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2 Why do we care about fog?
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HELICOPTER CRASH INVESTIGATION WIVI9
PILOTS BECAME DISORIENTED IN THICK FOG

11 dead in helicopter crash off Florida
Coast due to thick fog: WINK News,

March 11, 2015
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3 What is fog?

Fog - a thick cloud of tiny water droplets suspended in the atmosphere
at or near the earth's surface that obscures or restricts visibility.
o Dewpoint temperature spread is <3 °C
o <1km of visibility
o Low Elevation

Mist — Between fog and haze particles less than 5µm.
95-100% RH

O >1km visibility

Huffpost.com

Haze — Does not contain activated droplets according to Köhler theory.

ILImmum=mommemp.
.

R: Montoya



Radiation Fog

Air cooling until the air temperature
approaches the dew point.

4 1 The most common types of fog
Advection Fog

Mixing of air masses with different
temperatures and/or humidities.
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5 Not all fog is the same
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6 History of Droplet Size Measurements

• 1925 Kohler estimated droplet size using
freezing wires and frozen droplets and a
corona estimation. "His deductions as to the
size... ...are therefor the variations of the
predominant size with time rather than an
instantaneous distribution..."

• 1931 Statton and Houghton observed that the
transmission of light through fog depended on
the particle size distribution and the density.

• Due to experimental setup particles less than
2pm were not identifiable!
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Fig. 3_ Photookierograph$ of fog parilc-Ios.
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Fig. 4. Si2e distribution of fog particles Fig- 5. Size distribution of fog particles at
at 1.1.-.00 A.M. an October 5,1931. Wind S-1.0, 9:00 A.M. ati November 20, 1931. Wind N-7,
Ban). 30.15'", Temp. 66°F. Baro_ 3030", Temp, 52°F.
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Models for the Aerosols of the Lower
Atmosphere and the Effects of Humidity
Variations on Their Optical Properties

ERIC P. SHETTLE
ROBERT W. FENN

"To represent the range of the different types of fog, we use

the fog models presented by Silverman and Sprague, 65

following the work of Dyachenko. 66"

Table 7, Size Distribution Parameter® of the Fog Models

(A )

Type of Fog Model A et b y rmodeI No(cm-

Advection Fog 1 0. 06502 3 0. 3 1 10. 0 20

2 0. 027 3 O. 375 1 IJ. 0 20

Radiation Fog 3 2. 37305 6 1. 5 1 4. 0 100

4 607. 5 6 3. 0 1 2. 0 200

Shettle, Eric P., and Robert W. Fenn. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their
optical properties. Vol. 79. No. 214. Air Force Geophysics Laboratory, Air Force Systems Command, United States Air Force, 1979.



8 I method

tt...revealed large numbers of small droplets which
were not visible under phase contrast. In about
one third of the fogs studied these droplets,
smaller than 2 pm diameter, made a large
contribution to the optical extinction
coefficient."

Garland - Some fog droplet size distributions obtained by an impaction
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9 I The Life Cycle ofValley Fog
N
O
R
M
A
L
I
Z
E
D
 D
R
O
P
 C
O
N
C
E
N
T
R
A
T
I
O
N
 t
%
 T
O
T
A
L
}
 20

40

40

20 •

20

:

.)
' 0537

t
•

t = 0623.

' 7

t = {:,fi 3D

t = 0632
• L

.11J.7L094

...

GF

•

; - I

z , 
TRANSITION FROM
  OF TO

_ FoG FORMATION
- =•.0111301 ...4 pitraistrrpt,..r

- t 0637 

0
0 4 a 12 16 20 24 28 32 36

DROP RADIUS Gm)

T . .

1: ' 4.04347:1 FoiLATicsi_ 7 
; DIST. N RIBUTIO '

! t 0638:30'

t 0039;30 i :

4=-4404 ! .

- • . FORkAl10 •
g • -  00 t 41 • :STAGE
p u 

t 
h •

. 1.084. 2
Z r

. °re-I3• i t
•

!_ 1 FIRST

mINIMUM
3- 0050 VISIBILITY

1 . f = ma
0 •

2. ...

...
o .....

7- OM
MATURE FOG

t ono

1 - - —
t 0610 • •

-0 4 8 12 16 24 26

DROPRADIUS tom)

NOTE DATA OBTAINED AT 0637 ARE PRESENTED ON NORMALIZED
AND ABSOLUTE FORM FOR COMPARISON.

i. Drop size distributiont far 2 Septernber 1970.

32 30

t 0510
i .

a °515

o

FORMATION._
STAGE

miromum •

- • -; - i -
•. 0638 ] ; 

-I-

. ..r•-:• • : .....
- —• • • • i • -1- t "'

'"'-ri-  OW  1
--•-••i --- 1-• • • -1--- I- MATURE FOG

, I : ; i- : t I_ 1 ,t 
1 3 . i

...r_.:::: -4— L-.1.__E, 1 
°obi : 1 

-

0 4 8 12 16 20 24 2a 32 36

DROP RADIUS m)

nR
OP

 r
i
7
A
C
E
N
T
R
A
T
I
O
N
 i
vm

-3
) 

0

2

2

.4_

r-
1 I

•

- r -

..t

rt.

MATUFTIE FOG
: • •

I i
- ' I !

:DISSIPATION
F37

" 

I /4-:I  ,-; t. D745
0 4 a 12 le 20 24 21 32 36

DROP RADIUS Am}

Drop size flistrihutiong Eor 25-August. 1.920,

Pilié, R.J., E.J. Mack, W.C. Kocmond, W.J. Eadie, and C.W. Rogers, 1975: The Life Cycle of Valley Fog. Part 11: Fog Microphysics. J. Appl. Meteor., 14, 364-374



10 I Köhler theory

sv,w

Water vapor condenses and from
liquid droplets

Activated/Non-activated

=
ea

esat,w

[2Mwo-sia
= exp  

RT pwa

vosnismw/ms 
(47a3p5/3) — ins]

lA I
Curvature term Solute term

Given a supersaturation value a
particle is in 0.02 

cF
° Equilibrium c:[ Sc Droplets can grow

o Growth -R- 0.01
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I11 How do particles effect how we see/image?

ELoss
• Scattering
• Absorption

oNoise
• Blurring

■ Scattered Light

• Scattered from background
• Solar Pedestal

EDependent on situation
• Particle size

• Concentration

• Wavelength

• Geometry

Forward scattering
90
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Isotropic scattering
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Scatterimi A,31f, Scattering Angle



12 I Fog Transmission
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13 Fog Transmission
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14 I Weather in ABQ

Oct 5, 2019
Balloon Fiesta Canceled

Dec. 23, 2016
30 flights delayed

Bizjournals.com
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Albuquerque Visibility 2017
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7 miles lowest average

Dec. 19, 2017
28 flights delayed

Dec. 26, 2018
?? flights delayed



15 How do we control the weather?
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16 The Sandia Fog Facility

Constructed in 2014

10' x 113' x 130'

. 6% grade (no pooling)

64 spray nozzles

o 3 selectable sections

Indoors

Stable Environment

LDRD Funded improvements

Temperature Control

Plastic Sheeting

Roll Doors

Instrumentation (time correlated)

Visibility (MOR)

Particle Sizers

Temperature, Humidity

Class IV lasers

Positive Pressure Dry Boxes



17 Measuring fog droplet distribution

Malvern Spratec

Narrow separation

• Inhalation cell

NTransmissorneter

• Transmission, T

• Extinction coefficient 13

- Long distance

oVie scattering theory

• Wavelength dependent

• Particle size dependent

Products

Liquid water content, LWC

• Droplet concentration Nd

• Number of droplets N(d)

Droplet

Equivalent distances through MOR=100m (ICAO) CATIIIc fog
Example case Fog facility MOR

(m)

Target distance

(m)

Equivalent Distance
to ICAO CATIIIc

Passive Imaging Discussed in this Presentation
Thick fog 3 9 m 300 m
Moderate fo• 6 9 m 150 m
Thin fo• 15 9 m 60 m
Full Length of Facility
Thick fog 3 55 m 1833 m
Moderate fog 6 55 m 917 m
Thin fog 15 55 m 367 m

Capable of very long equivalent distances

Nd

N(d)

AOR

• Meteorological optical range, MOR

(1)
LWC =

2 13

3 Ei Q(di) v(di)Pwater

di

(2) LWC v(d)
N(d)

47T (c1)3
3 2)

MOR =
1



I Polarization Tracking Monte Carlo

Polarization state of the photon is tracked throughout the scattering environment and modified after each
scattering event

The individual scattering event polarization modifications are cascaded together to determine the final
transmitted or reflected Stokes parameters

Sscat = R(—y)M(a)R(1P)Sinit



19 I Simulation and modeling capability

Simulation can handle arbitrary fog distributions and predict
performance of any fog at any optical wavelength
• Results for various fog models and real-world particle size measurements
(published in Applied Optics)

Supports modeling polarization performance (full stokes)
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20  Polarization Measurements Recap

• Our current proof of concept design was assembled with COTS components

• 1 550 nm System: FLIR Tau SWIR
• Polarization difference imager

• Linear or Circular polarization configuration

ering
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21 Active imaging of road sign targets at SWIR wavelengths
Target 1: CTF Area under Curve
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Measuring resolution degradation of passive long-wavelength infrared
22 imagery in• fog

o Slant edge target to measure the resolution over
a wide range of fog densities

Baseline M0R543 = 6.0 m M0R543 = 4.13 m
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- Fermi function fit
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23 I Using Scattered Photons — Computational Imaging

• Diffuse imaging methods have been used for
biomedical applications [1,2]

Information 10 times deeper in tissue

Can employ inexpensive COTs sources and detectors

Key question: will this work for fog with particle
motion?

Fo Cha ber S ct e

532 nrn
LTrans = 14 m

1550 nm Detector
9.68 pm Spraytec

Lsource — 13.5 m Particle

450 nm
Sizer (vi)

2 W LED

[1] B. Z. Bentz, A. V. Chavan, D. Lin, E. H-R Tsai, and K. J. Webb, Applied Optics 55(2), 2016
[2] B. Z. Bentz, D. Lin, and K. J. Webb, Physical Review Applied 10, 2018
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Thank You

JBWRIGH@SAND1A.GOV
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