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Abstract

While deep neural networks (DNNs) and Gaussian Processes (GPs)
are both popularly utilized to solve problems in reinforcement learn-
ing, both approaches feature undesirable drawbacks for challenging
problems. DNNs learn complex nonlinear embeddings, but do not
naturally quantify uncertainty and are often data-inefficient to train.
GPs infer posterior distributions over functions, but popular kernels
exhibit limited expressivity on complex and high-dimensional data.
Fortunately, recently discovered conjugate and neural tangent kernel
functions encode the behavior of overparameterized neural networks
in the kernel domain. We demonstrate that these kernels can be effi-
ciently applied to regression and reinforcement learning problems by
analyzing a baseline case study.

We apply GPs with neural network dual kernels to solve reinforce-
ment learning tasks for the first time. We demonstrate, using the well-
understood mountain-car problem, that GPs empowered with dual
kernels perform at least as well as those using the conventional radial
basis function kernel. We conjecture that by inheriting the proba-
bilistic rigor of GPs and the powerful embedding properties of DNNs,
GPs using NN dual kernels will empower future reinforcement learning
models on difficult domains.

∗goumiri1@llnl.gov
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1 Introduction

The traditional approach in optimal control posits a controller with a suite of
control signals able to affect a known dynamical system. The problem is to
devise a policy for scheduling control signals in order to achieve some given
objective. As there is no uncertainty in the model, finding such a policy
becomes an optimization problem.

However, many applications involve decision-making challenges where
data are limited and the generative models are complex and partially or
completely unknown. As such, the reinforcement learning (RL) branch of
machine learning arose to develop models for an agent or agents acting on an
initially unknown environment. RL algorithms learn a policy to guide agent
actions in order to achieve some high-level goal by acting on its environment
and using the response to model its dynamics.

Although RL and optimal control are related, these research fields are
traditionally separate. Ultimately, both are concerned with sequential deci-
sion making to minimize an expected long-term cost. The dynamical system,
controller, and control signals of optimal control roughly map onto the envi-
ronment, agent(s), and actions of RL.

Many RL algorithms [35, 5, 23, 36, 41] address a lack of dynamics knowl-
edge by way of a reliance upon parametric adaptive elements or control poli-
cies whose number of parameters or features are fixed and predetermined.
These parameters are usually then learned from data. Deep neural networks
(DNNs) are also used extensively in RL [27, 28, 42]. DNNs are attractive as
they are known to have an excellent representative power [14, 16, 18]. How-
ever, tuning and training the parameters is a data-inefficient practice [31].
Moreover, DNNs usually include no natural means of quantifying the un-
certainty in their predictions [10]. Thus trained models may overconfidently
predict the unknown dynamics when the system operates outside of the ob-
served domain. Such overconfident prediction can lead to system instability,
thereby making any controller stability results unachievable.

Nonparametric kernel methods such as Gaussian processes (GPs) [38]
have also been applied to reinforcement learning tasks [30, 19, 20, 17, 33, 9,
8]. GPs are popular in many areas of machine learning due to their flexi-
bility, interpretability, and natural uncertainty quantification due to being
Bayesian models. However GP-related data-driven methods remain largely
unexploited in optimal control.

The choice of GP kernel function encodes our prior beliefs about the
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distribution of the function of interest and is a key part of modeling. For
example, Kuss and Rasmussen use the famous radial basis function (RBF)
in a GP to solve the mountain-car problem, implying that the dynamics
are believed to be very smooth [19]. However, GPs often struggle to learn
the features of complex or high-dimensional data, worrying the researcher
interested in extrapolating this approach to such domains.

Recent results have shown a duality between wide, random DNNs and
GPs through the use of the conjugate kernels (CK)[32, 6, 7, 21, 26] and
neural tangent kernels (NTK) [15, 1, 40, 2]. These kernels capture, in a sense
that will be made explicit in Section 2, the nonlinear feature embedding
learned by the corresponding DNN architecture. However, these kernels are
at present mostly treated as an academic curiosity and have predominantly
been applied to image classification problems [1].

2 Gaussian Processes, Neural Networks, and

Dual Kernels

We will briefly review GPs, DNNs, and the correspondence between GPs
and infinitely wide Bayesian DNNs. We will focus on the computation of the
various models, and largely omit training details.

GPs are flexible, nonparametric Bayesian models that specify a prior dis-
tribution over a function f : X → Y that can be updated by data D ⊂ X×Y .
Coarsely, a GP is a collection of random variables, any finite subset of which
has a multivariate Gaussian distribution. We say that f ∼ GP(m(·), k(·, ·)),
where m : X → R is a mean function and k : X × X → R a positive def-
inite covariance function with hyperparameters θ. In practice m is usually
assumed to be the zero function. Let f be a vector of evaluations of f at
some finite X = {x1, . . . ,xn} ⊂ X . Then f ∼ GP(0, k(·, ·)) implies that

f = [f(x1), . . . , f(xn)]> ∼ N (0, Kff ). (1)

HereKff is an n×nmatrix whose (i, j)th element is k(xi,xj) = cov(f(xi), f(xj)).
Such covariance matrices implicitly depend on θ.

We will assume that we actually observe data y = f + ε, where εi ∼
N (0, σ2) is homoscedastic noise. Denote by f∗ the vector of (unknown) eval-
uations of f at a finite X∗ = {x∗1, . . . ,x∗n∗} ⊂ X , and for convenience define
Qff = Kff + σ2In. The GP prior on f implies that the joint distribution of y
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and f∗ is in the same form as Equation (1):[
y
f∗

]
= N

(
0,

[
Qff Kf∗
K∗f K∗∗

])
. (2)

Here K∗f = K>f∗ is the cross-covariance matrix between X∗ and X, i.e. the
(i, j)th element of K∗f is k(x∗i ,xj). The predictive posterior distribution on
f∗ conditioned on X, X∗ and y is therefore given by

f∗ | X,X∗,y ∼ N (K∗fQ
−1
ff y, K∗∗ −K∗fQ−1ff Kf∗). (3)

The posterior mean of Equation 3 is often given as the prediction for f on
X∗ in GP machine learning.

The expressiveness of a GP is heavily dependent upon the choice of kernel
function k. Most common functions, for example the RBF kernel,

kRBF(x,x′) = exp

(
−‖x− x′‖22

`2

)
, (4)

exhibit limited expressiveness on complex data and impose sometimes in-
appropriate assumptions such as stationarity. GPs also suffer from cubic
scaling in the observation size, although a rich literature of approximations
addresses this problem. See [24] and [13] for reviews of GP scaling methods.
Furthermore, the recent emergence of fast and scalable GP software is be-
ginning to challenge the conventional wisdom concerning the intractability
of GPs by exploiting hardware acceleration [11, 37].

DNNs learn an embedding of inputs into a latent space by way of iter-
atively applying nonlinear transforms. This embedding transforms highly-
nonlinear data relationships into a linear feature space, allowing a final linear
regression to produce predictions. In contrast to GPs, DNNs are highly para-
metric, often utilizing more parameters than observations. For this reason,
DNNs often require large amounts of training data, and a vast literature
has developed around heuristic training protocols. While DNNs do not, in
general, produce posterior distributions or exhibit robust uncertainty quan-
tification, their popularity is due to good empirical performance on complex
and high-dimensional data.

A DNN with L layers and widths {n`}L`=0 has parameters consisting of
weight matrices {W ` ∈ Rn`×n`−1}L`=1 and biases {b` ∈ R`}L`=1. We will assume
the NTK parameterization and introduce hyperparameters σw and σb, whose
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interpretation we will define in Section 2.1. The output of a DNN on input
x is hL(x), which is computed recursively as

h1(x) =
σw√
n0
W 1x + σbb

1,

h`(x) =
σw√
n`−1

W `φ
(
h`−1(x)

)
+ σbb

`.
(5)

Here φ(·) is an element-wise scalar nonlinear activation function, such as the
popular ReLU function:

φReLU(x) = max{0, x}. (6)

2.1 Dual Kernels

As we have noted, GPs and DNNs have different advantages and disadvan-
tages. Many attempts have been made to obtain “the best of both worlds”
- the uncertainty quantification and interpretability of GPs along with the
computational convenience and expressivity of DNNs. Such efforts include
Bayesian neural networks, which apply prior distributions to the weights
of neural networks [32], and applying GPs to feature vectors embedded by
DNNs [25]. Interestingly, a direct correspondence between GPs and Bayesian
DNNs of any depth arises as the hidden layers become sufficiently wide. We
will briefly motivate this correspondence, its history and applications.

Initializing all of the parameters in a DNN as W `
i,j ∼ N

(
0, σ2

w

n`−1

)
and

b`i ∼ N (0, σ2
b ) for i ∈

[
n`
]

and j ∈
[
n`−1

]
(i.e. Glorot initialization [21]) is

common in practice. Note that this is the equivalent of initializing all of the
parameters in Eq. (5) as i.i.d. N (0, 1). In the study of highly overparame-
terized (wide) models over the last several decades, investigators made two
unexpected observations.

1. Random initialization followed by training only the final linear layer
often produces high-quality predictions.

2. Training overparameterized models tends to produce weights that differ
only slightly from initialization.

The correspondence between infinitely wide single hidden layer neural
networks with i.i.d. Gaussian weights and biases and analytic Gaussian Pro-
cesses kernels was first discovered as far back as the 1990s by Neal by ap-
plication of the Central Limit Theorem [32]. Recently, others have extended
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Neal’s result to infinitely wide deep neural networks [21, 26] and convolu-
tional neural networks with infinitely many channels [34, 12]. Arora et al.
improved these results by showing that the correspondence holds for finite
neural networks that are sufficiently wide [1] and showed empirical evidence
that the kernel process behavior occurs at lower widths than theoretically
guaranteed [2]. This is to say that the aurthors found that DNN predictions
tend to agree with those of their dual GP counterparts, even when the DNNs
are much narrower than the known theorems for convergence require. The
kernel corresponding to wide DNNs is referred to in the literature as the
conjugate kernel (CK) [7] or NNGP kernel [21].

In order to express the DNN transform Equation (5) in kernel language,
we must obtain a dual form of the nonlinearity φ that nonlinearly embeds
a kernel matrix K in another Hilbert space [6, 7]. For nonlinearity φ and
kernel matrix K the dual form is known to be

Vφ(K)(x,x′) = E
f∼N (0,K)

φ(f(x))φ(f(x′)). (7)

Using this dual transform and the notation of Eq. (5) and following the
formulation of [40], we can express the CK recursively as

Σ1(x,x′) =
σ2
w

n0
〈x,x′〉+ σ2

b

Σ`(x,x′) = σ2
wVφ(Σ`−1)(x,x′) + σ2

b .

(8)

The last layer kernel ΣL is the conjugate kernel for the network. This kernel
corresponds exactly to that of the linear model resulting from randomly
initializing all weights and training the last layer.

If the CK lends mathematical rigor to observation 1) above, the neural
tangent kernel (NTK) does the same with observation 2). Intuitively, the
NTK corresponds to a generalization of the CK where we train the whole
model, rather than only the last layer. The NTK emerges from the obser-
vation that infinitely wide neural networks evolve as linear models under
stochastic gradient descent [15, 22] and has also been shown to generalize to
convolutional and finite architectures [1]. Evidence suggests that the NTK
might be capable of learning more complex features than the CK [40], and
the NTK has recently been shown to deliver competitive predictions in an
SVM on small data learning benchmarks [2]. We will omit the derivation,
which is somewhat involved, and instead recite the form of the NTK ΘL as
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given in [40]:

Θ1(x,x′) = Σ1(x,x′)

Θ`(x,x′) = Σ`(x,x′) + σ2
wΘ`−1(x,x′)Vφ′(Σ

`−1)(x,x′).
(9)

At first blush, the formulations of Eqs. (8) and (9) are unhelpful, as com-
puting Eq. (7) is intractable. Fortunately, closed-form solutions are known
for several common activation functions [6, 7], enabling efficient computa-
tion. Throughout the rest of this document we will consider only networks
utilizing φReLU, which is known to have analytic dual activations:

VφReLU
(K)(x,x′) =

√
K(x,x)K(x′,x′)

2π
(sin c+ (π − c) cos c)) (10)

Vφ′ReLU
(K)(x,x′) =

1

2π
(π − c) (11)

c = arccos

(
K(x,x′)√

K(x,x)K(x′,x′)

)
. (12)

2.2 A motivating example

We will illustrate the usage of the RBF kernel along with CK and NTK on
a model of a simple machine. Consider the central example given in [4] of
moving a weight up a slope. We will assume that we are trying to learn a
true process driven by the dynamics

ζ(x | θ, a) =
θx

1− x/a
. (13)

Here x is a control parameter modeling the amount of force exerted on the
system, while θ and a are unknown. In terms of the model, the numerator
of Eq. (13) corresponds to the ideal efficiency of the machine, while the
denominator corresponds to inefficiency (such as loss due to friction).

Say that we wish to model Eq. (13) using a GP, and that we have observed
a vector of responses y at 11 locations x evenly-spaced in [0.1, 4]. Then we
believe that for each i ∈ [11],

yi = f(xi) + εi (14)

where f ∼ GP(0, k(·, ·)) for some kernel function k and εi ∼ N (0, σ2) is
measurement noise.
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Figure 1: Predictive distributions of the RBF, CK and NTK trained on
observations derived from the dynamics ζ(·).

We simulate the dynamics

yi = ζ(xi | 0.65, 10) + εi (15)

for εi ∼ N (0, 0.12) and fit GP models for each of kRBF, kCK, and kNTK as
defined above. We use Eq. (3) to learn the posterior distributions of each
GP over a set x∗ uniformly spaced in [0.2, 9] and fit the hyperparameters of
each kernel by way of a simple grid search using the loglikelihood. See [38]
Chapter 2 for a comprehensive review of GP regression.

Figure 1 plots the means of the resulting distributions and their 95% con-
fidence intervals, along with the true dynamics in blue and the observations
in red. Note that the RBF GP returns to the prior mean 0 when extrapo-
lating far from the observed data. This is expected of stationary kernels, as
inputs that are far apart are assumed to have low correlation. As given in
Eqs. (8) and (9), both the CK and NTK kernels are functions of 〈x,x′〉, ‖x‖,
and ‖x′‖. Thus, they are nonstationary on Rn0

. It is worth noting that most
extant GP applications of CK and NTK use image data that has been nor-
malized to the unit hypersphere [21, 26, 15, 1]. In this case, CK and NTK
are functions of the angle between the unit vectors x and x′, which maps
one-to-one with ‖x− x′‖. Consequently, in the aforementioned applications
CK and NTK are isotropic. We do not perform normalization nor do we
embed our data in a higher dimensional hypersphere in this work, meaning
that in all cases the CK and NTK kernels are nonstationary.

The fact that the posterior means of CK and NTK trend closer to the
true dynamics far from the training data does not imply that these kernels
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are somehow “better” than RBF, but rather that their implicit assumptions
about how the data is organized happen to center relatively well on this ex-
ample. More careful accounting of model discrepancy, such as that demon-
strated in [4], can produce much better extrapolation. Note that in all cases,
however, the confidence interval grows dramatically as we move further from
the observed data. This behavior indicates a low confidence in any projec-
tions in these data, which provides a good example of what is desired from
uncertainty quantification. The majority of practical problems involve high
dimensional transformations that are much harder to visualize. Thankfully,
the posterior distributions still allow the investigator to detect where pre-
dictions are uncertain due to the presence of high variance. The rest of this
document concerns itself with such an application to reinforcement learning.

3 The mountain-car reinforcement learning

problem

3.1 Description

The reinforcement learning problem studied in this paper is the mountain-car
problem: a car drives along a mountain track and the objective is to drive
to the top of the mountain. However gravity is stronger than the engine,
and even at full thrust the car cannot accelerate up the steep slope. The
only way to solve the problem is to first accelerate backwards, away from the
goal, and then apply full thrust forwards, building up enough speed to carry
over the steep slope even while slowing down the whole way. Thus, one must
initially move away from the goal in order to reach it in the long run. This
is a simple example of a task whose optimal solution is unintuitive: things
must get worse before they can get better. The problem is fully described in
[29, 35] and is illustrated in Figure 2.

The mountain-car dynamical system has two continuous state variables,
the position of the car x, and the velocity of the car ẋ. The state s can be
written as s = (x, ẋ). The mountain surface is described by the altitude

H(x) =

{
x2 + x if x < 0,

x√
1+5x2

if x ≥ 0.
(16)

The input that the driver can apply is the horizontal force F . Boundary
conditions are imposed for each of the position, velocity and force of the car
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0.6
x

Figure 2: Illustration of the mountain car problem. The car is initially resting
motionless at x = −0.5 and the goal is to bring it up and hold it in the region
around the flag.

respectively as follows:

−1 ≤ x ≤ 1

−2 ≤ ẋ ≤ 2

−4 ≤ F ≤ 4.

(17)

The initial state s0 = [−0.5, 0]T indicates the car is at the unmoving at
minimum altitude. This is the also the equilibrium of the dynamics. The
target reward R is a multivariate gaussian PDF with mean (x = 0.6, ẋ = 0)
and covariance σ2I2 with σ = 0.05. R is plotted in the top of Fig. 4.

This choice of instantaneous reward function encodes into the model a
desire to be as close as possible to the flag at position x = 6.0 while remaining
as stationary as possible. The agent’s goal is to find the optimal trajectory for
the car to maneuver towards and remain near the flag, given the dynamics
of the environment. The core RL problem here is to find a policy for the
decision maker (driver/car): a function π that specifies the action F = π(s)
that the decision maker will choose when in state s.

The standard family of algorithms to calculate this optimal policy con-
structs two arrays indexed by state: policy π and value V . Upon completion
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of the algorithm, π(s) specifies the action to be taken in state s, while V (s)
is the real-valued discounted sum of the rewards to be earned by following
that solution from s.

This RL algorithm has two steps, (1) a value update and (2) a policy
update, which are iterated across all the states until π and V converge. The
Bellman equation is commonly used to update the value V :

V (s) =

∫
Pπ(s)(s, s

′)
[
Rπ(s)(s, s

′) + γV (s′)
]
ds′. (18)

Here γ is the discount factor and satisfies 0 ≤ γ ≤ 1, Pπ(s) is the transition
probability of going from state s to state s′ when applying action π(s) and
Rπ(s) is the corresponding immediate expected reward. Given a computed
value function V for a given policy π, we can compute an implicitly optimized
update policy π′ as:

π(s) = argmaxa

{∫
s′
P (s′ | s, a) [R(s′ | s, a) + γV (s′)] ds′

}
(19)

Section 3.2 explains the algorithm in detail. The main idea is that we iterate
the process of evaluating V for a given policy π over the continuous state
space using Eq. (18) and then recompute the policy using Eq. (19).

3.2 Algorithmic Implementation

Our algorithm is a generalization of the algorithm described in [19] which
is able to accommodate the three different kernels described in the previous
section while maintaining computational efficiency. It proceeds by first ini-
tializing the dynamics of the model and value function, then iterating over
updating the value and policy until convergence. We model the dynamics
using GPs. In doing so, we explicitly solve the dynamics for a small number
of observed position/velocity states, then train GPs to interpolate the state
evolution of unobserved states. Similarly, we use a separate GP to model
the value function at a small number of position/velocity states, each with a
small number uniform sample forces. We iterate over this GP, applying inter-
polation to update the learned policy which we in turn use to update the GP.
We use the OpenAI Gym software [3] to model the dynamics environment.
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Initialization of the dynamics The first step is to train a GP to predict
the dynamics of the system. The dynamical equation is

d

dt

xẋ
F

 =

 ẋ
F −G · sin(arctan(H ′(x)))

0

 . (20)

Here G is the gravitational constant and H ′ is the derivative of the altitude
given in Eq. (16) with respect to x. Given a state s, we integrate Eq. (20)
forward in time over a span ∆t of 0.3 s to obtain the corresponding next state
s′. For training we take Nd = 128 random 3D states si chosen uniformly in
the domain defined by (17) and we compute their corresponding next states
s′i. We use these s - s′ pairs as observations to train two GPs, one for x and
one for ẋ. We can then utilize Eq. (3) to interpolate the dynamics evolution
at unobserved states. We assume the hyperparameters of both CK and NTK
to be distributed according to an inverse-Gamma distribution. We use a
Monte Carlo Markov Chain technique to fit them by minimizing the mean
square error when predicting the dynamics. See [38] for a nuanced discussion
of hyperparameter optimization. Both kernels provide comparable accuracy
for predicting the dynamics once trained and tuned.

Initialization of the value function Next we must train a GP to pre-
dict the value function of any given state. The procedure is iterative so we
use the reward R as the initial value function. As with the dynamics, we
take a certain number (NV = 512) of random states in the 3D domain of
(sj, F ) uniformly from the domain (17) and associate them with their corre-
sponding initial value (≡ R) to provide training samples. Note that contrary
to [38], we train that GP using the full 3D state (x, ẋ, F ) as input rather
than omitting F for reasons that will be apparent in the description of the
iterations below. We tune the hyperparameters of the value GPs using the
same MCMC procedure applied to the dynamics.

Iteration of the value and policy Once all the GPs are trained and
tuned, we can start iterating to update the value GP and the policy until the
value function converges to a fixed point. For each state sj in the dynamics
training set, we generate a sequence of NF = 128 states sk = (xk, ẋk, Fk)
where ∀k, xk = xj, ẋk = ẋj, and the actions Fk are uniformly spaced and
cover the entire F domain. Then we use the dynamics GPs to predict their
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respective next states s′k as the posterior means of Eq. (3). s′k then serves as
input to the value GP to predict Vk, again as the posterior mean of Eq. (3).
We can then compute V max

j = maxk Vk and kmax = arg maxk Vk and deduce
the policy π(sj) = Fkmax . Finally we can update the value associated with
each sj using Vj ← R(sj) + γ · V max

j .
Once the value has been updated, we retrain the value GP. We repeat

this procedure until the value stops evolving. Once it does we output the
optimal policy π.

3.3 Results

We show that GPs using either both the CK and NTK as their kernel func-
tions are suitable for solving the mountain car reinforcement learning prob-
lem. The estimated dynamics are predicted with sufficient accuracy to enable
the iterative evolution of the value function.

Figure 3 shows the comparison between the dynamics derived from the
physics (the truth) and the dynamics predicted using CK Gaussian process
modeling. We can see that our dynamical model is very close to the reality.
It captures the main features and equilibria of the dynamical system.

Figure 4 shows the initial value (top) which is the instant reward, a
Gaussian function centered around the target at (x, ẋ) = (0.6, 0) with a small
standard deviation of 0.05, and the final value function for CK (middle)
and NTK (bottom). For both kernels, the value function converges in six
iterations. The value expands diagonally from the target to regions where
the velocity is high enough to overcome the steep slope and finally curves
back to reach the car’s initial position from the left, leading to the non-
trivial but correct policy that the car should start by going backward before
speeding up the slope. The value function does not increase from zero in
the central region of the phase space, which corresponds to the invalid policy
of attempting to climb the slope of the mountain in the positive x-direction
without sufficient momentum.

Figure 5 illustrates the learned optimal trajectories of the car along the
x-axis over time. Again for both kernels, the car first moves backward then
speeds up to quickly reach the target, where it stays indefinitely. The os-
cillations of the car around the target location (x = 0.6) are the result of
compounding errors in the GP predictions of the dynamics and the value.
These oscillations can most likely be reduced by adding more training points,
both for the dynamics and the value, but this comes at the cost of additional
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Figure 3: True (black) and predicted (red) dynamics as a function of x and
ẋ (for F = 0). Each arrow represents a state s (base of the arrow) and
points in the direction of its next state s′ 0.3 s in the future. The arrow
lengths are scaled down so as not to overlap. The stable equilibrium at
(−0.5, 0) corresponds to the bottom of the valley. The target at (0.6, 0) is
unstable requiring a sustained force F > 0 to maintain the car at the target.
The discontinuity in the upper right of the phase plot is due to boundary
conditions: hitting the boundary of the domain brings the velocity to zero.

computation.
In our training of the GP representation of the value function, we see

there are clear regions of interest in the value function that change with each
training iteration. This indicates that choosing training points uniformly
in the entire domain and keeping the same points throughout iterations is
suboptimal. It would be better to sample more points where the value is
higher so as to achieve better resolution in this region. In other words, we
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Figure 4: Initial reward (top) and final value function for CK (bottom left)
and NTK (bottom right) as a function of x and ẋ for F = 0.

expect to see improved numerical performance by converting the value func-
tion into a probability density function for sampling training points followed
by resampling the points after each policy iteration step to accommodate
the changing value function. This should allow more accurate predictions
without the performance cost of adding more training points.

4 Perspectives and conclusion

We have shown that GP kernels that are dual descriptions of neural networks
are suitable for solving a simple reinforcement learning problem. The kernels
we use here have been shown to perform well for GP classification tasks [e.g.,
21], but we believe our result is the first application of such kernels for GP
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Figure 5: Evolution of the x position over time. The car goes backward
initially then speeds up the hill.

regression in a non-trivial problem. We have also improved the GP model
for the value function from those models presented in the literature [i.e.,
19] to increase the computational efficiency of the policy iteration step by
decreasing the number of sample points in the combination of phase space
and possible actions. We are able to achieve this performance improvement
because of the improved expressivity of the GP regression in the combined
sample space.

While this simple mountain-car RL problem turns out to be easily soluble
with GPs utilizing the classic RBF kernel, we have shown that neural net-
work dual kernels deliver similar performance. Furthermore, we expect that
more challenging RL problems that have benefitted from neural networks for
modeling the dynamics and the value function may also benefit in the fu-
ture from the GP dual description of those networks [e.g., 28]. In particular,
RL problems relying on computer vision may benefit from application of the
convolution version of the CK or NTK [1]. Additionally, the ongoing de-
velopment of kernels dual to arbitrary architectures opens up the possibility
of taking advantage of recurrent neural network expressivity within the GP
paradigm [39]. The GP dual to neural networks applied to RL thus offers
promise of incorporating recent advances in deep RL with the probabilistic

16



modeling features of GPs. Such applications also elude the grasp of more
conventional GP models in the current literature due to the expressivity lim-
itations of known kernels, especially on high-dimensional data.

We also have not fully exploited the value in utilizing dual GPs. All of the
predictions given throughout this document utilize only the posterior mean
of Eq. (3) for prediction. In this sense, we might as well have actually used
overparameterized DNNs for prediction. We expect that knowledge of the
posterior variance will be greatly beneficial in more advanced RL problems
where dynamics and value function propagation involves more uncertainty.
We will incorporate applications of uncertainty quantification into future
work.
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