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Light Scattering Limits Visibility

* Aerosols like fog reduce visibility and cause down-time that for critical systems or operations are
unacceptable

* Information 1s lost due to the random scatter of photons from tiny particles

* Impacts physical security, site surveillance, navigation, and tactical scenarios

Simulated degraded visual environment at the
Sandia Fog Chamber Facility

==

[1] B. J. Redman, et al., Optical Engineering 58(5), 0518006, (2019). i




Light Scattering Fundamentals

Scattering Media
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*Ballistic light is exponentially attenuated with distance: I = I, exp(—L/MFP) [Beer-Lambert law]

*Time and coherence gating reject scattered light limiting imaging to L~10 MFP

*Diffuse optical imaging using all photons allows imaging to L~

100 MFP or 10 times deeper

[1] C. Dunsby and P. M. W. French, Journal of Physies D: Applied Physics 36, R207-R227 (2003).
[2] A. Mosk, Y. Silberberg, K. J. Webb, and C. Yang, Defense Technical Information Center ADAG627354 (2015).



4 | Computational Diffuse Optical Imaging

* Data from many detectors is combined to provide new information

* (detection, localization, imaging, spectroscopic information)

* Potentially provided in real time for rapid decision making using existing infrastructure

* Key question

* What can be done with diffuse optical imaging (DOI) methods in aerosols like fog?

Camera data
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Example from biomedical imaging:
Diffuse Optical Tomography (DOT) [1]

[1] B. Z. Bentz, A. V. Chavan, D. Lin, E. H-R Tsai, and K. . Webb, Applied Optics 55(2), 280-287, (2016).



5 I Optimization-Based Imaging

* Long term goal is to solve the optimization problem (inversion)

* Properties of interest, x
* Numerical forward solution, f(x)

* Measurement, y

* Bayesian framework — maximum a posteriori ((IMAP) estimation

Xyap = arg Max{log py|y (y|x) + log px (%)}
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Unknown
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[1]]. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, JOS.4 .4 16(10), 2400-2412, (1999).
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Model Development: Radiative Transfer Equation (RTE)

101(r, ¢, Q)
c ot

+Q-VI(r,t, Q) + (ug + u)I(r,6,Q) = s | dQ'F(Q - Q)I(r,t,Q') +Q(r,t,Q)

41T

Where

L | (1‘, t, ﬁ) is the radiance (W/m?/s/st) at position 7" in direction Q
* Ug = 04N is the absorption coefficient (m™)

* Ug = OgN is the scattering coefficient (m™)

* 0 is cross section and N is density
. Q' — Q) is the in-line scattering phase function for incident direction ' and scattering direction
gp 24

o Q(r, t, ﬁ) is the radiance source function (W/m?/s/st)

[1] S. Chandrasekhar, Radiation Transfer, Oxtord, (1950).
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Mie Theory: Determining the Scattering Parameters

* For spherical particles of constant area A, Mie Theory allows calculation of

Us = QscqAn
Ha = QgpsAn
* Where Qgcq and Qqps are the scattering and absorption efficiencies and n is the density of particles
_ E f Qscaivi
JLLS 2 v . dl
l
_ Ef Qabsivi
I’la 2 v . dl
l

r_ 3 Qscaivi
Hs = Efvz (d—l> (1-g9:)

l

* Where

* f, is the particle volume fraction

* v; is the percent of total volume by particles with diameter d;



g I Simulation of Fog Optical Properties Diffusion approximation
may be valid (us > ug)
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Simplifying the RTE: Continuity and Diffusion Equations

10d(r,t)
ot

+V-Jrt) + p, ()@, t) = S(r, t)
Where

« ¢p(r,t) = f4n d() I(r, t, ﬁ) is the fluence rate (W/m?/s)

c Jrt)={ . dQQl (r, t, ﬁ) is the flux density (W/m?2/s)

- S(r,t) = Lm dQ Q(r, t, ﬁ) is the source (W/m?>/s)

Let: J(r,t) = —=D(r)Ve(r,t) (Fick’s first law of diffusion)
« D =1/3(u; + ug) is the diffusion coefficient (m)
o e = us(1 — g) is the reduced scattering coefficient for anisotropy g

10®(r,t)
c Ot

—V-D@Ve((r,t) + pua(re@r,t) = S(r,t)
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Solving the RTE with Weak Angular Dependence

*Radiance at a detector at position r in homogeneous fog

I(r,Q) = “Sj dR exp[—(us + ua)R] | dQ' (@' - Q)I(r — RQ, Q') Z
0 41T
* Assuming isotropic scatter pixel
) Fog \‘}
. u ~N T
I(r,Q) = 4—Sj dR exp[—(us + ug)R1p(r—-RQ) - r
TJo “r—RQO
*Assuming weak angular dependence
X

(r,@) =42 jo dR expl—(us + )R] [¢(r — RQ) + 3gJ (r — RQ) - Q]

Additional anisotropic term

[1] G. L. Bell and S. Glasstone, Nuclear Reactor Theory, U.S. Atomic Energy Commission, Washington DC, (1970).
[2] J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, Inc., New York, (1976).



Simulating Fluence Rate (@) and Flux Density (J) -

* Analytic Green’s function solutions to the diffusion equation
Camera Here
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[1] M. S. Patterson, B. Chance, and B.C. Wilson, Applied Optics 28(12), 2331-2336, (1989). » i :: I




12 | Experimental Setup
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Line of Sight for Each Pixel Required for Model

* Perfectly linear imaging
* Simple for single camera case, seemed to work

* Requites that camera sensor dimension and d; and d,, are known

e x' = Lx = —Mx
do_z
° 4 — l — _M
y do_zy y

* In general (aberration), (x',y") = F(x,y, z), where F is nonlinear
* F can be approximated as a quadratic polynomial [1]
* Coefficients can be estimated experimentally from calibration image plates

* Allows co-registration of multiple cameras

[1] S. M. Soloff, R. J. Adrian, and Z-C. Liu, Measurement Science and Technology 8, 1441-1454 (1997).
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14 | Check Experimental Line of Sight Using Focus Images

Target: 1 m Away 1.5 m Away
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Line of Sight Error: 8.3 % 2.8%




Comparing Model Predictions to Experimental Measurement

Increasing Fog Density
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16 I Conclusions

* The diffusion approximation to the RTE can be sufficient for modeling photon transport in fog
¢ Utilizing scattered photons has the potential to enhance system range by 10 times

* Success using computational diffuse imaging would improve situational awareness for
* Navy, DOE (harbor and remote security, navigation)
* DoD (tactical scenarios)

* Aviation (take off and landing)

*Future work: leverage models for computational detection, localization, and imaging of objects
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We’'re Hiring!

Postdoctoral Appointee
Computational Optical Imaging

Please contact: fog@sandia.gov

Q:3\
LABORATORY DIRECTED
&) R RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS



