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2 I Light Scattering Limits Visibility

• Aerosols like fog reduce visibility and cause down-time that for critical systems
unacceptable

• Information is lost due to the random scatter of photons from tiny particles

• Impacts physical security, site surveillance, navigation, and tactical scenarios

1:

or operations are

Simulated degraded visual environment at the
Sandia Fog Chamber Facility

[1] B. J. Redman, et al., Optical Engineering 58 (5), 051806, (2019).



3 I Light Scattering Fundamentals
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*Ballistic light is exponentially attenuated with distance: I = Io exp (—L /MFP) [Beer-Lambert law]

•Time and coherence gating reject scattered light limiting imaging to L-10 MFP

Diffuse optical imaging using all photons allows imaging to L-100 MFP or 10 times deeper

[1] C. Dunsby and P. M. W. French, Journal of Physics D: Applied Physics 36, R207-R227 (2003).

[2] A. Mosk, Y. Silberberg, K. J. Webb, and C. Yang, Defense Technical _Information Center ADA627354 (2015).



4 I Computational Diffuse Optical Imaging

• Data from many detectors is combined to provide new information
• (detection, localization, imaging, spectroscopic information)

• Potentially provided in real time for rapid decision making using existing infrastructure

• Key question

What can be done with diffuse optical imaging (DOI) methods in aerosols like fog?

Aerosol

Camera data
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Example from biomedical imaging:
Diffuse Optical Tomography (DOT) [1]

[1] B. Z. Bentz, A. V. Chavan, D. Lin, E. H-R Tsai, and K. J. Webb, Applied Optics 55(2), 280-287, (2016).



5 Optimization-Based Imaging

• Long term goal is to solve the optimization problem (inversion)

• Properties of interest, x

• Numerical forward solution,f(x)

• Measurement, y

Bayesian framework — maximum a posteriori (MAP) estimation

x

Unknown

1-7

imAp = arg ma
()
x{log pyix(ylx) + log 13 x(x)}

x. 
Known

f(x)

Forward Model

Inverse Problem

8 y

[1] J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, JOSA A 16(10), 2400-2412, (1999).



6 I Model Development: Radiative Transfer Equation (RTE)

ix (r , t , ii)
+ SI • WO-, t, fl) + (iva + POI (r , t, ii)c at ius  dii'f(fif

47

-> ti)i(r,t, ii') + Qfr,t,ii)

Where

/ (r, t, ii) is the radiance (W/m2/s/sr) at position r in direction ii

p.a = ifiall is the absorption coefficient (m-1)

,us = Usti is the scattering coefficient (m-1)

a is cross section and n is density

f (fi' —> ii) is the in-line scattering phase function for incident direction fi' and scattering direction ii

Q (r, t, ii) is the radiance source function (W/m3/s/sr)

[1] S. Chandrasekhar, Radiation Transfer, Oxford, (1950).



7 I Mie Theory: Determining the Scattering Parameters

• For spherical particles of constant area A, Mie Theory allows calculation of

/Is = QscaAn

lia = QabsAn

Where Qsca and Qabs are the scattering and absorption efficiencies and n is the density of particles

3 Qscaivi
Ps = 2f:v di

I

3 V Qabsivi
Pa = 2 -fv Li di

i

3 V' Qscaivi
Its = 2 fv L di 

(1 — gi)

i
• Where

• fv is the particle volume fraction

vi is the percent of total volume by particles with diameter di



8 Simulation of Fog Optical Properties Diffusion approximation
may be valid (its > Pa) I
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9 I Simplifying the RTE: Continuity and Diffusion Equations

1 acKr,t)
+ V • J(r,t) + pia(r)(13(r,t) = S(r,t)

c at

Where

• 4)(r, t) = f4TE dn I (r, t, ii) is the fluence rate (W/m2/s)

• J (r , t) = 5 47, dilfil (r , t , fi) is the flux density (W/m2/s)

• S(r, t) = LE dn Q 0 - , t , fi) is the source (W/m3/s)

Let: J (r , t) = — D (r)Wp(r , t) (Fick's first law of diffusion)

• D = 1/3(4 + µa) is the diffusion coefficient (m)

• Ifs = PS (1 — g) is the reduced scattering coefficient for anisotropy g

1 acKr,t)

c at 
V • D (r)V (I) (r , t) + µ a (r) 0 (r , t) = S (r , t)



10 I Solving the RTE with Weak Angular Dependence

Radiance at a detector at position r in homogeneous fog
00

I (r, il) = Its I dR exp[—Gts + p.a)R] I dii ' f (fr —> fl)I (r — Ai , il')
0 4 7r

Assuming isotropic scatter

Its 0°
I (r, ii) = — I dR exp[—(us + p.a)R] cgr — Rii )

47 0

Assuming weak angular dependence

I (r, ii) = P5 I °° dR exp[— 015 + Ita)R] [0(r — Ai ) + 3gf(r — Rii) •• ill47 0

t
Additional anisotropic term

[1] G. I. Bell and S. Glasstone, Nuclear Reactor Theory, U.S. Atomic Energy Commission, Washington DC, (1970).

[2] J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, Inc., New York, (1976).



I Simulating Fluence Rate (0) and Flux Density (J)

*Analytic Green's function solutions to the diffusion equation
Simulations
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*Simulations use fog parameters at 450 nm and n = 1 0 5 cm-3
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[1] M. S. Patterson, B. Chance, and B.C. Wilson, Applied Optics 28(12), 2331-2336, (1989).
11



12 Experimental Setup

Analysis
Computer
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1 3 I Line of Sight for Each Pixel Required for Model

• Perfectly linear imaging

• Simple for single camera case, seemed to work

• Requires that camera sensor dimension and di and do are known

• xf = 
-di 

x = —M.X
do

yf = 

di 

= —My

In general (aberration), (xf, yf) = F(x, y, z), where F is nonlinear
F can be approximated as a quadratic polynomial [1]

Coefficients can be estimated experimentally from calibration image plates

• Allows co-registration of multiple cameras

Voxels

Pixels

(Ii)
di

CCD

[1] S. M. Soloff, R. J. Adrian, and Z-C. Liu, Measurement Science and Technolog 8, 1441-1454 (1997).



14 I Check Experimental Line of Sight Using Focus Images

Target: 1 m Away
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I Comparing Model Predictions to Experimental Measurement
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16 I Conclusions

• The diffusion approximation to the RTE can be sufficient for modeling photon transport in fog

• Utilizing scattered photons has the potential to enhance system range by 10 times

• Success using computational diffuse imaging would improve situational awareness for

Navy, DOE (harbor and remote security, navigation)

• DoD (tactical scenarios)

• Aviation (take off and landing)

Future work: leverage models for computational detection, localization, and imaging of objects

!IP... ,it al't
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