
removal date. Matches were then validated at the lease block level. In total, this method matched 
1,702 structural and weather-related incidents (64%) to 425 platforms. Of the 2,598 structural 
and weather-related incidents, 36% were left unmatched, possibly due to missing data, data entry 
errors, and inconsistent formatting. 

The matched data was formatted in two ways. First, the most widely applied dataset contained a 
single record per platform, with summarized incident attribute counts. It included information on 
each platforms age (calculated as years from installation to present or installation to removal), 
equipment counts (as a proxy for complexity), locational information (latitude and longitude 
coordinates and lease block), incident count, and standardized incident severity scores (as shown 
in Figures 4 and 5). Second, the dataset was formatted by incident record with platform 
information associated to each incident. This dataset contained more descriptive information for 
each incident along with platform location and structural information.  
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Figure 4: Number of structural- and weather-related incidents per platform record, colored 
by type. 4 

 

 

 
4 Incident records acquired from BSEE (2019a) and matched to platform records for 
visualization and analytics. 
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Figure 5: Normalized cumulative incident severity by platform and type.5  

 

2.1.3 Metocean Data 

An extensive collection of MetOcean data was acquired (Appendix B), including datasets for the 
main sources of ambient loadings (wind, wave, and currents), data associated with corrosion in 
the GoM, and storm data which includes information on global hurricanes. Figure 6 illustrates 
the spatial extent and temporal changes of sea-surface velocity as an example.   

Specific data for ambient loading included current velocity (m/s), wind speed (m/s), significant 
wave height of combined wind waves and swell (m), mean wave period (s), primary wave 
direction (°), and wave power (kW/m) all at the water surface, or the standard 10 m above sea 
level in the case of wind. The mean, median, minimum, maximum, 25th percentile, 75th 
percentile, and 90th percentile was calculated for each MetOcean variable at each platform 
location. Two of the MetOcean variables required additional processing: the wind and current 
speed, which is the magnitude of the u- and v-components, and the wave power, which is 
calculated using wave height (h) and wave period (p) (Herbich, 2000): 

 

ݎ݁ݓ݋݌ ݁ݒܽݓ 0.5݄ଶ ×  ݌

 

 
5 Cumulative incident severity calculated using structure- and weather-related incidents from 
BSEE (2019a) and is normalized. 
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In addition to the MetOcean variables, storm data were processed and spatially summarized 
using the NETL’s Cumulative Spatial Impact Layer™ (CSIL) tool to reflect the number of times 
each platform was potentially impacted by a tropical storm or hurricane (Romeo et al., 2019a; 
Romeo et al., 2019b). Separate summaries were made for each hurricane category (1–5) as well 
as tropical storms. In order to determine whether a storm impacted a platform, first the radius of 
each storm center needed to be estimated. Following Mei et al., (2013), the track distances were 
pulled from the storm data and applied to each storm track. An interaction between storm and 
platform was recorded if a platform fell within the radius of the storm. When calculating the 
number of days, the mean time between storm observations (0.23 days) was considered (i.e. 
storms had to last longer than 0.23 days in order to increase the number of days a platform was 
affected by a storm). In addition to storm radii, the storm track data also included wave height 
for a given radii, maximum sustained wind speed, and maximum reported wind gust. The count, 
minimum, maximum, and mean for each of those variables were summarized for each platform.  

It is important for the time series analysis to cover the full temporal range of each platform’s 
lifespan; however, the current availability of MetOcean data is not adequate to cover the full 
platform temporal range (1942 to 2020). Specific MetOcean datasets were picked to best cover 
this temporal range. Currently, the wind and wave-related data covers a range from 1979 to 
2019, the storm data ranges from 1842 to 2019, and the surface current data ranges from 1993 to 
2019. When available, MetOcean statistics were calculated for the time period between the 
install and removal dates of each platform. If a platform did not have a removal date, it was 
assumed that the platform was still active and the data was processed to the most current 
MetOcean date. After all of the MetOcean and hurricane data was summarized for each platform, 
the statistics were matched to the infrastructure-incident dataset to create a summary table of the 
physical characteristics, incident history, and MetOcean conditions for each platform record. 
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Figure 6: Maximum sea-surface velocity magnitude (m/s) from a data-assimilating ocean 
model (HyCOM GoM) from twelve years of data (2003–2014). 

 

2.1.4 Corrosion Data 

Ocean ambient conditions influence the rate at which the materials of a structure will corrode. In 
particular, current velocity, temperature, salinity, dissolved oxygen, and microbial activity are 
known to affect the corrosion rate of metals. A full list of the variables used to model corrosion 
are included in Appendix C. Nitrate, phosphate, and silicate were used here as a proxy for 
microbial activity and biological growth since nutrients usually imply living organisms. The 
research team found that the effects of corrosion directly impact the integrity of an offshore 
structure over long periods of time. Therefore, it is hypothesized that adding corrosion data into 
the models will increase performance and contribute to a more robust result. There are two 
methods used to incorporate corrosion information into the models. 

The first method used corrosion equations based from the literature. The most basic equation for 
modeling corrosion is the “power-law” model (Melchers, 2016): 

 

ܿ = 0.14 ×  ଴.଻ହݐ

 

where t is the number of years and c is the corrosion value. The corrosion value can be calculated 
for each platform record, which will be the corrosion variable to add into the models. 

The second method follows the approach taken for wind, wave, and current velocity data, which 
is to include statistics for ambient conditions per platform location directly into the model. The 
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advantage of this approach is that it will test to see if the models can indirectly detect a signal of 
corrosion and its hypothesized effect on the dependent variables (integrity measures). 

 Dependent Variable 

This analysis considers platform age as the dependent variable of interest. Platforms with longer 
lifespans are generally considered to have higher integrity (or maintained operational integrity 
over a longer period of time), while structures with shorter lifespans are assumed to have 
experienced conditions that degraded their integrity at a higher rate, resulting in removal at a 
younger age. The variable was calculated as the difference of the installation year and removal 
year. As such, only platforms that have been decommissioned or removed are included in the 
initial assessment.  

 Explanatory Variables 

As detailed in the previous sections, the selection of explanatory variables was based on a 
literature review followed by a cataloging of data availability. Of particular interest was the 
structural factors found across the platforms (Table 4), the wind, wave, current, and storm 
information derived from MetOcean data (Appendix B), and data that may contribute to 
corrosion (Appendix C).   

 

Table 4: Explanatory Variables Related to the Platform Characteristics, the Range of Each 
Variable’s Value, and the Data Type 

Variable Type of Variable Range of Values 

Structure Type  Categorical 
Fixed, CAIS, SSMT, WP, CT, MOPU, MODU, 

FPSO, TLP, MTLP, Spar, SEMI, unknown 

Water depth Continuous 1–10,000 (ft) 

Incident count Continuous 0–28 

Overall incident severity  Continuous 0–1 

Average age of platforms during 
incidents 

Continuous 0.2–63.5 

Age of platform at last recorded 
incident 

Continuous 0.3–63.5 

Rig count Continuous 0–1 

Crane count Continuous 0–5 

Slant slot count Continuous 0–11 

Slot Count Continuous 0–62 

Slot drill count Continuous 0–60 
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2.2 DATA ANALYSIS 

Phase 1 of the data analysis evaluated potential correlation and spatio-temporal trends among the 
dependent variable (2.1.5.1) and explanatory variables (2.1.5.2) through statistical and spatial 
analytics and visualization. Explanatory variables were also examined for cross-correlation to 
determine any covariance and the possibility of variance inflation.  

Leveraging lessons learned from Phase 1, Phase 2 employed ML algorithms and predictive 
analytics to model the expected lifespan of platforms and identify potential areas or platforms of 
greater risk.  

2.2.1 Phase 1 – Exploratory Analysis 

Inferential statistics in the form of correlational analyses identified whether any significant 
patterns existed between the independent and dependent variables. Considering that different 
platform structures have different purposes, platforms were analyzed by their type (fixed, 
mobile, and other, Figure 1). The fixed category contains several sub-types including CAIS, 
SSTMP, WP, and CT. Similarly, the mobile category included MOPU, MODU, FPSO, Spar, 
TLP, MTLP, and SEMI as sub-categories. Unknown structure types included all platform 
records where structure type was not provided. In terms of when these platforms are removed, 
MOPU tend to be more mobile than fixed platforms which contributes to their lower age at 
removal when compared to fixed platforms (Figure 7).   

 

 
Figure 7: Violin plots of platform age at removal by overall structure type using known 

removed platforms data. 
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 Correlation Analysis and Initial Risk Index Generation  

Statistical tests were used to evaluate which platform and incident variables were correlated in a 
statistically significant way to the platform’s lifespan. This began by identifying whether there 
were statistically significant differences between the different platform types using T-Tests on 
age at removal (removed platforms). Then, a covariance matrix was used to test the explanatory 
variables (Table 4) for independence. This was done using each structure type and then for the 
dataset as a whole (Figures 8–11). High covariance between some of the explanatory variables 
led to the removal of some variables from further analytics. The remaining variables were 
evaluated against age at removal using several statistical tests. The specific test that was applied 
to each variable varied based on key test assumptions (i.e. variable types, ranges). 

Numerical Data: The Kendall rank correlation test was used to evaluate the similarities in 
paired data of numerical values (Abdi, 2007). This test determines the strength of the association 
between the values for each tested pair of variables. In this instance, it was used to compare 
several of the explanatory variables (water depth, incident severity, average age of incident(s), 
last age of incident, crane count, slot count, slant slot count, slot drill count, classified wave 
height, and classified wind speed) with age at removal, stratified by type. Each of the tested 
variables had a continuous scale and followed a monotonic relationship, meeting the assumptions 
of the test. Statistical significance was determined by the tau value and sign (positive or negative 
relationship). 

Categorical Data (2 Categories): In addition to measuring the statistical significance of 
structure type by lifespan, rig count and slant slot count were evaluated against age at removal 
using T-Tests and the analysis was stratified by structure type. Both rig count and slant slot count 
had two categories. The T-Test was used to compare the means between the observations within 
the categories to determine whether the variation was statistically significant (Table 4) (Kim, 
2015). Statistical significance was determined by a p-value ≤0.05. 

Categorical Data (3+ Categories): The Kruskall-Wallis Test is a non-parametric test commonly 
used for comparing a categorical variable to a numerical variable (McDonald, 2009). This test is 
appropriate for data that are not normally distributed. Thus, it was an appropriate approach for 
comparing crane count, slot count, slot drill count, slant slot count, classified current speed, 
classified wave height, and classified windspeed against age at removal. These explanatory 
variables had more than two categories and therefore this test was used to determine whether 
there was a significant difference in median age at removal between the categories. Statistical 
significance was determined by a p-value ≤0.05. 

Risk Index: Statistically significant results from each of the tests were then used to create a risk 
index, which was applied to the remaining existing platforms. This index represented integrity, 
where lower risk indicates higher integrity, and lower integrity indicates higher risk. The first 
step in calculating the integrity index is to normalize the platform age by subtracting the average 
age at removal by type ݐ from the platform ݅ current age: 

 
௜௧݁݃ܣ = ௜݁݃ܣݐ݊݁ݎݎݑܥ െ  ௧ሻ݁݃ܣ݈ܽݒ݋ሺܴ݁݉݃ݒܣ

 
The age (݁݃ܣ௜௧ሻ value was then scaled depending on a positive or negative result. If ݁݃ܣ௜௧ was 
negative it was divided by the minimum age of the platforms of type ݐ and multiplied by 
negative one. If the value was positive it was divided by the max age of platform type ݐ: 
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௜௧݉ݎ݋ܰ݁݃ܣ = ݂ሺ݁݃ܣ௜௧ሻ ൞

௜௧݁݃ܣ

݉݅݊
∗ െ1, ௜௧݁݃ܣ݂݅ ൏ 0

௜௧݁݃ܣ

ݔܽ݉
௜௧݁݃ܣ݂݅      , ൐ 0

 

  
Next, the risk values considered the crane count, slot count, and slot drill count for each platform 
݅. This was determined by the total number installed on the platform (݆ሻ and then scaled by the 
platform type (ݐሻ: 
 

௧௜ݐ݊ݑ݋ܥ݁݊ܽݎܥ = ݂ሺݐ, ݆ሻ ൞

݆ ∗ .75, ݐ ݂݅ =   ܵܫܣܥ
݆ ∗ െ1, ݐ ݂݅ = ܦܧܺܫܨ
݆ ∗  െ.5, ݐ ݂݅ = ܹܲ  
݆ ∗  .25, ݐ ݂݅ = ݄ݐ݋

 

 

௧௜ݐ݊ݑ݋ܥݐ݋݈ܵ = ݂ሺݐ, ݆ሻ ൞

݆ ∗ .75, ݐ ݂݅ = ܫܣܥ   
݆ ∗ െ1, ݐ ݂݅ = ܺܫܨ
݆ ∗  .25, ݐ ݂݅ = ܹܲ  
݆ ∗  .25, ݐ ݂݅ = ݎ݄݁ݐ݋

 

 

௧௜ݐ݊ݑ݋ܥ݈݈݅ݎܦݐ݋݈ܵ = ݂ሺݐ, ݆ሻ ൞

݅ ∗ െ1, ݐ ݂݅ =   ܵܫܣܥ
݅ ∗ െ1, ݐ ݂݅ = ܦܧܺܫܨ
݅ ∗  െ.75, ݐ ݂݅ = ܹܲ  
݅ ∗  െ.25, ݐ ݂݅ = ݎ݄݁ݐ݋

 

 
The risk related to incidents was determined as the sum of the scaled (0 – 1) incident severity and 
scaled incident count. Lastly, the risk associated with oceanographic conditions was determined 
with the classified values for current velocity, wave height, and wind speed, and the scaled depth 
values (0 – 1).  

 

௜ݔ݁݀݊ܫݐ݊݁݀݅ܿ݊ܫ =  ෍ ,௜ݕݐ݅ݎ݁ݒ݁ܵܿ݊ܫ ௜ݐ݊ݑ݋ܥܿ݊ܫ

௜ୀଵ

 

 

௜ݔ݁݀݊ܫݐܾ݊݁݅݉ܣ =  ෍ ,݈ܸ݁ݎݎݑܥ ,ݐ݄݃݅݁ܪ݁ݒܹܽ ,݀݁݁݌ܹܵ݀݊݅ ௜݄ݐ݌݁ܦ

௜ୀଵ

 

 
The formal risk index for each platform was then calculated as follows: 

 
௜௧݇ݏܴ݅ =  ෍ ௜௧݉ݎ݋ܰ݁݃ܣ ,

௜ୀଵ

௜௧ݐ݊ݑ݋ܥ݁݊ܽݎܥ , ௜௧ݐ݊ݑ݋ܥݐ݋݈ܵ , ௜௧ݐ݊ݑ݋ܥ݈݈݅ݎܦݐ݋݈ܵ , ௜ݔ݁݀݊ܫݐ݊݁݀݅ܿ݊ܫ , ௜ݔ݁݀݊ܫݐܾ݊݁݅݉ܣ    

 

 Exploratory Spatial Regression 

Exploratory spatial data analysis (ESDA) is the process of investigating data to understand 
patterns and associations between variables that are explicitly tied to the geography of the data. 
Most spatial data exhibit some pattern of correlation related to where they are located. Features 
that are closer together in geographic space tend to be more closely related than features that are 
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further apart (Tobler, 1970). This characteristic of spatial data is effectively termed as spatial 
autocorrelation. 

Failing to consider autocorrelation can have a detrimental effect on the interpretation of the 
modeling results. Specifically, it can alter both the significance and magnitude of the effect of 
the independent variables. That said, the Phase 1 analysis used spatial regression as an 
exploratory analysis tool to identify whether spatial autocorrelation was present in the dataset 
and to begin to understand the magnitude of the effect that the explanatory variables had on 
integrity. Spatial autoregressive models are a type of exploratory spatial regression and are 
particularly well suited for controlling for the effect of space on the dependent variables. The 
spatial autoregressive model takes the form: 

 
௜ݕ = ௢ߚ  + ߚܺ + ௜ݕ௜ݓߩ + ߳௜ 

 
where ݕ௜ is the dependent variable, ߚ௢ is the intercept, ܺ is an n x k matrix of independent 
variables, ߚ is a k x 1 vector of coefficients, and ݓߩ௜ݕ௜ is the spatial weights matrix reflecting the 
lagged dependent variable.  

Following the correlational analysis, several independent variables were considered, including 
the incident severity, current speed, wave height, and dummy variables representing structure 
types WP, CAIS, and other, with fixed platforms as the reference group. In total, four models 
were estimated—two ordinary least square models that included tests for spatial autocorrelation 
(Moran’s I) and variance inflation factors (multicollinearity among independent variables), as 
well as two spatial lag models with the additional independent variables of platform depth, 
incident count, wind speed, and distance to shore (Table 4).  

2.2.2 Phase 2 – Predictive Analytics 

While there are many predictive algorithms that could be applied for the goals of this project, the 
team developed a GBC model, ANN model, and Long Short-Term Memory (LSTM) neural 
network (NN) for two purposes. First, these models enable us to explore the tradeoffs between 
statistical ML models and neural networks. Second, this multi-faced approach serves as a 
robustness check of the results. 

The GBC and ANN models were used to predict the proxy variable for integrity, Age at 
Removal, which was recast into removal age classes of 0–11 years, 11–20 years, 20–30 years, 
30–42 years, or 42–72 years. Both classification models were designed to predict the age bin a 
platform should fall into given the associated features and their relationship to age at removal. 
The GBC uses variables from the training of the model that are identified through an iterative 
feature evaluation technique. The ANN uses all features except individual incident presence 
absence labels (Appendix C and D). These models have computational characteristics that 
benefit this classification problem, but also have characteristics that introduce uncertainty. In 
order to assess the best approach moving forward, these two models are compared using multiple 
evaluation metrics to determine which algorithm is better fit for this classification problem. 

In addition to the above ML approaches, an additional spatial-analytic predictive model was 
developed and employed. GWR is a relatively new technique that is sensitive to spatial non-
stationarity across the dependent and independent variables. The GWR model considers local 
spatial variation in the data and estimates model coefficients for each observation. Moreover, a 
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predictive model can be developed using a train-test approach after creating a GWR model. 
Phase 1 provided the necessary information for variable selection and the GWR model was 
developed using distance to shore, Category 4 hurricane days, max wave power (log), max wave 
period, and max wave height.  

Finally, a LSTM NN model is currently under development to predict risk likelihood and 
estimate incident impact on lifespan. Unique to LSTM NN models is the use of time series 
predictions (Malhotra et al., 2015; Pham et al., 2017). For this project, a LSTM NN model is 
beneficial because it takes as input both categorical and continuous features. With this 
information, LSTM NN models are able to capture incidents overtime and their relationship to 
the combination of environmental and structural conditions that converged at the time of the 
incident. However, with the size of the current dataset and number of input features available, the 
LSTM NN model is unable to adequately learn and make predictions. The model can be 
improved with a larger number of features and records or, alternatively, a model may be created 
similar to the ANN mentioned above with the addition of incident dates and infrastructure info at 
those dates to predict risk under current circumstances. 

 Evaluating Model Performance 

While the GBC and ANN algorithms have a different architecture, there are still common ML 
methods that can be used to evaluate the performance of each classification model and compare 
the two. Comparing each model’s ability to predict each class provides a deeper understanding of 
how well certain age at removal year ranges can be predicted.  

Here, the percent of correct predictions on the training and testing sets for both models are used 
to evaluate which model has an overall higher accuracy at predicting the age at removal for a 
platform. The evaluation metrics precision, recall, and F1 score are used to determine how well 
each model can predict the age at removal class. The precision metric indicates the ability of the 
classifier to not mislabel a class, the recall metric indicates the ability of a classifier to find all 
correct labels, and the F1 score is a weight of the precision and recall metrics.  

As far as the GWR model is concerned, it is a completely statistical approach to prediction. 
Drawing from linear relationships between variables and the spatial patterns present in the data, 
the model predicts values at unknown locations using the coefficient values from a training 
dataset. To evaluate model performance, an R2 can be calculated between the y (observed) and y-
hat (predicted) values for the out-of-sample prediction. In addition, a correlation coefficient 
between the observed and predicted values is also computed.  

Each variable in the model will have a certain amount of predictive power when determining the 
age at removal. This is important to understand as it can indicate which variables are strong and 
poor predictors of integrity within a given study area. Importantly, not all offshore environments 
are the same, and the results from one system may not carry over to another. To gain a better 
understanding of a specific operating environment, decision makers need to know which 
variables are contributing the most to the degradation of infrastructure integrity. They can then 
monitor these specific variables and make more informed decisions regarding the deployment of 
resources, mitigation efforts, or increased monitoring.  

For the GBC model, a Gini number is used to identify the variables with the most predictive 
power. For the ANN model, Feature Permutation Importance (Breiman, 2001) as a measure of 
the change in cross-entropy loss when the feature is randomly permuted from the model is used 
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to determine the most influential features. Finally, the variables in the GWR model can be 
standardized and the magnitude of the standardized variables can be used to determine 
importance.  
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3. OBSERVATIONS AND RESULTS 

This work was aimed at two objectives. First, it sought to assess the integrity of existing offshore 
infrastructure by collecting data on the offshore environment, associating structural and 
environmental characteristics to infrastructure, and analyzing the relationships between those 
variables and the proxy variable used to measure integrity. Second, this work set out to identify 
areas or specific infrastructure that are at-risk of potential failure given the identified 
relationships between infrastructure integrity and the associated structural and environmental 
variables. These two objectives were met using a two-phase approach. Phase 1 explored the 
relationship between each explanatory variable and their individual contributions to integrity 
using several inferential statistical techniques. Phase 2 developed and tested methodological 
approaches capable of predicting the date that platforms were removed.  

3.1 CORRELATION ANALYSIS 

Correlation tables were prepared for each of the explanatory variables and for each structure 
type. In addition, Figure 8 details the correlation matrix for each of the explanatory variables 
over all structures. Within the correlation plots, red values indicate a negative correlation and 
blue values indicate a positive correlation. The hue of the color represents the strength of the 
correlation.  

Across each of the platforms, there are some clear patterns that emerge. The strongest 
correlations for all structure types are between slot count, slant slot count, and age at last incident 
(Figure 8). Slot count and slot drill count are not surprisingly correlated and slant slot count and 
average age at incident are highly correlated (.88). The number of incidents is strongly correlated 
with cumulative incident severity (.91) because it was used in the creation of the severity 
variable. The number of incidents is moderately correlated with water depth (.53), indicating that 
there is some association between deeper platforms having more incidents.  
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Figure 8: Correlation of explanatory variables for all structure types. 

 

Recall that fixed structure types are most abundant in the offshore GoM and have a correlation 
pattern that is similar, yet distinct, from the pattern depicted when all structure types are 
considered (Figure 9). Slot count and slant slot count remain highly correlated (.93), and so too 
does cumulative incident severity and number of incidents. The correlation between water depth 
and number of incidents has dropped (from .53 to .47), but this is to be expected given the 
geographic concentration of fixed structures in shallow waters. Interestingly, there is a 
substantial drop in correlation between rig count and number of incidents when only considering 
fixed platforms (from .31 to .16).   
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Figure 9: Correlation matrix of explanatory variables for fixed platform structure type. 

 

MOPUs generally operate in deeper water and are more complex structures, resulting in a 
different correlation pattern than fixed or all structures combined (Figure 10). In a similar 
manner to fixed platforms, the correlation between water depth and number of incidents is 
significantly lower when only considering MOPU (.11). Where water depth was positively 
correlated to slot drill count for fixed structures (Figure 9) and for all structures (Figure 8), it 
displays a moderate negative correlation for MOPU (-.34). For number of incidents, rig count, 
crane count, and slot count are all positively correlated and positive—perhaps indicating that a 
more complicated structure is associated with more incidents.  
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Figure 10: Correlation matrix of explanatory variables for MOPUs structure type. 

 

Due to the unknown structure type, there were very few structural correlates that could be 
examined (Figure 11). Information on rig count, crane count, and water depth, were examined 
along with number of incidents. Interestingly, unlike the other structures, these variables were 
negatively correlated with number of incidents.  
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Figure 11: Correlation matrix of explanatory variables for unknown structure type. 

 

3.2 SPATIAL REGRESSION 

Table 5 shows the magnitude and direction for each coefficient. The first two models do not 
account for spatial autocorrelation but did test for it. The test statistic (Moran’s I) and VIF 
(variance inflation factor) are both significant, indicating strong spatial autocorrelation across the 
dependent variable and high multicollinearity among some of the explanatory variables. The 
second OLS model drops several of the correlated variables and with that a significant drop in 
the VIF.  

Model 3 includes controls for spatial autocorrelation and indicates a positive and significant 
effect of severity of incident on age at removal. This is not an expected result as it was assumed 
that incident severity would decrease lifespan (contribute negatively to integrity). The coefficient 
on wave height is significant and negative indicating that as wave height increases, platforms 
have a shorter lifespan. The model explains 33% of the variance. 

Model 4 also accounts for spatial autocorrelation and indicates a small improvement in explained 
variance with the addition of variables for platform type using fixed as the reference category (R2 
= .37). Severity and wave height retain their direction and significance. All platform variables 
are significant and negative indicating a younger age at removal compared to their fixed-type 
counterparts.  

After controlling for spatial effects, the results indicate that several of the explanatory variables 
of interest exert a significant independent effect on the age at removal. With the exception of the 
coefficient on severity, the independent variables act on the age at removal in the expected 
direction. In particular, as current speed and wave height increase, a significant decrease in the 
age at removal can be expected.  
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Table 5: Coefficients and Significance Table Estimating Age at Removal for Platforms that 
Have Already Been Removed 

 Model 1 (OLS) Model 2 (OLS) Model 3 (SL) Model 4 (SL) 

Severity -5.1 88.99** 77.07** 68.43** 

Current velocity at surface -8.75 2.54 0.302 -2.96 

Wave Height -5.3 -8.05** -3.25** -8.09** 

WP    -1.07* 

CAIS    -6.09** 

Other    -13.57** 

Log(depth) 2.92**    

Incident Count 6.27**    

Wind Speed -11.05**    

Distance to shore -0.03**    

Lag_Age   .629** .618** 

Constant 25.33** 23.77** 8.99** 14.03** 

Moran’s I 46.5** 47.32**   

R-squared 0.05 0.03 0.33 0.37 

VIF 34.56 3.82   

P-value : .01**, .05*, .10 

 

3.3 SPATIAL DISTRIBUTION OF RISK 

The risk index for each platform calcualted using the equations in 2.2.1.1, are plotted in Figure 
12. The resulting risk index values ranged from -0.86 to 4.37 where lower values indicate higher 
integrity (lower risk of failure), and higher values indicate lower integrity (higher risk of failure). 
Existing platfrom risk indices were then sorted into 5 classes using Jenks nautral breaks 
optimization (Jenks and Caspall, 1971), which minimized the average deviation from the mean 
per class. Platforms with lower risk rankings (green squares) are clustered in shallow waters 
along the shelf, with notable clusters appearing along Louisiana’s coastline. Platforms classified 
as higher risk, shown in red, are generally located further offshore and in deeper waters. Out of 
the 2,089 existing platforms displayed in Figure 12, 37.9% (n =791) were classified as having 
low to low-medium (light green) risk and 22.5 (n = 469) were clasified as having medium-high 
(orange) to high risk.  
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Figure 12: displays the risk index applied to existing platforms, based on significant 
relationships identified while statistically analzing removed platform data. 

 

3.4 PREDICTIVE ANALYTICS RESULTS 

3.4.1 Machine Learning Models 

Table 6 shows the current prediction accuracy of the GBC and ANN models using the training 
and test sets. Again, these measures are used to evaluate each model’s overall performance and 
test for the presence of bias or variance. The GBC model has a training set accuracy of 100% and 
a testing set accuracy of 85.6%. The ANN model has a training set accuracy of 90.1% and a 
testing set accuracy of 84.3%. The GBC model has a higher accuracy overall on the test set by 
1.3%. The higher accuracy for the training set for the GBC model (14.4%) and ANN model 
(5.8%) indicate predictions with a fairly large degree of variance and suggest overfitting of the 
training data. It is also possible that there is avoidable bias present in both models; however, this 
cannot be confirmed because the human-level accuracy is not known.  

 

Table 6: Training Set and Testing Set Accuracy Scores for the GBC and ANN Models 

Model 
Training Set 

Accuracy 
Testing Set 
Accuracy 

GBC 100% 85.6% 

ANN 90.1% 84.3% 

 

The values of precision, recall, and the F1 score in Table 7 are used as evaluative metrics for 
each age at removal class. The GBC model performed slightly better in all metrics for the 20–30 
year, 30–42 year, and 42–72 year classes. In general, the difference in evaluation metric values 
for each model and class are somewhat negligible, with an average difference of only 2.35%. In 
comparison to the other classes, both of the model’s predictive performance for the 11–20 year 
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and 20–30 year ranges were lower. The models are best at predicting the 0–11 year and 42–72 
year ranges. 

 

Table 7: Classification Reports for the GBC and ANN Models.6  

Class 0–11 years 11–20 years 20–30 years 30–42 years 42–72 years 

Precision (ANN) 0.924 0.747 0.818 0.847 0.941 

Precision (GBC) 0.913 0.786 0.821 0.855 0.948 

Recall (ANN) 0.843 0.867 0.779 0.868 0.851 

Recall (GBC) 0.902 0.811 0.786 0.897 0.901 

F1 score (ANN) 0.882 0.803 0.798 0.857 0.894 

F1 score (GBC) 0.908 0.798 0.803 0.875 0.924 

 

Table 8 lists the top features for both ML models based on the Gini number for the GBC model 
and the feature permutation importance for the ANN model. In general, both models found the 
storm data to be important variables for predicting age at removal. The GBC model identified 
total hurricane counts, underwater completion count, maximum sustained wind speed, rig count, 
and Category 3 hurricane count yearly max as most important. From the ANN model, Category 1 
hurricane count, yearly mean, Category 1 hurricane sum, longitude, Category 3 hurricane count 
yearly mean, and Category 3 hurricane sum are most important. Even though different hurricane-
related variables were found to be important, the storm variables related to Category 1 and 3 
hurricanes were generally the most important. The top 5 variables for the ANN model are 
location-specific, meaning that these variables change based on geographic location. Only 3 of 
the top 5 variables for the GBC are location-specific while the other two, underwater completion 
count and rig count, are specific to the platform characteristics. 

 

Table 8: Top 5 Most Important Features of the GBC Model-Selected Variables Based on the 
Gini Index of the ANN Input Variables Based Off of Cross-Entropy Loss 

Rank GBC ANN 

1 Total hurricane counts Category 1 hurricane count yearly mean 

2 Underwater completion count Category 1 hurricane sum 

3 Maximum sustained wind speed Longitude 

4 Rig count Category 3 hurricane count yearly mean 

5 Category 3 hurricane count yearly max Category 3 hurricane sum 

 

 
6 The results are for the prediction of age at removal classes for the testing data and include the 
precision, recall, F1 score, and support metrics. 
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3.4.2 Geographically Weighted Regression 

The GWR model performed well. Across all platforms, the model accounts for nearly 90% of the 
variance (R2 = .895) using distance to shore, Category 4 hurricane days, max wave power (log), 
max wave period, and max wave height. On a platform-wise basis, the R2 ranges from .51–.97. 
With the exception of Category 4 hurricane days, the coefficient values range from negative and 
positive (Table 9). This is an indication of spatial non-stationarity which is further illustrated 
after plotting the coefficient values for each of the variables of interest for each platform 
(Appendix E). Depending on the location, the effect of each coefficient on age at removal will 
change—sometimes being associated with a decrease in removal age and other times being 
associated with an increase in removal age. 

 

 
Figure 13: Local parameter estimates for the Category 4 hurricane variable. The relationship 
changes as one moves from east to west.  

 

Where Category 4 hurricane days is concerned, the positive coefficient indicates that a one unit 
increase in Category 4 hurricane days is associated with an increase in age at removal on 
average. This is somewhat expected, given that older platforms will experience more hurricanes 
simply because they were installed earlier. However, the increase in age at removal varies over 
all platforms. There are clear pockets of platforms that respond differently to the number of 
Category 4 hurricane days (Figure 13). More specifically, platforms in the western GoM have a 
larger positive relationship with hurricane 4 days than platforms in the eastern GoM. This is 
likely a reflection of the severity and frequency of hurricanes across the GoM. Platforms around 
the Mississippi Delta are more likely to experience more severe hurricanes at a higher frequency 
than platforms in the eastern GoM which can contribute to an earlier removal age. 
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Table 9: GWR Model Statistics for Each of the Calculated Coefficient Values 

GWR Gaussian Model 

Variable Mean STD Min Median Max 

Intercept -10.155 27.699 -158.655 -1.832 110.483 

Distance to Shore -0.049 0.301 -1.529 -0.025 1.591 

Cat 4 Hurr. Days 5.136 1.757 1.011 4.671 12.432 

Max Wave Power (log) 5.056 10.418 -49.395 3.63 103.644 

Max Wave Period 0.335 1.108 -2.847 0.295 5.951 

Max Wave Height -3.34 6.894 -104.782 -2.492 20.271     
R2 0.895 

    
AIC 28,160.32 

 

The GWR model took a similar approach to prediction as the ML models. Specifically, a training 
dataset was used to calculate the spatial effects and coefficient estimates for each variable at each 
platform location. Then, the model was applied to an out-of-sample test dataset to predict age at 
removal. The R2 for the observed and predicted values was .895 (Figure 14) and the correlation 
coefficient was .92.  

 

 
Figure 14: Out of sample prediction for the GWR model using a test-train data split. 
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4. DISCUSSION 

Much of the infrastructure in the offshore environment is approaching or has already passed its 
original design life. As infrastructure ages it becomes more susceptible to failure, and this 
increases the older it gets. In order to maintain the highest degree of safety in offshore operations 
as possible, it is important to continue developing novel approaches to guide safety interdiction 
efforts and enhance decision making surrounding the mitigation of infrastructure failure. This 
research set out to meet these needs through a concerted data collection effort, statistical 
analysis, and the application of predictive analytics. The developed approaches continue to be 
enhanced, but have proven to be robust in their ability to predict the age at which a platform is 
removed.  

4.1 EXPLORATORY DATA ANALYSIS 

The results from the exploratory data analysis identified strong correlations between several of 
the predictor variables. Many of these were specific to the structural components and included 
slot count, slant slot count, slot drill count, rig count, and crane count. Furthermore, these 
correlations varied by structure. As a whole, there were far more fixed structures operating in the 
GoM and the use of a full infrastructure dataset that includes all structure types may obfuscate 
the relationships between MOPU and the factors involved in those structures ages. However, it is 
important to recognize that MOPU structure types are inherently mobile. When modeling age at 
removal, the fact that these structures can more easily be removed may bias the results. That 
being said, future model iterations may need to consider structure integrity by type. For now, the 
lack of data on important variables of interest (i.e. incidents) prevents that analysis from coming 
to fruition.  

Incident data were critical for the conceptualization of integrity and will likely remain an 
important variable going forward. It is important to note that the correlations between structural, 
environmental, and incident variables showed promise. The development and integration of the 
incident data was difficult and was heavily dependent on the team’s ability to connect ancillary 
information across multiple sets and sources to match incidents to specific platforms and rigs.  

The exploratory spatial regression model also relied on incident data, among other things, and 
took the correlation analysis one step further by focusing on the combined effects of several 
variables of interest. Unfortunately, the model was plagued by multicollinearity which forced a 
step back to remove several correlated variables. Still, the regression results were telling and 
corroborated the evidence presented through the correlation analysis—that platform types and 
subtypes are a significant predictor of age at removal. Specifically, all platforms that are not 
fixed are removed earlier than their fixed counterparts. The spatial regression also identified a 
significant negative relationship with wave height. This suggests that structures exposed to taller 
waves are, on average, removed earlier. This is an important finding as it aligns with findings 
from previous studies (Guédé, 2019) and supplied support for its inclusion in later model 
iterations (GWR).  

4.2 PREDICTIVE ANALYTICS 

The ML algorithms were powerful tools for evaluating the integrity of the existing offshore 
platforms. Using the structural characteristics, historic incidents, and MetOcean conditions 
throughout a platform’s life proved to be sufficient to predict the age at removal range of a 
platform. These results are in line with those found in statistical tests. Performance for GBC and 
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ANN models, at 85.6% and 84.3% respectively, is satisfactory considering how complex these 
offshore infrastructure systems are.  

While the prediction accuracies are suitable for the goal of this task, there is still room for 
improvement. Further work can be done to reduce the variance (overfitting) and also increase the 
prediction accuracy for both models. Additional data can be fed into the models to make them 
more robust. For example, a more comprehensive MetOcean database with better temporal 
representation or additional incident records could be included. This may allow the algorithms to 
better model the effects of physical and environmental conditions on infrastructure lifespan. A 
complete analysis on these efforts will be necessary to fully develop understanding of the power 
of ML algorithms to predict the lifespan of offshore platforms. In turn, this may also inform the 
ability to predict the lifespan of other types of offshore infrastructure (pipelines, wells, risers).  

The GWR model identified a clear distinction between eastern and western platforms. Figure 13 
presented this relationship with respect to the estimated coefficient values for the total number of 
days a platform endured a Category 4 hurricane throughout its lifespan. This pattern is also 
exemplified when plotting the coefficient values for the other parameter estimates, although the 
relationship is not as strong (Appendix F). For the Category 4 hurricane variable, the coefficients 
increase as one moves from the east to the west. Furthermore, this relationship remains positive 
across the GoM. In general, this means that platforms have a positive association with hurricanes 
which, at first blush, is not intuitive. Hurricanes should obviously reduce the lifespan of a 
platform if it is assumed that hurricanes exacerbate rates of integrity through structural stress. 
Another interpretation is that structures in the eastern GoM have a shorter lifespan as a result of 
their interaction with Category 4 hurricanes. It could very well be that Category 4 hurricanes 
impact structures in the eastern GoM more frequently and more directly, such that it is harder to 
fully recover or make the necessary repairs before the next hurricane occurs. Moreover, the 
wear-and-tear from hurricanes could be a factor in earlier removals.  

Although the mean value for max wave power and max wave period is positive in Table 9, the 
values range from negative to positive at the level of the individual platform. Plotting the values 
(Appendix F) for those variables reveal several clusters where these values are associated with 
negative coefficient estimates for the platforms indicating a decrease in age at removal. In 
particular, the platforms in the eastern GoM are expected to be removed earlier than the 
platforms in the western GoM for these variables. Furthermore, the pattern for wave height is 
even more revealing, showing that wave height is associated with a decrease in removal age for 
most of the significant coefficient values in the GoM. That is, higher waves decrease the age at 
removal. Although this is true for most of the GoM, there are several clusters of platforms in the 
near-shore environment where wave height is associated with a positive removal age. These 
model results suggest that in the north-central GoM platforms are removed earlier than platforms 
in the western GoM, perhaps due to more harsh environmental conditions. It should be noted that 
extreme waves are not typically seen in shallow coastal waters.  

Interestingly, all of the predictive models picked up on some form of hurricane variable as an 
important factor in determining age at removal. The ML models have the benefit of using as 
much information as possible when making predictions whereas the GWR model is subject to the 
same deficiencies as ordinary least square regression techniques. That is to say, GWR must be 
selective in the variables used in the model. Yet, the fact that each model capitalized on some 
form of hurricane days is telling from a predictive standpoint underpinning the importance of 
further exploration of this variable in future model development. One notable caveat concerning 
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the hurricane variables is that they are highly correlated with one another. As a result, the use of 
all hurricane variables—while useful from a predictive standpoint—is not necessarily adding a 
substantial amount of new information from a planning or policy point of view. There is clearly a 
relationship between removal age and hurricane interaction, but this relationship appears to be 
similar across all variables. Thus, it may be fruitful to explore which of the hurricane variables is 
the most useful and then remove the others. Additionally, the spatial structure of hurricane 
response can be explored. For example, typically the strongest winds and the highest waves are 
found in the northeast quadrant of a hurricane. In addition to the stronger winds this region of a 
hurricane may favor wave growth when the hurricane moves at comparable speed relative to 
waves, causing the fetch region to increase (dynamic fetch). 

Another interesting finding was that the ANN picked up on longitude as one of the top 5 
strongest predictors of age at removal. The GWR corroborates this result to a large extent with 
its identification of significant east to west variation when considering the relationship between 
factors (variables) and their removal age. Moreover, although longitude is not noted in Table 9 
for the GBC, it was routinely identified as a strong predictor. Whether this pattern is an 
indication of lower integrity for eastern GoM structures, or whether it reflects the spatial 
structure of MetOcean extreme events, is yet to be fully understood, but this evidence does 
provide some useful insights into where integrity may be compromised at an early stage of a 
platform’s lifespan.  

There is still some work to be done regarding the predictive power and associated relationships 
between the MetOcean variables and the age at removal variable. Neither GBC, ANN, or GWR 
identified the same MetOcean variables to be the strongest predictors. Where the GWR is 
concerned, this is partly due to the threat of multicollinearity. Many of the MetOcean variables 
showed a moderate to high degree of correlation, so the selection was based on minimizing the 
possibility of variance inflation. As a result, only three MetOcean variables were included in the 
GWR model.  

As for the ANN and GBC, the ANN identified only hurricane variables as the strongest 
predictive factors while the GBC was more diverse. Specifically, the GBC identified the most 
diverse set of predictors that spanned both structural (rig count and underwater completion 
count), environmental (max sustained wind speed), and hurricane related variables. This is 
possibly due to the GBC pre-processing step to remove highly correlated predictors which 
reduced the amount of collinearity and allowed for more variance among the set of predictors. 
Taken together, these results underpin the importance of considering a constellation of 
theoretically viable factors in determining when a platform is removed. Although there is strong 
predictive power with hurricanes, there are clearly other factors involved that may add more 
substantive explanatory information to the models by offering more concrete guidance on what 
factors effect integrity.  
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5. CONCLUSIONS 

The purpose of this project was to develop and apply big data analytics, ML, and advanced 
spatio-temporal analysis to assess the current state of existing infrastructure. In this first phase of 
research, the team uncovered several important factors related to the integrity of offshore 
infrastructure. This included both structural and environmental correlates, as well as other 
information on tropical storms and hurricanes. Furthermore, this work supports the continued 
exploration of integrity from several vantage points. Here, three predictive models with varying 
strengths and weaknesses were developed. Although different, these models work together to 
corroborate findings and support the re-evaluation of contradictory information. This happened 
in several instances which has made this investigation into offshore integrity more robust. 
Several important strides were made through this work, that will support a deeper understanding 
of offshore integrity and the factors that effect it.  

First, to the best of the research team’s knowledge there is no publicly available dataset related to 
offshore infrastructure integrity. This is likely due to the fact that the integrity of individual 
structures is proprietary information. The costs of collecting the data using advanced monitoring 
is perhaps one reason for this deficiency. Moreover, a dataset that spanned all GoM structures is 
even less likely. To that extent, this report has outlined a possible method for investigating 
offshore integrity across a broad geographic range using a unique set of variables that are 
hypothesized to relate to integrity. What’s more, this method is not unique to the GoM and could 
theoretically be deployed to any offshore (or even onshore) location in the world. With this 
information in hand, the state of offshore infrastructure can be made more transparent, enabling 
more proactive approaches to impact mitigation, response planning, and infrastructure 
management.  

Second, the correlation analysis was used to investigate the relationship between the components 
associated with each structure and a measure of integrity visa vis incidents and incident severity. 
Multiple structural factors were significantly correlated with integrity; however, the correlation 
analysis also revealed that several of these structural components were correlated with one 
another. These results informed later models and identified pathways toward more parsimonious 
model formulations.  

Third, the predictive models developed in this work show a respectable degree of accuracy when 
it comes to predicting the age at which platforms are removed. Admittedly, a lot of that 
predictive power comes from only a few variables, several of which are related to hurricanes and 
storms. Conceptually, the interaction between storms and age at removal makes sense; more 
storms put higher stress on structural components which leads to earlier removal. However, it 
would also be true that as structures age they will inherently experience more storms. At this 
point it cannot be determined from this analysis with certainty whether tropical storms are 
causing the platforms to be removed. If in the model tropical storms are contributing to the 
removal, it would be prudent to understand the significance of that role in relation to other 
potential factors that contribute to the deterioration of integrity.  

When it comes to next steps, there are many. The continued identification of data that can be 
leveraged to explain integrity is perhaps the most prudent. This includes the ongoing work of 
translating historical structure incidents into a useable data format and adding well and 
geohazard information to the analysis for a more system-wide approach. The current models rely 
heavily on a small subset of factors that may or may not be causing a decrease in integrity. 
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Future recommended research includes causal relations, for example with statistical tests such as 
Granger Causality (e.g. Runge et al., 2019), or through information theory estimates (San Liang, 
2014, 2015). Much of this future work will rely on the ability to collect and integrate new data 
and sources of information, but it will also depend on the ability to enhance the measure of 
integrity should there be a need in the future.  
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APPENDIX A: INFRASTRUCTURE AND INCIDENT DATA USED IN THE ANALYSIS 

Table includes information on source, and temporal resolution per dataset. 

Type Name Source Attributes 
Temporal 

Resolution 

Infrastructure 
Platform and 
Rig 
Information 

BSEE 
Structure type, 
status, location, 
equipment, dates 

Records from 
1942–present 
Updated 
monthly, last 
acquired 
December 9, 
2019 

Incidents 

Incident Stats 
and 
Summaries 
Archive 

BSEE   

Annual reports 
from 2006 – 
2013 
Last updated 
January 17, 
2020 

Incidents 

USCG Incident 
Investigation 
Report 
Database 

USCG 
(https://cgmix.
uscg.mil/IIR/IIR
Search.aspx)  

 

Reports from 
2002 to 
present 
Updated 
monthly, last 
acquired 
March 2, 2020 
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APPENDIX B: METOCEAN DATA BY VARIABLE WITH INFORMATION ON 
SPATIAL RESOLUTION, EXTENT, TEMPORAL RESOLUTION, AND SOURCE 

 

Variable 
Spatial Resolution and 

Extent 

Temporal 
Resolution and 

Range 

Ocean currents at the sea surface and at depth from 
HyCOM (U.S. Navy operational ocean model). 

Horizontal ~4 km, depth=0M 

GoM 
Every 3 hours, 
2003–2019 

IBTrACS–Worldwide storms 
Varies 

Global coverage 
1842–2019, 
resolution varies 

WAVEWATCH III® 30-year Hindcast–Peak Wave Period, 
Wave Period, mean wave direction, significant wave 
height and the wind used to force the model 

~16 km 

GoM 
Every 3 hours, 
1979–2009 

WAVEWATCH III® Production Hindcast–Peak Wave 
Period, Wave Period, mean wave direction, significant 
wave height and the wind used to force the model 

~16 km 

GoM 
Every 3 hours, 
2005–2019 
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APPENDIX C: VARIABLES USED TO MODEL AMBIENT CONDITIONS THAT 
HAVE BEEN FOUND TO CONTRIBUTE TO THE CORROSION OF METAL IN AN 
OFFSHORE ENVIRONMENT 

 

Variable 
Horizontal 
Resolution 

Time Coverage 
Start 

Time Coverage 
End Units Reference 

Nitrate 1 degree 1900-01-01 2017-12-31 
Micro moles 
per kilogram 
of sea water 

(Garcia et al., 
2019b) 

Dissolved oxygen 1 degree 1900-01-01 2017-12-31 
Micro moles 
per kilogram 
of sea water 

(Garcia et al., 
2019a) 

Phosphate 1 degree 1900-01-01 2017-12-31 
Micro moles 
per kilogram 
of sea water 

(Garcia et al., 
2019b) 

Silicate 1 degree 1900-01-01 2017-12-31 
Micro moles 
per kilogram 
of sea water 

(Garcia et al., 
2019b) 

Salinity 0.25 degree 1955-01-01 2017-12-31 unitless 
(Zweng et al., 

2019) 

Temperature 0.25 degree 1955-01-01 2017-12-31 
Degrees 
Celsius 

(Locarnini et al., 
2019) 
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APPENDIX D: VARIABLES PICKED BY THE GBC MODEL FOR TRAINING THAT 
HAVE A SIGNIFICANT IMPACT ON THE PREDICTIVE POWER 

The parentheses indicate the categorical value of the field converted to a binary variable. 

Latitude Abandon Flag (N) LACT meter flag (N) 

Longitude Condensate production flag (N) Maximum sustained wind speed max 

Crane count Injection Code (G) 
Maximum sustained wind speed 
average 

Slot drill count Heliport Flag (N) Oxygen mean 65% depth 

District code Production equipment flag (N) Oxygen mean 25% depth 

Distance to shore Power source type (Diesel) Oxygen mean surface 

Rig count Compressor Flag (N) Oxygen std. dev. 65% depth 

Water depth Commingling production flag (N) Oxygen std. dev. 25% depth 

Deck count Number of incidents Phosphorus mean 65% depth 

Underwater completion count Cumulative incident severity Salinity mean 65% depth 

MMS company number Average age at incident Salinity std. dev. 65% depth 

Bed count Total hurricane impacts Salinity std. dev. 25% depth 

Structure type code (CAIS) Tropical storm days max yearly Salinity std. dev. Surface 

Structure type code (WP) Category 1 hurricane max yearly Silicate std. dev. Surface 

Authority status (PROD) Category 2 hurricane max yearly Temperature mean 65% depth 

Authority status (TERMIN) Category 3 hurricane max yearly Temperature mean 25% depth 

 Wave count Temperature std. dev. surface 
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APPENDIX E: VARIABLES USED IN THE ANN MODEL FOR TRAINING 

 

LATITUDE LONGITUDE CraneCount 

SlotDrillCount DISTRICTCODE Severity_CurrentScale 

Avg_Age_at_Inc DistanceToShore NumberofIncidents 

SlotCount RigCount SlantSlotCount 

WaterDepth DeckCount SatelliteCompletionCount 

UnderwaterCompletionCount MmsCompanyNum BedCount 

TotalStorms CatNoneCount TropicalSum 

TropicalMinYearly TropicalMaxYearly TropicalMeanYearly 

TropicalDaysSum TropicalDaysMinYearly TropicalDaysMaxYearly 

TropicalDaysMeanYearly C1Sum C1MinYearly 

C1MaxYearly C1MeanYearly C1DaysSum 

C1DaysMinYearly C1DaysMaxYearly C1DaysMeanYearly 

C2Sum C2MinYearly C2MaxYearly 

C2MeanYearly C2DaysSum C2DaysMinYearly 

C2DaysMaxYearly C2DaysMeanYearly C3Sum 

C3MinYearly C3MaxYearly C3MeanYearly 

C3DaysSum C3DaysMinYearly C3DaysMaxYearly 

C3DaysMeanYearly C4Sum C4MinYearly 

C4MaxYearly C4MeanYearly C4DaysSum 

C4DaysMinYearly C4DaysMaxYearly C4DaysMeanYearly 

C5Sum C5MinYearly C5MaxYearly 

C5MeanYearly C5DaysSum C5DaysMinYearly 

C5DaysMaxYearly C5DaysMeanYearly WaveHeightCount 

WaveHeightNoneCount WaveHeightSum WaveHeightMin 

WaveHeightMax WaveHeightAverage MSWSCount 

MSWSNoneCount MSWSSum MSWSMin 

MSWSMax MSWSAverage MRWGCount 

MRWGNoneCount MRWGSum MRWGMin 

MRWGMax MRWGAverage Nitrate_Mean65PercDepth 

Nitrate_Mean25PercDepth Nirate_MeanSurface Nitrate_StdDev65PercDepth 

Nitrate_StdDev25PercDepth Nitrate_StdDevSurface Oxygen_Mean65PercDepth 

Oxygen_Mean25PercDepth Oxygen_MeanSurface Oxygen_StdDev65PercDepth 
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Oxygen_StdDev25PercDepth Oxygen_StdDevSurface Phosphorus_Mean65PercDepth 

Phosphorus_Mean25PercDepth Phosphorus_MeanSurface Phosphorus_StdDev65PercDepth 

Phosphorus_StdDev25PercDepth Phosphorus_StdDevSurface Salinity_Mean65PercDepth 

Salinity_Mean25PercDepth Salinity_MeanSurface Salinity_StdDev65PercDepth 

Salinity_StdDev25PercDepth Salinity_StdDevSurface Silicate_Mean65PercDepth 

Silicate_Mean25PercDepth Silicate_MeanSurface Silicate_StdDev65PercDepth 

Silicate_StdDev25PercDepth Silicate_StdDevSurface Temp_Mean65PercDepth 

Temp_Mean25PercDepth Temp_MeanSurface Temp_StdDev65PercDepth 

Temp_StdDev25PercDepth Temp_StdDevSurface StructureTypeCode 

MajorStructureFlag AuthorityStatus AbandonFlag 

AlocMtrFlag Attended8HrFlag CondnProdFlag 

DrillingFlag FiredVesselFl GasProdFlag 

GasFlaringFlag Manned24HrFl MajCmplxFlag 

LactMtrFlag InjectionCode HeliportFlag 

WorkoverFlag WaterProdFlag TankGaugeFlag 

SulfurProdFlag StoreTankFlag QtrType 

ProdEqmtFlag ProductionFlag PowerSourceType 

PowerGenFlag OilProdFlag GasSaleMtrFlag 

CompressorFlag ComglProdFlag  



Evaluating Offshore Infrastructure Integrity 

F-1 

APPENDIX F: LOCAL PARAMETER ESTIMATES FOR THE GWR MODEL 
VARIABLES OF INTEREST ALONG WITH THE LOCAL R2 VALUES (BOTTOM) 
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