

1 **SANS coupled with fluid invasion approaches for characterization of overall nanopore
2 structure and mesopore connectivity of organic-rich marine shales in China**

3 Yang Wang^{1,2}, Yanming Zhu^{1,2,*}, Rui Zhang^{3,***}, Lawrence M. Anovitz⁴, Markus Bleuel^{5,6},
4 Shimin Liu³, and Shangbin Chen^{1,2}

5 ¹Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education,
6 China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

7 ²School of Resources and Earth Science, China University of Mining and Technology, Xuzhou, Jiangsu
8 221116, China

9 ³Department of Energy and Mineral Engineering, G³ Center and Energy Institute, Pennsylvania State
10 University, University Park, Pennsylvania 16802, United States

11 ⁴Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United
12 States

13 ⁵NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg,
14 Maryland 20899, United States

15 ⁶Department of Materials Science and Engineering, A. James Clark School of Engineering, University of
16 Maryland, College Park, Maryland 20742, United States

17 Corresponding authors:

18 *Email: ymzhucumt@126.com; **Email: zhangrui117@gmail.com

20 **Abstract**

21 The pore structure of shales, including pore morphology, connectivity, pore volume, specific
22 surface area (SSA), and pore size distribution (PSD), is a significant factor in controlling gas
23 storage and transport and the migration mechanisms of hydrocarbons. However, the lack of
24 comprehensive characterization for both accessible and inaccessible pore structure increases the
25 difficulty of gas-in-place estimation and gas exploration. In order to investigate the nanoscale
26 pore system, integration of high-pressure mercury intrusion porosimetry (MIP), low-pressure
27 N₂/CO₂ adsorption (LNA/LCA), and small-angle neutron scattering (SANS) were employed to
28 obtain a multi-scale quantitative characterization of the nanopore structure of organic-rich
29 marine shale samples from the Longmaxi and Niutitang Formations in China. PSDs obtained
30 from the combined techniques appropriately cover an overall nanopore size range of shale (0.35-
31 15,000 nm) and overcome the limits of the individual method. Uni-, bi, and multi-modal PSDs
32 were observed, but the sizes of a significant portion of the nanopores observed in these shales

33 range from 0.35 to 100 nm. Pore volumes and surface areas of micropores (< 2 nm), mesopores
34 (2–50 nm), and macropores (> 50 nm) were characterized based on the best performance window
35 of each technique: LCA for micropores; LNA and SANS for mesopores; and MIP for
36 macropores. It was found that micropores are the major contributor to the total SSA for both
37 Longmaxi and Niutitang shales. With respect to pore volume, however, the contribution to the
38 total pore volume has a trend of micropore < mesopore < macropore for Longmaxi shale samples,
39 but Micro-/mesopore volumes are greater than macropore volumes for samples of the Niutitang
40 shale. Strong correlations were also observed between total organic carbon (TOC) content and
41 micropore volume and surface area, which implies that organic matter is a controlling factor in
42 the micropore system of organic-rich shales. In addition, strong correlations between methane
43 adsorption capacity and both micro-/mesopore volumes and SSAs indicate that micro-
44 /mesopores are governing factors for methane storage. Furthermore, the fractions of accessible
45 mesopore volume and surface area were quantitatively estimated by SANS and LNA.
46 Correlation analyses suggest that the accessibility of the mesopore surface area could be an
47 indicator for gas transport and storage in mesopores in organic matter. Thus, a shale with higher
48 connectivity could have higher gas diffusion capability but lower gas adsorption capacity, and
49 vice versa.

50 **Keywords**

51 Organic-rich marine shale; nanopore structure; mesopore connectivity; small-angle neutron
52 scattering; low-pressure N₂ and CO₂ adsorption

53 **1. Introduction**

54 Shale gas, an important unconventional gas resource, has attracted significant attention in
55 recent years in many parts of the world (Curtis, 2002; Hazra et al., 2018; Jarvie et al., 2007;

56 Merkel et al., 2016; Ross and Bustin, 2009; Zhao et al., 2016; Zou et al., 2015). The
57 investigation and exploration of shale gas will help meet the rapidly increasing demand for
58 energy consumption worldwide. Environmental pollution from the combustion of natural gas
59 produced in shale gas reservoirs will be less than that caused by burning coal and crude oil.
60 Available data, however, shows that shale gas reservoir rocks are characterized by more complex
61 and more heterogeneous nanoscale pore systems than sandstones and carbonates (Anovitz and
62 Cole, 2015; Chen et al., 2017a; Loucks et al., 2012), making modeling of gas recovery from
63 shale reservoirs more complex. The characterization of these nanoscale pore systems can,
64 therefore, provide insights into hydrocarbon storage capacity and flow mechanisms in shale gas
65 reservoirs (Pearce et al., 2018a; Ross and Bustin, 2009; Wang et al., 2014), as well as improve
66 reservoir modeling (Carlson and Mercer, 1991; Mohaghegh, 2013; Wu et al., 2016) and recovery
67 (Cipolla, 2009; Lee et al., 2011; Wu et al., 2014).

68 According to the pore classification system of the International Union of Pure and Applied
69 Chemistry (IUPAC) pores in shale can be classified into three groups: macropores (> 50 nm),
70 mesopores (2–50 nm) and micropores (< 2 nm) (Sing, 1985). Multiple qualitative and
71 quantitative techniques have been employed to characterize pore structures in terms of their pore
72 morphology, pore volume, specific surface area (SSA), pore size distribution (PSD), and pore
73 connectivity (Anovitz and Cole, 2015; Li et al., 2016; Liu et al., 2018; Mastalerz et al., 2018;
74 Naveen et al., 2018). Direct imaging, fluid injection, and scattering techniques, including
75 transmission electron microscopy (TEM) (Morga and Pawlyta, 2018; Romero-Sarmiento et al.,
76 2014), field emission scanning electron microscopy (FE-SEM) (Pashin et al., 2012; Topór et al.,
77 2017), low-pressure N_2/CO_2 adsorption (LNA/LCA) (Clarkson et al., 2013; Hazra et al., 2018),
78 mercury intrusion porosimetry (MIP) (Zhang et al., 2017), nuclear magnetic resonance (NMR)

79 (Webber et al., 2013; Zhou et al., 2016), small-angle X-ray scattering (SAXS) and ultra-/small-
80 angle neutron scattering (USANS/SANS) (Bahadur et al., 2018; Clarkson et al., 2013; Distefano
81 et al., 2019; Gu et al., 2015; Pan et al., 2016; Pearce et al., 2018b; Ruppert et al., 2013; Sun et al.,
82 2018) have been widely used in recent studies. Each of these techniques, however, has its
83 strengths and limitations. LNA/LCA and MIP provide good measurements of pore distributions
84 over a relatively wide size range, but cannot provide information about the percentage of
85 inaccessible or closed pores. TEM and FE-SEM can directly observe pore morphology and
86 identify the pore type, but because of the high magnifications involved can not provide
87 representative and statistically quantitative information. Scattering techniques, including SAXS
88 and SANS, allow for the characterization of both accessible and inaccessible pores but provide
89 limited information on pore morphology and, like diffraction, yield data in inverse space.
90 Therefore, there is an urgent need to thoroughly investigate the nanopore structures using a
91 combination of these techniques (Anovitz and Cole, 2015).

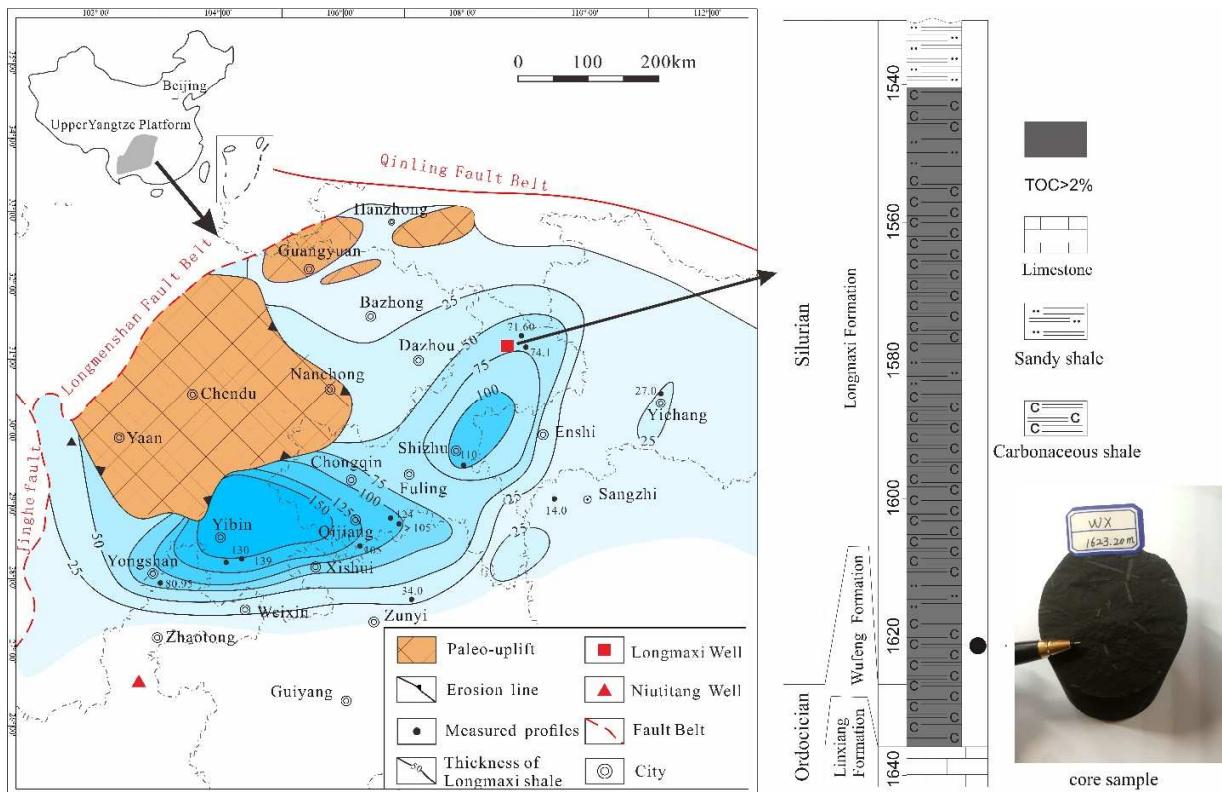
92 In China, shale gas exploration has been developing for more than a decade and significant
93 progress has been made in shale gas extraction from the Upper Yangtze Platform (UYP) (Chen
94 et al., 2017b; Wang et al., 2018; Yang et al., 2017; Zhao et al., 2016). The Lower Cambrian
95 Niutitang and Lower Silurian Longmaxi shale Formations in the UYP are considered the most
96 promising strata for shale gas exploration in China because of their widespread occurrence,
97 thickness, organic richness, and favorable mineral composition with high quartz content (Chen et
98 al., 2017b; Xiao et al., 2015). In recent years, successful commercialized shale gas production
99 has been achieved from Lower Silurian Longmaxi shales in the Jiaoshiba area of the Fuling
100 Block (Guo, 2016; Zhao et al., 2016). Compared to the Lower Silurian shales, however,
101 exploitation of the Lower Cambrian shales in China has been less successful, though they exhibit

102 similar geochemical parameters and mineral compositions. While this is likely due to complex
103 shale geology and various reservoir conditions, the exact causes of this failure are unknown.

104 To date, the lack of an accurate characterization of the nanopore structures of these two
105 shales has been a significant impediment to evaluation of shale gas production and, unfortunately,
106 few studies have been devoted to fully characterizing the differences of nanopore structures
107 between the Longmaxi and Niutitang shales (Sun et al., 2017; Wang et al., 2018; Yang et al.,
108 2017). In this study, therefore, we have integrated SANS with fluid invasion methods including
109 LNA, LCA, and MIP to gain a more comprehensive understanding of the nanoscale pore
110 networks of these two shale Formations. This work will, therefore, have a broad application for
111 improving prediction of gas production potential in Chinese marine shales and bridge the gap
112 between nanopore structure and gas adsorption behavior.

113 **2. Geological Setting**

114 Yangtze platform is a craton basin. Tectonically, the UYP comprises the western part of the
115 Yangtze platform in south China and is enveloped by the Qinling fault belt in the north and the
116 Longmenshan fault belt in the west (Jia et al., 2006; Meng et al., 2005). The UYP is a vast area of
117 approximately $3.5 \times 10^5 \text{ km}^2$, including Northern Yunnan Province, Sichuan Province, Guizhou
118 Province, Chongqing City, Western of Hunan and Hubei Province (Fig. 1). The UYP went
119 through multiple periods of tectonic events, such as the late Caledonian - Hercynian movement,
120 Indosinian movement, and Yanshan-Himalayan movement (Liu et al., 2016; Ma et al., 2008).
121 Today, the tectonic characteristics in the study area are mainly showing NE-SW oriented tight
122 anticlines and broad synclines, associated with faults of similar orientation (Tang et al., 2019).


123 The marine organic-rich shales are widely developed in the UYP, particularly in the Lower
124 Cambrian Niutitang and Lower Silurian Longmaxi Formations. These organic-rich shales were

125 deposited in a low-energy, quiet, and anoxic marine environment that underwent early burial and
126 later uplifting stages of evolution (Guo and Zhang, 2014). With the increased exploration of
127 shale gas, four Longmaxi Formation gas shale fields have been discovered in the Jiaoshiba,
128 Fushun-Yongchuan, Zhaotong, and Changning-Weiyuan areas in the UYP (Dai et al., 2016).
129 Therefore, the UYP has recently been regarded as the main target for shale gas exploration and
130 development in China.

131 **3. Experimental methods**

132 **3.1 Sample collection**

133 A total of six marine shale samples were analyzed in this study, which are the same as those
134 in our previous study (Wang et al., 2018). Four fresh Longmaxi Formation shale core samples
135 were collected from the WX₂ well, located in northeast Chongqing near the edge of the Sichuan
136 Basin. Two fresh Niutitang Formation shale core samples were collected from the QD₁ well,
137 located in northeast Yunnan near the southwestern edge of the UYP (Fig. 1). In order to avoid
138 contamination and keep samples fresh, shale samples were collected from 1538-1625 m for WX₂
139 well and 1125-1183 m for QD₁ well, respectively. Meanwhile, all samples were carefully and
140 rapidly covered using cling wrap and then brought to the laboratory in opaque bags.

141 **Figure 1.** Map of UYP and sampling location (modified after Wang et al., 2018). Note that Contour colors
142 from shallow to deep represent the increase of the thickness of Longmaxi shale. The bottom of the Longmaxi
143
144 Formation consists of carbonaceous shale. The core sample was collected from a depth of 1623.2 m
145

3.2 Mercury intrusion porosimetry

146 MIP analyses were carried out on a Micrometrics AutoPore IV 9510 porosimeter at
147 pressures from 0.14 to 413 MPa. This instrument is located at the China University of Mining
148 and Technology, Xuzhou, Jiangsu, China. Shale samples were cores with diameters of 1 cm and
149 lengths of 1 cm. Before the MIP test, each shale sample was dried at 60 °C for more than 48 h
150 and then cooled to room temperature at a relative humidity of less than 10 %. The PSD was
151 calculated from the MIP curve using the Washburn equation (Washburn, 1921).

152 **3.3 FE-SEM observation**

153 FE-SEM was performed with a Quanta 200F equipped with an energy-dispersive
154 spectrometer (EDS) at the State Key Laboratory of Petroleum Resource and Prospecting, China
155 University of Petroleum (Beijing). Prior to the experiment, the surfaces of the measured samples
156 were prepared by Ar-ion milling. The experiment was conducted at a temperature of 24 °C and a
157 humidity level of 35%. SEM images were obtained under high vacuum at 1-20 kV acceleration
158 voltages using the back-scattering electron detector.

159 **3.4 Low-pressure N₂ and CO₂ adsorption**

160 LNA and LCA were measured using a Quantachrome Autosorb-1 apparatus at the China
161 University of Mining and Technology. Powder samples had a particle size of 60-80 mesh. Before
162 adsorption, the powders were degassed at ~110 °C for approximately 24 hours. LNA and LCA
163 isotherms were measured at 77 and 273 K, respectively. The LNA data were interpreted using
164 the multi-point Brunauer–Emmett–Teller (BET) model for estimation of SSA, and the Barrett–
165 Joyner–Halenda (BJH) model for estimations of pore volume and PSD. The LCA data were
166 interpreted using the Dubinin–Astakhov (D–A) model for estimations of micropore volume and
167 surface area, and Density Functional Theory (DFT) for estimation of PSD (Dubinin, 1989; Ross
168 and Bustin, 2009; Chalmers et al., 2012). A detailed description of these theories can be found in
169 Gregg and Sing (1982).

170 **3.5 Small-angle neutron scattering**

171 Six shale samples were analyzed using SANS in this study. Two powder samples denoted
172 WX₂-8 and WX₂-33 were analyzed using the general-purpose SANS (GP-SANS) at the High
173 Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). These samples,
174 with a non-uniform particle size of <0.5 mm, were placed in aluminum holders inside stainless-

175 steel high-pressure cells. Four thin disk samples, approximately 150 μm thick and mounted on
176 quartz glass slides (Anovitz et al., 2009), denoted QD₁-L3, QD₁-L4, WX₂-49, and WX₂-54 were
177 analyzed using the NG7 30m SANS at the NIST Center for Neutron Research (NCNR) at the
178 National Institute of Standards and Technology (NIST). The detailed experimental
179 configurations can be found in our previous study (Wang et al., 2018).

180 **4. Results**

181 **4.1 Basic characterization**

182 The geochemical parameters and mineral compositions of the samples are listed in Table 1.
183 The detailed experimental methods of those analyses are shown in our previous study (Wang et
184 al., 2018). The TOC contents of the shale samples range between 1.52 and 6.33 wt.%. The values
185 of the equivalent vitrinite reflectance (EqVR_r) range from 2.06 to 3.03 %, indicating that shales
186 in the study area have experienced strong thermal maturation and reached the post-mature stage
187 (Wang et al., 2018). The mineral compositions are dominated by quartz and clay with average
188 contents of 49.3 and 28.9 wt.%, respectively (Wang et al., 2018). Moreover, shale samples also
189 contain several other minerals, including pyrite, calcite, dolomite, K-feldspar, and plagioclase.

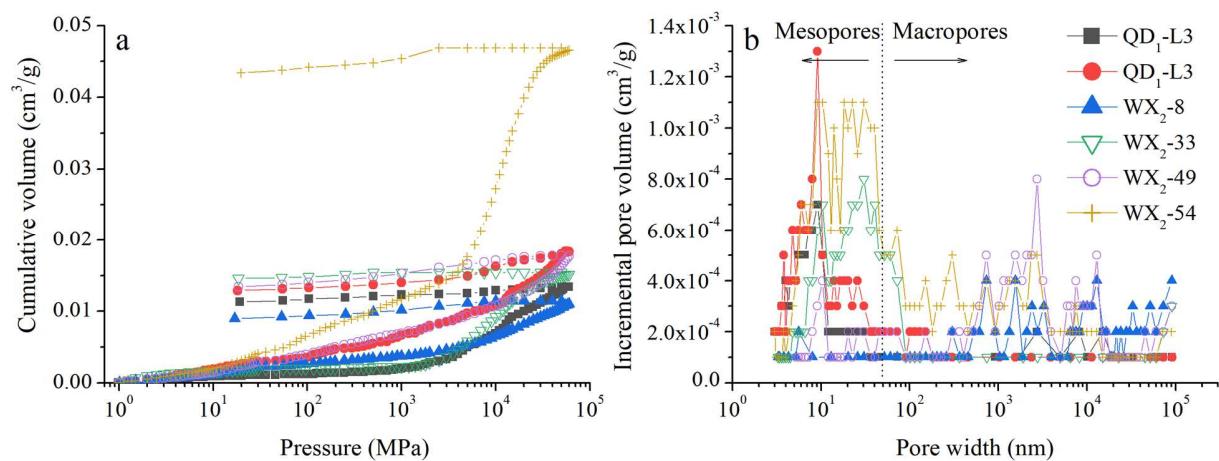
190 **Table 1.** Basic properties of the tested six shale samples^a

Formation	Sample ID	Quartz (wt.%)	K-feldspar (wt.%)	Plagioclase (wt.%)	Dolomite (wt.%)	Calcite (wt.%)	Pyrite (wt.%)	Clay (wt.%)	Illite (wt.%)	Smectite (wt.%)	Chlorite (wt.%)	Illite/Smectite mixed layer (wt.%)	TOC (wt. %)	EqVRr (%)
Niutitang (E ₁)	QD ₁ -L3	46.61	4.64	7.25	1.35	5.61	1.64	29.59	15.09	5.03	1.55	7.93	3.29	2.85
	QD ₁ -L4	54.15	1.44	3.64	nd	6.98	2.39	27.08	19.61	1.15	0.77	5.55	4.32	3.03
Longmaxi (S ₁)	WX ₂ -8	37.42	1.48	14.28	nd	2.17	2.76	40.38	25.90	nd	5.12	9.36	1.52	2.06
	WX ₂ -33	46.33	nd	9.60	2.94	13.71	3.82	21.54	10.38	nd	2.55	8.62	2.05	2.12
	WX ₂ -49	49.41	1.15	5.27	nd	3.26	9.10	27.58	16.09	1.53	3.35	6.61	4.25	2.26
	WX ₂ -54	50.77	3.09	8.43	1.12	3.28	5.99	20.98	13.58	1.12	2.15	4.12	6.33	2.32

191 ^aData from Wang et al. (2018); nd is no data.

192

193


194

195

196

197 **4.2 Accessible nanopore characterization from invasive methods**198 **4.2.1 Mercury intrusion**

199 The cumulative mercury intrusion and extrusion volumes as a function of pressure for the
 200 six shale samples are shown in Fig. 2a. The mercury intrusion volume gradually increases with
 201 increasing pressure at relatively low pressure, then rapidly increases with increasing pressure
 202 above some relatively high pressure, indicating the presence of macropores and mesopores,
 203 respectively. The highest cumulative intrusion volume among the tested samples was that for
 204 sample WX₂-54 (yellow cycles in Fig. 2a). Hysteresis was observed between mercury intrusion
 205 and extrusion cycles for all the tested samples indicating that approximate 40–90 % of mercury
 206 was trapped in the macro-/mesopores.

207

208 **Figure 2.** (a) Mercury intrusion/extrusion curves and (b) incremental pore volumes.

209 Table 2 exhibits the results of the pore structure parameters derived from MIP. The MIP
 210 results indicate the presence of both uni- and multi-modal PSDs as shown in Fig. 2b. The results
 211 suggest that most pores for both the Niutitang and Longmaxi shales have sizes between 5 and
 212 100 nm and are, therefore, classified as macro-/mesopores. The observed PSD variability
 213 indicates that there is substantial heterogeneity in pore properties among the tested shale samples.
 214 Based on the MIP data, the macropore volume varies from 0.18 to 1.44 cm³/100g, and the

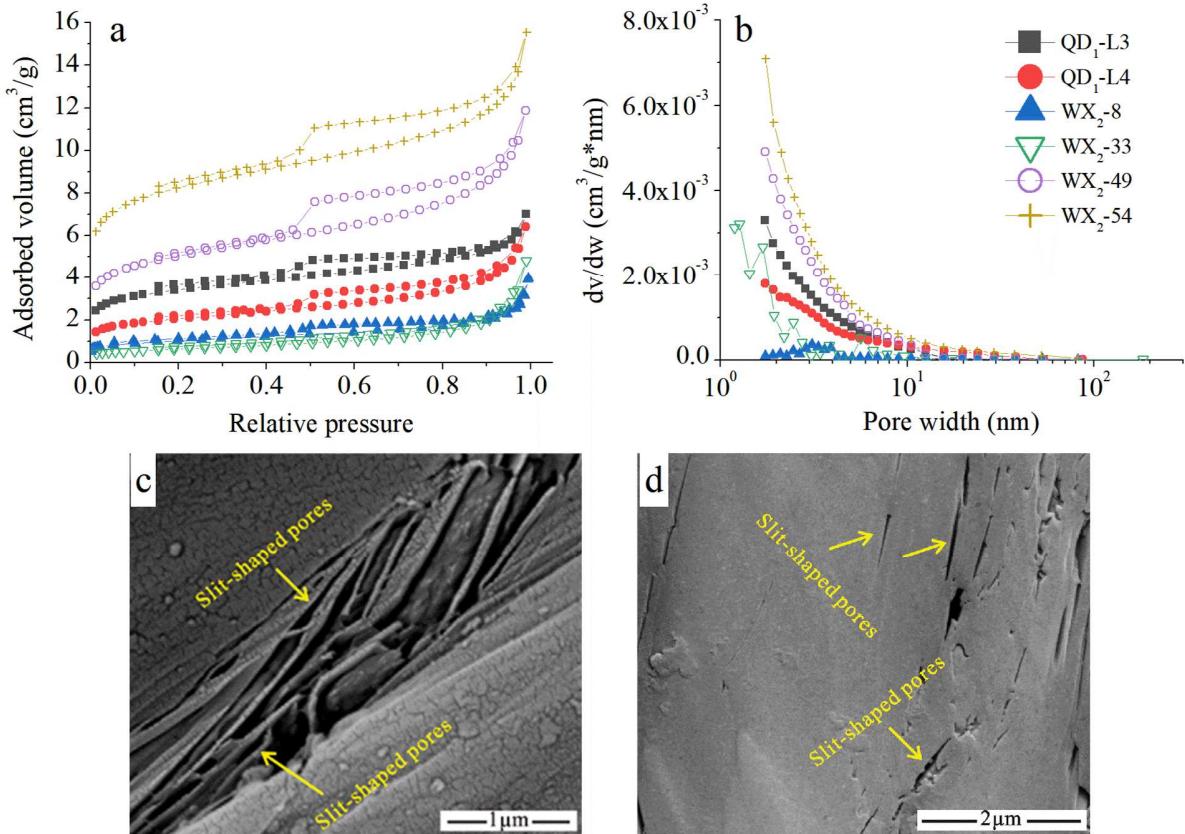
215 macropore surface area ranges from 0.006 to 0.199 m²/g. However, published results suggest that
 216 significant populations of the micropores and narrow mesopores in shales are sealed or
 217 inaccessible (closed), and thus are not accessible to MIP analysis (Anovitz and Cole, 2015; Kuila
 218 and Prasad, 2013).

219 **Table 2.** Pore volume and SSA of each method and the overall nanopores

Sample ID	MIP-macropore		LNA-mesopore		LCA-micropore		SANS-mesopore		Overall micro-/meso-/macropores ^a	
	Volume (cm ³ /100g)	SSA (m ² /g)	Volume (cm ³ /100g)	SSA (m ² /g)	Volume (cm ³ /100g)	SSA (m ² /g)	Volume (cm ³ /100g)	SSA (m ² /g)	Volume (cm ³ /100g)	SSA (m ² /g)
QD ₁ -L3	0.18	0.006	0.51	8.32	0.571	16.07	1.33	17.69	1.261	24.396
QD ₁ -L4	0.31	0.077	0.71	4.53	0.486	14.57	1.20	16.07	1.506	19.177
WX ₂ -8	1.03	0.044	0.18	1.89	0.086	2.57	0.26	2.39	1.296	4.504
WX ₂ -33	0.33	0.100	0.21	3.13	0.222	6.25	0.46	4.79	0.762	9.480
WX ₂ -49	1.31	0.083	1.21	8.52	0.556	15.91	1.49	19.86	3.076	24.513
WX ₂ -54	1.44	0.199	0.80	10.51	0.931	28.30	3.42	43.62	3.171	39.009

220 ^aThe overall pore properties are from three invasive methods.

221 **4.2.2 Low-pressure N₂ adsorption**

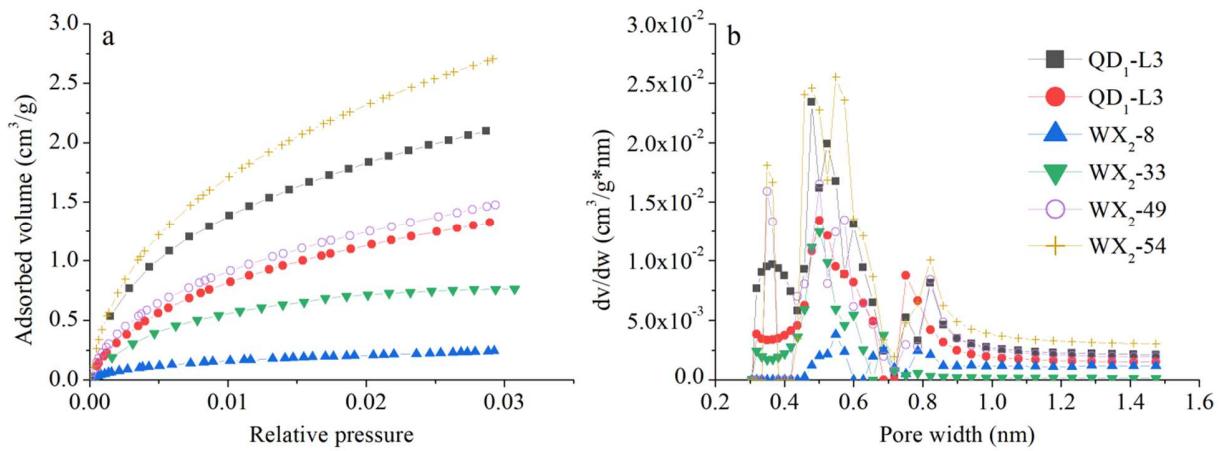

222 The LNA isotherms for shale samples are shown in Fig. 3a. At low relative pressures (P/P₀<0.05), adsorption capacity increases significantly with increasing P/P₀, suggesting filling of
 223 liquid N₂ inside micropores. For P/P₀ values between 0.05 and 0.95, adsorbed volume increases
 224 gradually with increasing P/P₀, a behavior associated with mesopore filling of liquid N₂ and
 225 capillary condensation. When P/P₀ is greater than 0.95, the adsorption capacity increases rapidly
 226 with increasing P/P₀ and does not exhibit any plateau, indicating that both the Niutitang and
 227 Longmaxi shales contain macropores and micro-fractures.

228 Hysteresis loops were observed in all of the adsorption-desorption isotherms as shown in
 229 Fig. 3a. The shape of the hysteresis loops may be classified as type H3 according to the IUPAC
 230 classification (Sing, 1985), which indicates the presence of abundant slit-shaped pores. This was

232 supported by SEM imaging (Fig. 3c, 3d). However, pore-shape analysis based on solely
233 adsorption-desorption isotherm shape is clearly idealized, and the actual pore system is likely to
234 be composed of a mixture of different pore shapes, perhaps similar to the irregularly-shaped
235 pores observed in our previous study (Wang et al., 2018).

236 Over a wide range of P/P_0 , LNA analysis can provide information on mesopore structure
237 including mesopore SSA and pore volume (Thommes et al., 2015). As shown in Table 2, the
238 mesopore SSA of the shale samples ranges from 1.89 to 10.51 m^2/g . Sample WX₂-54 contains
239 the highest mesopore SSA, while sample WX₂-8 has the lowest. The mesopore volume varies
240 from 0.51 to 1.21 $\text{cm}^3/100\text{g}$, and LNA analysis suggested that sample WX₂-49 contains the
241 highest mesopore volume, while sample WX₂-8 again has the lowest.

242 Fig. 3b shows PSDs (dV/dW versus W , where V is adsorption volume and W is pore width)
243 for the six shale samples obtained from the adsorption branches of the LNA isotherms using the
244 BJH model. The PSD shows a broad range of pore sizes between 1.8 and 100 nm. The PSD
245 displays a decreasing trend in differential pore volume dV/dW with increasing pore size for all
246 tested samples, indicating that the pore concentration decreases with increasing pore size over
247 the measured pore size range. These results are consistent with the mesopore SSA and volume
248 results (Table 2). The mesopore SSA and volume of samples WX₂-49 and WX₂-54 are higher
249 than those of other samples and sample WX₂-8 has the smallest pore volume in the pore diameter
250 range between 2 and 50 nm (Fig. 3b).


251

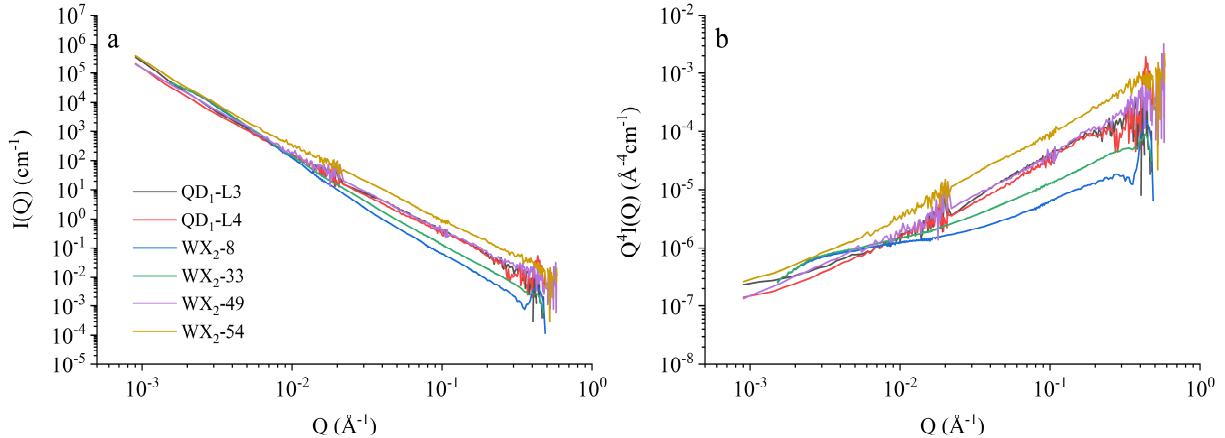
252 **Figure 3.** (a) Low-pressure N₂ adsorption isotherms, (b) differential pore volume distributions, (c) sample
253 WX₂-33, and (d) sample QD₁-L3 SEM images of slit-shaped pores.

254 **4.2.3 Low-pressure CO₂ adsorption**

255 LCA has been widely used to characterize micropore structure because the accessibility of
256 CO₂ in small pores is better than that of N₂ (Chalmers et al., 2012; Mastalerz et al., 2013; Sun et
257 al., 2016). Fig. 4a shows the CO₂ adsorption isotherms for the six shale samples. These can be
258 classified as Type I (Sing, 1985), indicating that the shales are microporous solids. To obtain
259 information on micropore volume and surface area from the LCA data we used the D-A model
260 (Chalmers et al., 2012; Dubinin, 1989). The results are shown in Table 2. The micropore volume
261 ranged from 0.086 to 0.931 cm³/100g. The micropore surface area ranged from 2.57 to 28.30
262 m²/g. Sample WX₂-54 showed the highest micropore volume and surface area, while sample
263 WX₂-8 has the smallest. Micropore PSDs were estimated from LCA using a DFT model (Gregg

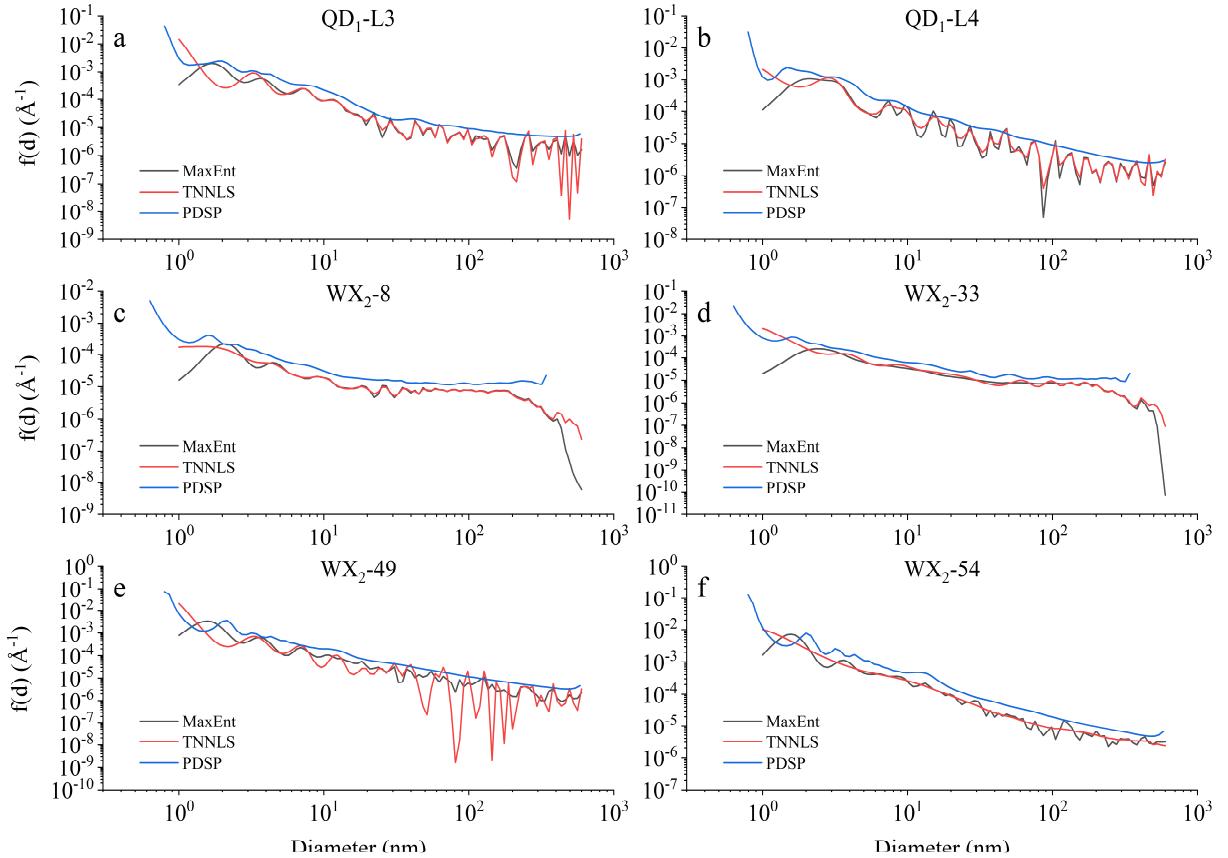
264 and Sing, 1982). The results are shown in Fig. 4b. These show multimodal PSDs in the pore
 265 diameter range between 0.35 and 1 nm. A peak occurs between 0.45 and 0.65 nm, and two minor
 266 peaks occur around 0.32-0.38 nm and 0.72-0.85 nm, respectively. For pore sizes greater than 1
 267 nm the pore concentration is approximately constant within the micropore size range for each
 268 shale. Again, sample WX₂-54 shows the highest dV/dW value, which is consistent with the
 269 micropore volume and surface area calculations (Table 2). MIP, N₂, and CO₂ adsorption thus all
 270 suggest that this sample has a higher pore volume and surface area than the other five samples at
 271 nearly all pore sizes. It also has the highest helium porosity (Wang et al., 2018). Also, for all
 272 samples, the pore volume in the micropore range detected by CO₂ adsorption is higher than that
 273 detected by N₂ adsorption.

274
 275 **Figure 4.** (a) Low-pressure CO₂ adsorption isotherms and (b) differential pore volume distributions.


276 **4.3 Accessible and inaccessible nanopore characterization by SANS**

277 Unlike MIP and LNA/LCA, SANS can probe both accessible and inaccessible pores in
 278 shales (Anovitz and Cole, 2015; Anovitz and Cole, 2019; Bahadur et al., 2014; Clarkson et al.,
 279 2013; Ruppert et al., 2013; Wang et al., 2018). Fig. 5a shows that the log of the scattering
 280 intensity, $I(Q)$, decreases with the increasing log of the scattering vector Q . Q and $I(Q)$ can be
 281 defined as (Glatter and Kratky, 1982):

282
$$Q = \frac{4\pi}{\lambda} \sin \theta \quad (1)$$


283
$$I(Q) = N(\Delta\rho^*)^2 \int V^2(r)f(r)P(Q,r)dr \quad (2)$$

284 where λ is the neutron wavelength; θ is the Bragg angle, which is the half of scattering angle; N
 285 is the pore number density; $(\Delta\rho^*)^2$ is the scattering contrast, which is equal to $(\rho_s^* - \rho_p^*)^2$, the
 286 square of the difference between the scattering length density (SLD) of the matrix and that of the
 287 pores (generally taken to be zero); $V(r)$ is the spherical volume; $f(r)$ is the pore size distribution;
 288 r is the spherical pore radius; and $P(Q,r)$ is the spherical form factor. The approximately linear
 289 relationship between $I(Q)$ and Q or $Q^4I(Q)$ and Q indicates a fractal pore structure for the six
 290 shale samples (Fig. 5). Here, the pore size can be estimated by Bragg's law with Q as $r = \pi/Q$
 291 in radius or $d = 2\pi/Q$ in diameter (Bragg, 1913). Sample WX₂-54 has the highest $I(Q)$ over the
 292 entire Q range, which suggests that it has the highest total pore volume and surface area
 293 (including open and closed pores) among the tested shale samples. Both samples WX₂-8 and
 294 WX₂-33 have relatively lower $I(Q)$ s at $Q > 0.01 \text{ \AA}^{-1}$ than the other samples, indicating relatively
 295 low pore volumes and surface areas in the mesopore range. The approximately linear relationship
 296 between $\log(I(Q))$ and $\log(Q)$ or $\log(Q^4I(Q))$ and $\log(Q)$ indicates that the six shale samples
 297 have a fractal pore structure (Fig. 5). The results of our previous study (Wang et al., 2018),
 298 showed that samples QD₁-L3, WX₂-8, and WX₂-33 exhibit surface fractal features with
 299 dimensionalities of 2.78, 2.42, and 2.84, respectively. In contrast, mass fractal features were
 300 found for samples QD₁-L4, WX₂-49, and WX₂-54, with fractal dimensions of 2.89, 2.93, and
 301 2.84, respectively.

302 **Figure 5.** Background-subtracted scattering profiles in log-log plots: (a) $I(Q)$ versus Q and (b) $Q^4 I(Q)$ versus
 303 Q .

304 We estimated the PSDs of the tested samples based by fitting of scattering intensity $I(Q)$
 305 as a function of Q using three methods: (1) the polydisperse spherical pore (PDSP) model in
 306 PRINSAS (Hinde, 2004), as well as (2) the maximum entropy (MaxEnt) method (Ilavsky and
 307 Jemian, 2009), and (3) the total non-negative least square (TNNLS) method in IRENA (Ilavsky
 308 and Jemian, 2009). The assumption of spherical pore shape was used for each method. Note that,
 309 pore morphology is really complicated in the shale matrix, which can be found in the SEM
 310 images of the tested samples (Wang et al., 2018). Here, the spherical-shaped pore was used in
 311 SANS data analysis because of simplicity. The background-subtracted scattering intensity is
 312 shown in Eq. 2. Note that, $f(r) = \frac{r^{-(1+D)}}{(r_{\min}^{-D} - r_{\max}^{-D})/D}$ defines the fractal pore size distribution in
 313 PRINSAS, where D is the fractal dimension; r_{\min} and r_{\max} are the lower and upper limits of pore
 314 radius, respectively. However, $f(r)$ does not have a predefined functional form in the MaxEnt
 315 and TNNLS methods in IRENA. Values for r_{\min} and r_{\max} were automatically determined during
 316 fitting in PRINSAS, and the number of bins was set to be 30 for each decade of Q . In IRENA,
 317 however, the upper and lower limits of pore diameter were artificially set at 1 nm and 600 nm,
 318 and the total number of bins was set to 100.

320

321 **Figure 6.** Comparison of PSDs estimated by different model fitting methods using scattering data for each
 322 shale sample: (a) QD₁-L3, (b) QD₁-L4, (c) WX₂-8, (d) WX₂-33, (e) WX₂-49, and (f) WX₂-54.

323

The estimated PSDs based on three model fitting methods are shown for each shale in Fig.

324

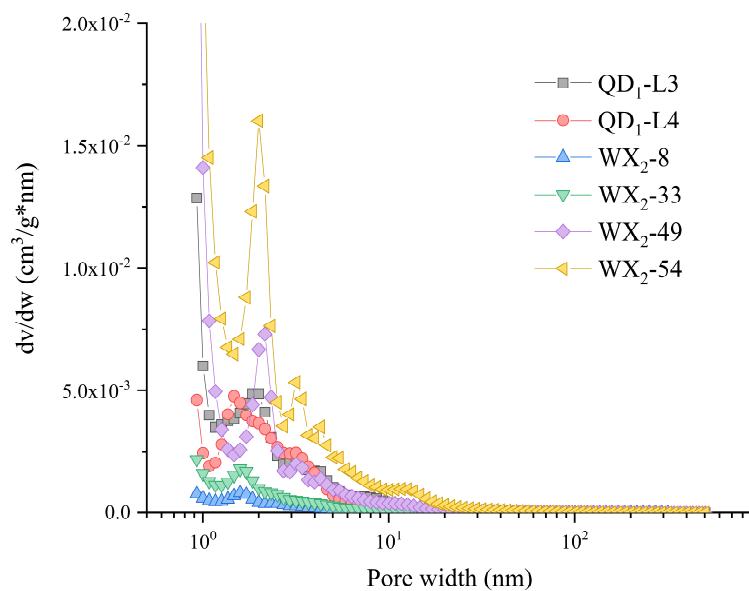
6. The different methods generally agreed well. The MaxEnt and TNNLS results are similar to

325 each other, and the PDSP results are smoother and slightly higher than those from the other two

326 methods. The discrepancy may be because PDSP contains a fractal functional form for pore size

327 distributions, while MaxEnt and TNNLS do not have such an inherent constraint. The different

328 sizes and numbers of bins used for the different models may also have affected the results. In


329 addition, PDSP relates the pore size to the scattering vector as, $d = 5/Q$ (Radlinski et al., 2000),

330 while MaxEnt and TNNLS use $d = 2\pi/Q$ (Bragg, 1913), which is derived from Eq. 1 and

331 Bragg's law. For samples QD₁-L3 and WX₂-49, the TNNLS results are noisier (higher entropy)

332 than the MaxEnt results, but this is weakly reversed for WX₂-54. This could be caused by

333 different error multipliers or the number of iterations used during the fitting, or may be inherent
 334 in the methods. Results from both the MaxEnt and TNNLS methods showed a significant
 335 decrease in pore number near the upper size limit for samples WX_2 -8 and WX_2 -33. This suggests
 336 that the upper pore size limit used (600 nm) is greater than the real maximum pore size limit for
 337 these two shales.

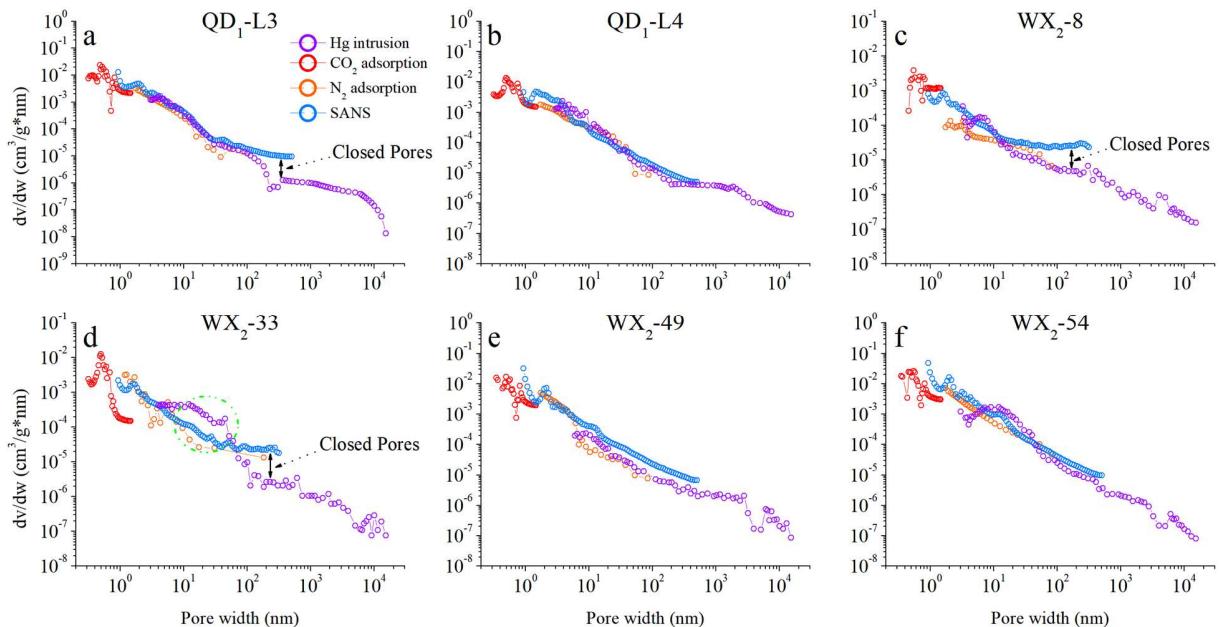
338
 339 **Figure 7.** Comparison of differential pore volume distributions from the PDSP method using scattering data
 340 for the tested shale samples.

341 Fig. 7 shows a comparison of the estimated PSDs from the PDSP approach for the
 342 different samples. The profiles show bi- or multi-modal features. Sample WX_2 -54 has the highest
 343 dV/dW , while samples WX_2 -8 and WX_2 -33 have lower values, which is consistent with the
 344 scattering profiles (Fig. 5) and the results from the fluid invasion methods (Figs. 2, 3, and 4). We
 345 found that the PSD has a peak with position around 2 nm for each shale sample. The PSD results
 346 differ from those from N_2 adsorption, which have no apparent 2 nm peak. This indicates either
 347 the existence of a considerable percentage of inaccessible pores or a substantial degree of
 348 heterogeneity at a pore size around 2 nm for the samples tested.

349 We estimated the pore volumes and surface areas in the mesopore range (2-50 nm) from
350 the PSD results, and compared them with results from N₂ adsorption. These can be estimated as:

351
$$V = \frac{N}{\rho} \int f(r)V(r)dr \quad (3)$$

352
$$S = \frac{N}{\rho} \int f(r)A(r)dr \quad (4)$$


353 where N is the pore number density; ρ is the sample density; $V(r)$ is the spherical volume which
354 equals to $4/3\pi r^3$; $A(r)$ is the spherical surface which equals to $4\pi r^2$. As can be seen in Table 2,
355 the mesopore volumes estimated from the SANS data range between 0.26 and 3.42 cm³/100g;
356 Mesopore surface areas range between 2.39 and 43.62 m²/g. These are significantly greater than
357 those obtained from N₂ adsorption, suggesting that the samples contain some percentage of
358 inaccessible pores. However, this “extra” scattering intensity could also arise from factors other
359 than inaccessible porosity such as heterogeneity in the chemical composition or density of the
360 shale matrix (Anovitz and Cole, 2015).

361 **5. Discussion**

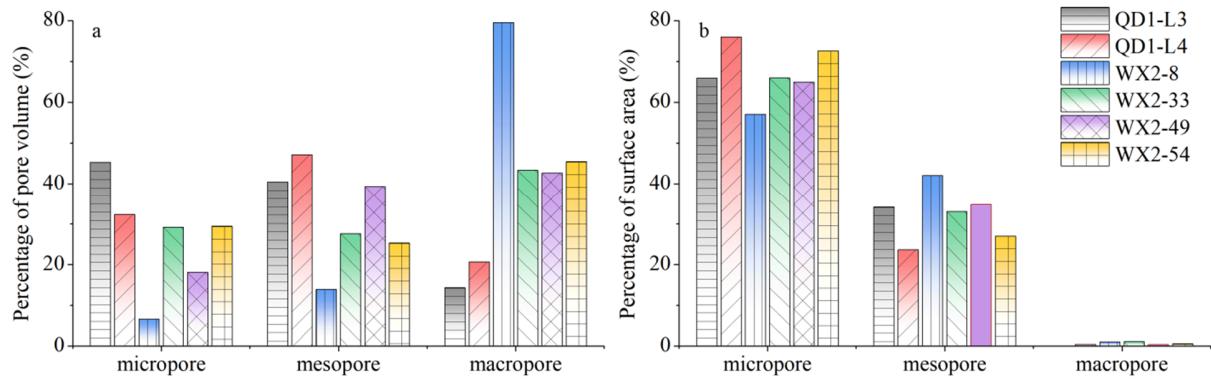
362 **5.1 Overall nanopore size distribution**

363 A multi-scale PSD for each sample, including the micro-, meso- and macropore ranges, was
364 obtained by combining PSDs estimated from MIP, LNA, LCA, and SANS as shown in Fig. 8.
365 LCA and LNA access pore diameters ranging from 0.35 to 150 nm, SANS covers pore scales
366 from 1.7 to 500 nm, and MIP accesses pore diameters from 3 to 15,000 nm. To provide a direct
367 comparison, we have converted the PSD results of MIP, LCA, LNA, and SANS into unified
368 units of cm³g⁻¹nm⁻¹. In all of the samples analyzed, a significant portion of the nanopores fall into
369 a size range between 0.35 and 100 nm. The PSDs in this size range derived from the LCA and
370 SANS data agree well, except for those from samples WX₂-33 and WX₂-54 (Fig. 8d and f),
371 where the PSD estimated by SANS is higher than that from LCA. This indicates the presence of

372 a poorly-connected micropore system in these two shales, leading to the presence of closed
373 porosity not detected by LCA. Similarly, the PSDs derived from SANS, LNA, and MIP appear
374 to be in reasonable agreement for most of the tested samples. However, there is an obvious
375 discrepancy between the SANS and MIP results at pore diameters in the 100-300 nm range for
376 samples QD₁-L3, WX₂-8, and WX₂-33 (Fig. 8a, c, and d), where the PSD estimated by SANS is
377 greater than that from MIP. This difference may reflect the existence of inaccessible porosity
378 (Clarkson et al., 2013; Zhang et al., 2015), or the heterogeneity of shale rock matrix (Table 1).
379 Additionally, the PSD estimated from the SANS data was unexpectedly lower than that
380 measured by MIP for sample WX₂-33 from 5 to 40 nm (Fig. 8d). One possible explanation for
381 this discrepancy is that compression of the shale sample at high mercury intrusion pressures may
382 have lead to alteration of the pore structure, a known drawback of MIP method (Clarkson and
383 Bustin, 1999; Rani et al., 2015). Since mercury can only be injected into accessible pores, there
384 may be more compression for samples with more inaccessible pores. Another possible reason
385 may be that the sample with higher calcite content (13.71% for WX₂-33) may have higher
386 compressive effect. In addition, heterogeneity of rock matrix may play a role in the results
387 between MIP and SANS.

388

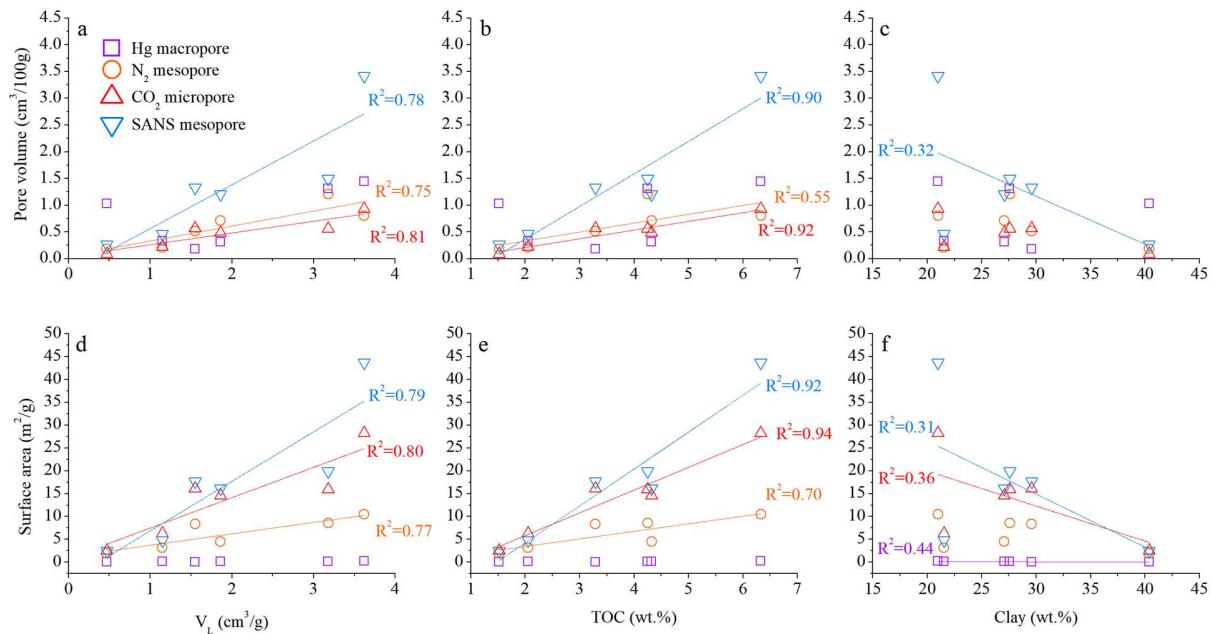
389 **Figure 8.** Overall pore size distribution from different techniques for (a) QD₁-L3, (b) QD₁-L4, (c) WX₂-8, (b)
390 WX₂-33, (e) WX₂-49, and (f) WX₂-54.


391 **5.2 Integration of pore volume and surface area in micro-/meso-/macropores**

392 Based on the best performance window for each technique, MIP was used to quantify the
393 pore volume and SSA of macropores (> 50 nm), and LNA and LCA were applied to quantify the
394 pore volume and SSA of mesopores (2-50 nm) and micropores (< 2 nm) (Furmann et al., 2014;
395 Mastalerz et al., 2013). SANS was used to quantify the pore volume and SSA of both the
396 accessible and inaccessible mesopores up to 600 nm in this study. The results of the pore volume
397 and SSA measurements from the different techniques are shown in Table 2. The contributions of
398 micro-/meso-/macropores pore volumes and SSA to the overall pore volume and SSA from the
399 invasive methods are illustrated in Fig. 9. Not surprisingly, the micropore size range is the major
400 contributor to the total surface area, contributing between 64.90 and 75.98 % of the total for the
401 tested samples (Fig. 9b). The contribution of mesopores to the total surface area averaged
402 32.41 %, and the contribution of macropores is less than ~1 %. Thus, the total surface area for

403 both Longmaxi and Niutitang shales are dominated by micro-/mesopores, which is in agreement
404 with previous studies (Tian et al., 2015; Wang et al., 2016).

405 In contrast, the micropore, mesopore and macropore volumes account for averages of 26.78,
406 32.28, and 40.94 % of the total pore volume, respectively (Fig. 9a). The average percentage of
407 pore volume thus increases with increasing pore size. For example, macropores make up a much
408 higher percentage of the total volume (~80 %) of sample WX₂-8 than of the other shales.
409 Samples WX₂-33 and WX₂-54 have similar micro-/meso-/macropore percentages, where the
410 percentages of pore volume between micro-/mesopores are comparable for these two samples,
411 despite the total pore volume of the sample WX₂-33 being four times smaller than that of the
412 sample WX₂-54 (Table 2). Sample WX₂-49 has about equal meso-/macropores pore volumes, a
413 smaller micropore volume percentage, a relatively large total pore volume (~3.08 cm³/100g).


414 Unlike the four Longmaxi shale samples, however, the two samples from the Niutitang
415 formation, QD₁-L3 and QD₁-L4, have a smaller volume percentage of macropores than micro-
416 /mesopores. A similar result was occasionally observed in a previous study (Tuo et al., 2016).
417 Such a pore structure suggests that, in these rocks, methane may be successfully stored in micro-
418 /mesopore networks, but it will be difficult to be transported out of the formation due to its
419 limited conductivity through the macropore network. This undeveloped macropore network may
420 explain why that there has been no commercialization of natural gas from the Niutitang
421 formation. On the other hand, previous studies have shown that the Niutitang shales developed
422 relatively fewer organic matter pores with smaller diameters and lower connectivity compared to
423 the Longmaxi shales (Wang et al., 2016; Zhao et al., 2016). The substantial differences in
424 organic matter pores between the two marine shale Formations may also influence gas
425 production.

426

427 **Figure 9.** Comparison of (a) pore volume and (b) surface area contributions for micro-/meso-/macropores
428 from invasive methods.429 **5.3 Correlations of pore properties with adsorption capacity and shale compositions**

430 Correlations between pore properties, methane adsorption, and TOC and clay contents are
431 shown in Fig. 10. There are reasonably strong correlations between micropore volume and SSA
432 estimated by CO_2 adsorption and TOC (Fig. 10b and e), indicating that organic matter is a
433 significant contributor to the shale micropore system. This is consistent with the results from
434 other gas-mature shales in previous studies (Furmann et al., 2016; Milliken et al., 2013; Pan et al.,
435 2015; Ross and Bustin, 2009; Yang et al., 2017). In contrast, there are negligible correlations
436 between macropore properties estimated by MIP and TOC content (Fig. 10b and e). There are
437 strong correlations between both mesopore volume and surface area estimated by SANS and
438 TOC ($R^2 = 0.90$ for pore volume and $R^2 = 0.92$ for surface area), but relatively weaker
439 relationships between the mesopore volume and surface area estimated by N_2 adsorption and
440 TOC ($R^2 = 0.55$ for pore volume and $R^2 = 0.70$ for surface area). These results suggest that
441 organic matter may have developed inaccessible mesopores within the shale matrix. This is
442 consistent with focused ion beam-/SEM study (Nie et al., 2018; Yang et al., 2016), which show
443 isolated pores forming in organic-filled regions.

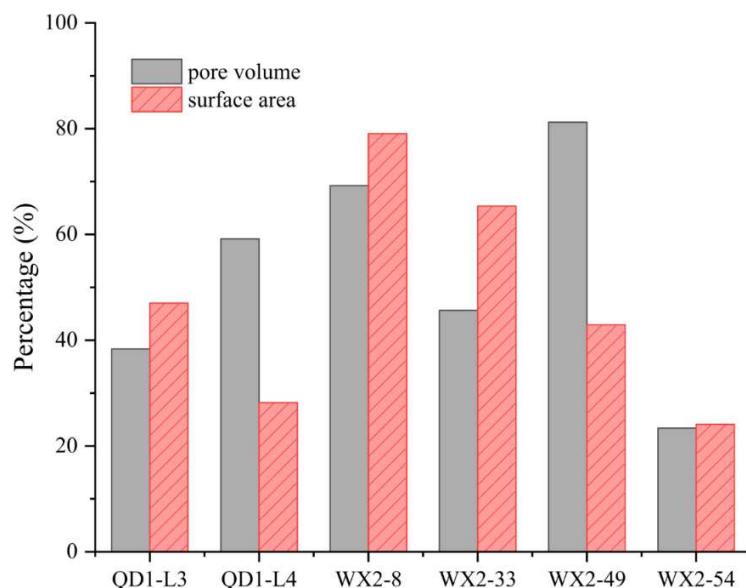
444

445 **Figure 10.** Correlations between methane adsorption amount and (a) pore volume and (d) surface area,
446 between TOC content and (b) pore volume and (e) surface area, and between clay content and (c) pore volume
447 and (f) surface area.

448 FE-SEM images from our previous study (Wang et al., 2018) show that these samples
449 contain intraparticle pores (IntraP) in flocculated clay aggregates and interparticle pores (InterP)
450 between clay mineral layers. However, as shown in Fig. 10c and f, the pore volumes and surface
451 areas of micro-/meso-/macropores are almost independent of clay content, although there are
452 weak correlations between the clay content and the MIP-estimated macropore surface area, the
453 CO_2 adsorption-estimated micropore surface area, and the SANS-estimated mesopore
454 volume/surface area. Clay minerals typically contain nanoscale pore structure, while clay
455 mineral evolution may have a destructive effect on primary pores (Metwally and Chesnokov,
456 2012; Xiao et al., 2018). Thus, the lack of a correlation between the micro-, meso-, macropore
457 volumes and surface areas and clay content in our samples may imply that clay minerals could
458 play an essential role in the complexity of shale nanopore structure of Longmaxi and Niutitang
459 formations.

460 As shown in Fig. 10a and d, methane adsorption capacity increases with increasing pore
461 volume and surface area of micro-/mesopores. A detailed estimation of methane adsorption
462 capacity was presented in our previous study (Wang et al., 2018), but these positive correlations
463 suggest that the micro-/mesopore structures are governing factors in methane storage in these
464 shale formations. As we have shown, to the extent that these six samples are representative, that
465 organic matter is a controlling factor in the development of micro-/mesopores, the organic matter
466 could also be an indicator of methane adsorption capacity in organic-rich marine shale gas
467 reservoirs (Wang et al., 2018).

468 **5.4 Characterization of mesopore connectivity**

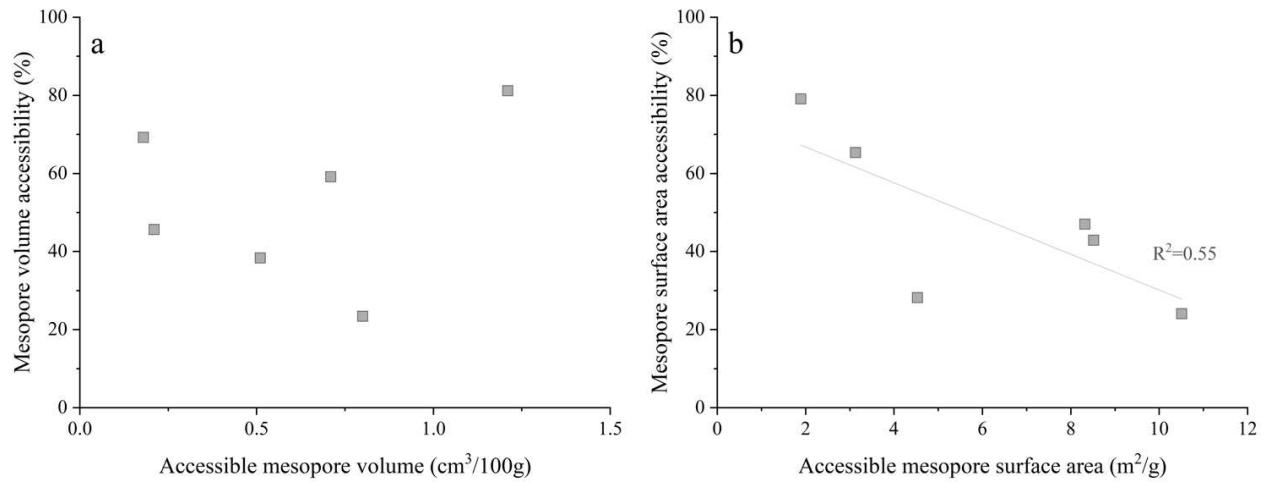

469 The estimated fractions of accessible mesopore volume and surface area, based on the
470 SANS and LNA data, are shown in Fig. 11. Note that, the total pore volume and surface area of
471 mesopores estimated by SANS assumed spherical pore shape; the accessible mesopore volume
472 was estimated by BJH method, and the accessible mesopore surface area was approximately
473 calculated by the subtraction of the BET surface area from the surface area of micro-/macropores.
474 The fraction of accessible mesopore volume and surface area were estimated by:

$$475 F_V = \frac{V_{BJH}}{V_{SANS}} \quad (5)$$

$$476 F_S = \frac{S_{BET} - S_{DA} - S_{MIP}}{S_{SANS}} \quad (6)$$

477 where F_V and F_S are the fraction of accessible mesopore volume and surface area, respectively;
478 V_{BJH} is the BJH mesopore volume from N_2 adsorption; V_{SANS} is the spherical mesopore volume
479 from SANS; S_{BET} is the BET surface area; S_{DA} is the D-A micropore surface area from CO_2
480 adsorption; S_{MIP} is the macropore surface area from MIP; and S_{SANS} is the spherical mesopore
481 surface area from SANS. From Fig. 11, sample WX₂-54 has the smallest fractions of accessible
482 mesopore volume and surface area, although this sample has the highest total mesopore volume

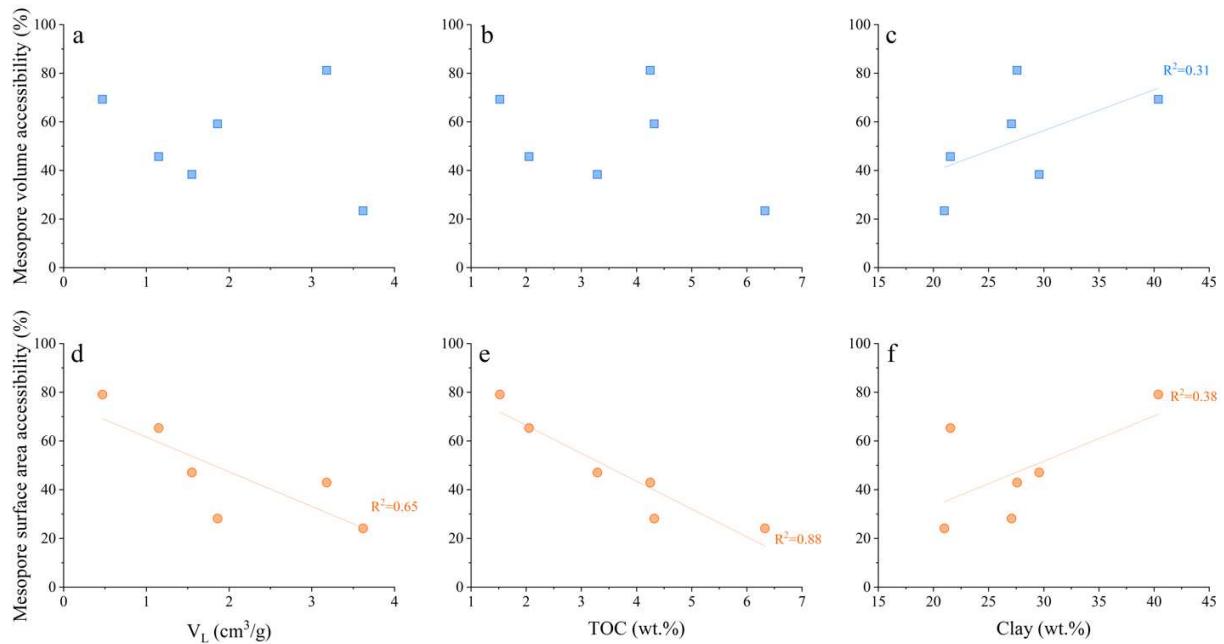
483 and surface area among the samples tested, and the fractions of accessible mesopore volume and
 484 surface area are similar. The other shale samples, however, have different fractions of accessible
 485 mesopore volume and surface area. In samples QD₁-L3, WX₂-8, and WX₂-33 the fraction of
 486 accessible mesopore volume is lower than that for surface area. In contrast, the accessible
 487 mesopore volume fraction is higher than that of the surface area for QD₁-L4 and WX₂-49. These
 488 differences do not depend on the shale formation from which the samples were obtained.



489
 490 **Figure 11.** The fractions of accessible mesopore volume and surface area. The fraction of accessible mesopore
 491 volume is estimated from SANS and LNA data (Eq. 5). The fraction of accessible mesopore surface area is
 492 estimated from SANS, LNA, LCA, and MIP data (Eq. 6).

493 The relationships between the accessible mesopore volume and surface area and their
 494 percentage accessibilities are shown in Fig. 12, and the correlations between accessibility and
 495 adsorption capacity, TOC and clay contents are shown in Fig. 13. There is a negligible
 496 correlation between the BJH-estimated accessible mesopore volume and its percentage
 497 accessibility (Fig. 12a), and there are also no obvious correlations between accessibility and
 498 methane adsorption capacity or TOC (Fig. 13a and b). These results indicate that the fraction of
 499 accessible mesopore volume does not control the adsorption amount. However, percent

500 accessibility decreases with increasing BET-estimated accessible mesopore surface area (Fig.
501 12b), methane adsorption capacity, and TOC content (Fig. 13d and e). The results are consistent
502 with the finding of our previous study (Wang et al., 2018), which suggested that high pore
503 accessibility reduces total adsorption capacity due to relatively low surface area and TOC values.


504 In the previous section, it was suggested that the inaccessible mesopores could be located, at
505 least in part, in the organic matter in the shale matrix. This is consistent with the strong negative
506 correlation between the fraction of accessible mesopore surface area and TOC content, as shown
507 in Fig. 13e. That is, the more TOC in the sample the smaller the fraction of the total mesopore
508 surface area that is accessible. Thus, the degree of interconnectivity is much more strongly
509 correlated with the surface area than the pore volume in the mesopore range. This suggests that
510 the fraction of accessible mesopore surface area could be an indicator of gas transport and
511 storage in organic mesopores. Samples with a higher fraction of mesopore surface area tend to
512 have a lower gas-storage capability but a higher transport capability in organic matter, vice versa.
513 In contrast, the correlations between the accessible fractions of both mesopore volume and
514 surface area and clay content are weak (Fig. 13c and f), suggesting that clay content has minimal
515 effect on the mesopore connectivity. Pores between clay packets may, therefore, be generally
516 part of the connected pore matrix.

517

518
519

Figure 12. Correlations between mesopore (a) volume and (b) surface area and their accessibilities for all shale samples.

520

521
522
523

Figure 13. Correlations between methane adsorption capacity and the fractions of mesopore (a) volume and (d) surface area, between TOC content and the fractions of mesopore (b) volume and (e) surface area, and between clay content and the fractions of mesopore (c) volume and (f) surface area for all shale samples.

524

6. Conclusions

525
526

The multi-scale nanopore structure and mesopore connectivity of organic-rich marine shales from the Upper Yangtze Platform in China were investigated using a series of techniques

527 including MIP, low-pressure N₂/CO₂ adsorption, and SANS. Based on the results of this
528 characterization, the following conclusions can be drawn:

529 (1) Based on the integration of MIP, low-pressure N₂/CO₂ adsorption, and SANS techniques,
530 there are uni-, bi-, and multi-modal PSDs over a wide pore size range (0.35-15,000 nm)
531 for both Longmaxi and Niutitang shales, and a significant portion of nanopores in these
532 samples fall in a size range between 0.35 and 100 nm.

533 (2) From the results of fluid-invasion methods (MIP, low-pressure N₂/CO₂ adsorption),
534 micro-scale pores are the major contributor to the total surface area for both Longmaxi
535 and Niutitang shales. Pore volume increases with increasing pore size for Longmaxi
536 shales, whereas Niutitang shales have more volume in the micropore and mesopore range
537 than in macropores.

538 (3) Organic matter is the primary contributor to the micropore system. Both micropores and
539 mesopores control the methane adsorption in the organic-rich shales.

540 (4) The fraction of accessible surface area of mesopores, estimated by comparing surface
541 areas in the mesopore range obtained by invasive methods to those obtained by SANS, is
542 an indicator of gas transport and storage in organic mesopores. Shale samples with higher
543 accessibility could have a higher capability for gas transport but lower gas storage
544 capacity, and vice versa.

545 **Acknowledgments**

546 The authors would like to acknowledge the financial support of the National Natural
547 Science Foundation of China (41802183, 41972169) and the National Science and Technology
548 Major Project (2017ZX05035004-002). Work by L.M. Anovitz was supported by the U.S.
549 Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences,

550 Geosciences, and Biosciences Division. This research used resources at the High Flux Isotope
551 Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.
552 Access to NG7-SANS was provided by the Center for High-Resolution Neutron Scattering, a
553 partnership between the National Institute of Standards and Technology and the National Science
554 Foundation under Agreement No. DMR-1508249. Any opinions, findings, and conclusions or
555 recommendations expressed in this study do not necessarily reflect the views of the U.S.
556 Department of Energy, the National Institute of Standards and Technology or the National
557 Science Foundation. The authors declare no competing financial interest.

558 **References**

559 Anovitz, L.M., Cole, D.R., 2019. Analysis of the pore structures of shale using neutron and X-
560 ray small angle scattering. *Geol. Carbon Storage* 71-118.
561 Anovitz, L.M., Cole, D.R., 2015. Characterization and analysis of porosity and pore structures. *Rev. Mineral. Geochem.* 80(1), 61-164.
562 Anovitz, L.M., Lynn, G.W., Cole, D.R., Rother, G., Allard, L.F., Hamilton, W.A., Porcar, L.,
563 Kim, M., 2009. A new approach to quantification of metamorphism using ultra-small and
564 small angle neutron scattering. *Geochim. Cosmochim. Ac.* 73(24), 7303-7324.
565 Bahadur, J., Ruppert, L.F., Pipich, V., Sakurovs, R., Melnichenko, Y.B., 2018. Porosity of the
566 Marcellus Shale: A contrast matching small-angle neutron scattering study. *Int. J. Coal Geol.*
567 188, 156-164.
568 Bahadur, J., Melnichenko, Y.B., Mastalerz, M., Furmann, A., Clarkson, C.R., 2014. Hierarchical
569 pore morphology of Cretaceous Shale: A small-angle neutron scattering and ultrasmall-angle
570 neutron scattering study. *Energy Fuels* 28, 6336-6344.
571 Bragg, W. L., 1913. The diffraction of short electromagnetic waves by a crystal. *Proc. Camb.
572 Philos. Soc.* 17, 43-57.
573 Carlson, E.S., Mercer, J.C., 1991. Devonian shale gas production: mechanisms and simple
574 models. *J. Petrol. Technol.* 43(04), 476-482.
575 Chalmers, G.R.L., Bustin, R.M., Power, I.M., 2012. Characterization of gas shale pore systems
576 by porosimetry, pycnometry, surface area, and field emission scanning electron
577 microscopy/transmission electron microscopy image analyses: examples from the Barnett,
578 Woodford, Haynesville, Marcellus, and Doig units. *AAPG Bull.* 96 (6), 1099-1119.
579 Chen, L., Jiang, Z., Liu K, Wang, P., Gao, F., Hu, T., 2017b. Application of low-pressure gas
580 adsorption to nanopore structure characterization of organic-rich lower Cambrian shale in the
581 Upper Yangtze Platform, South China. *Aust. J. Earth Sci.* 64(5), 653-665.
582 Chen, L., Jiang, Z., Liu K, Tan, J., Gao, F., Wang, P., 2017a. Pore structure characterization for
583 organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: A possible
584 mechanism for pore development. *J. Nat. Gas Sci. Eng.* 46, 1-15.
585

586 Cipolla, C.L., 2009. Modeling production and evaluating fracture performance in unconventional
587 gas reservoirs. *J. Petrol. Technol.* 61(09), 84-90.

588 Clarkson, C.R., Bustin, R.M., 1999. The effect of pore structure and gas pressure upon the
589 transport properties of coal: a laboratory and modeling study. 1. Isotherms and pore volume
590 distributions. *Fuel* 78(11), 1333-1344.

591 Clarkson, C.R., Solano, N., Bustin, R.M., Bustin, A.M.M., Chalmers, G.R.L., He, L.,
592 Melnichenko, Y.B., Radlinski, A.P., Blach, T.P., 2013. Pore structure characterization of
593 North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury
594 intrusion. *Fuel*, 103, 606-616.

595 Curtis, J.B., 2002. Fractured shale-gas systems. *AAPG Bull.* 86(11), 1921-1938.

596 Dai, J.X., Zou, C.N., Dong, D.Z., Ni, Y.Y., Wu, W., Gong, D.Y., Wang, Y.M., Huang, S.P.,
597 Huang, J.J., Fang, C.C., Liu, D., 2016. Geochemical characteristics of marine and terrestrial
598 shale gas in China. *Mar. Petrol. Geol.* 76, 444-463.

599 DiStefano, V.H., McFarlane, J., Stack, A.G., Perfect, E., Mildner, D.F.R., Bleuel, M., Chipera,
600 S.J., Littrell, K.C., Cheshire, M.C., Manz, K.E., Anovitz, L.M., 2019. Solvent-pore
601 interactions in the Eagle Ford shale formation. *Fuel*, 238, 298-311.

602 Dubinin, M.M., 1989. Fundamentals of the theory of adsorption in micropores of carbon
603 adsorbents: characteristics of their adsorption properties and microporous structures. *Pure
604 Appl. Chem.* 61(11), 1841-1843.

605 Furmann, A., Mastalerz, M., Bish, D., Schimmelmann, A., Pedersen, P.K., 2016. Porosity and
606 pore size distribution in mudrocks from the Belle Fourche and Second White Specks
607 Formations in Alberta, Canada. *AAPG Bull.* 100(8), 1265-1288.

608 Furmann, A., Mastalerz, M., Schimmelmann, A., Pedersen, P.K., Bish, D., 2014. Relationships
609 between porosity, organic matter, and mineral matter in mature organic-rich marine
610 mudstones of the Belle Fourche and Second White Specks formations in Alberta, Canada.
611 *Mar. Petrol. Geol.* 54, 65-81.

612 Glatter, O., Kratky, O., 1982. Small angle X-ray scattering. Academic Press.

613 Gregg, S.J., Sing, K.S.W., 1982. Adsorption, Surface Area and Porosity, Academic Press,
614 London

615 Gu, X., Cole, D.R., Rother, G., Mildner, D.F.R., Brantley, S.L., 2015. Pores in Marcellus shale: a
616 neutron scattering and FIB-SEM study. *Energy Fuels* 29(3), 1295-1308.

617 Guo, T., 2016. Discovery and characteristics of the Fuling shale gas field and its enlightenment
618 and thinking. *Earth Science Frontiers* 23(1), 29-43 (in Chinese with English abstract).

619 Guo, T., Zhang, H., 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan
620 Basin. *Petrol. Explor. Dev.* 41(1), 31-40.

621 Hazra, B., Wood, D.A., Vishal, V., Varma, A.K., Sakha, D., Singh, A.K., 2018. Porosity controls
622 and fractal disposition of organic-rich Permian shales using low-pressure adsorption
623 techniques. *Fuel* 220, 837-848.

624 Hinde, A.L., 2004. PRINSAS - a Windows-based computer program for the processing and
625 interpretation of small-angle scattering data tailored to the analysis of sedimentary rocks. *J.
626 Appl. Crystallogr.* 37, 1020-1024.

627 Ilavsky, J., Jemian, P.R., 2009. Irena: tool suite for modeling and analysis of small-angle
628 scattering. *J. Appl. Crystallogr.* 42, 347-353.

629 Jarvie, D.M., Hill, R.J., Ruble, T.E., Pollastro, R.M., 2007. Unconventional shale-gas systems:
630 The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-
631 gas assessment. *AAPG Bull.* 91(4), 475-499.

632 Jia, D., Wei, G., Chen, Z., Li, B., Zeng, Q., Yang, G., 2006. Longmen Shan fold-thrust belt and
633 its relation to the western Sichuan Basin in central China: New insights from hydrocarbon
634 exploration. *AAPG Bull.* 90(9), 1425-1447.

635 Kuila, U., Prasad, M., 2013. Specific surface area and pore-size distribution in clays and shales.
636 *Geophys. Prospect.* 61(2), 341-362.

637 Lee, D.S., Herman, J.D., Elsworth, D., Kim, H.T., Lee, H.S., 2011. A critical evaluation of
638 unconventional gas recovery from the marcellus shale, northeastern United States. *KSCE J.*
639 *Civ. Eng.* 15(4), 679.

640 Li, J., Zhou, S., Li, Y., Ma, Y., Yang, Y., Li, C., 2016. Effect of organic matter on pore structure
641 of mature lacustrine organic-rich shale: A case study of the Triassic Yanchang shale, Ordos
642 Basin, China. *Fuel* 185, 421-431.

643 Liu, Y., Qiu, N., Xie, Z., Yao, Q., Zhu, C., 2016. Overpressure compartments in the central
644 paleo-uplift, Sichuan Basin, southwest China. *AAPG Bull.* 100(5), 867-888.

645 Liu, Y., Yao, Y., Liu, D., Zheng, S., Sun, G., Chang, Y., 2018. Shale pore size classification: An
646 NMR fluid typing method. *Mar. Petrol. Geol.* 96, 591-601.

647 Loucks, R.G., Reed, R.M., Ruppel, S.C., Hummes, U., 2012. Spectrum of pore types and
648 networks in mudrocks and a descriptive classification for matrix-related mudrock pores.
649 *AAPG Bull.* 96, 1071-1098.

650 Ma, Y., Zhang, S., Guo, T., Zhu, G., Cai, X., Li, M., 2008. Petroleum geology of the Puguang
651 sour gas field in the Sichuan Basin, SW China. *Mar. Petrol. Geol.* 25(4-5), 357-370.

652 Mastalerz, M., Schimmelmann, A., Drobniak, A., Chen, Y., 2013. Porosity of Devonian and
653 Mississippian New Albany Shale across a maturation gradient: Insights from organic
654 petrology, gas adsorption, and mercury intrusion. *AAPG Bull.* 97(10), 1621-1643.

655 Mastalerz, M., Wei, L., Drobniak, A., Schieber, J., 2018. Responses of specific surface area and
656 micro-and mesopore characteristics of shale and coal to heating at elevated hydrostatic and
657 lithostatic pressures. *Int. J. Coal Geol.* 197, 20-30.

658 Meng, Q.R., Wang, E., Hu, J.M., 2005. Mesozoic sedimentary evolution of the northwest
659 Sichuan basin: Implication for continued clockwise rotation of the South China block. *Geol.*
660 *Soc. Am. Bull.* 117(3-4), 396-410.

661 Merkel, A., Fink, R., Littke, R., 2016. High pressure methane sorption characteristics of
662 lacustrine shales from the Midland Valley Basin, Scotland. *Fuel* 182, 361-372.

663 Metwally, Y.M., Chesnokov, E.M., 2012. Clay mineral transformation as a major source for
664 authigenic quartz in thermo-mature gas shale. *Appl. Clay Sci.* 55, 138-150.

665 Milliken, K.L., Rudnicki, M., Awwiller, D.N., Zhang, T., 2013. Organic matter-hosted pore
666 system, Marcellus formation (Devonian), Pennsylvania. *AAPG Bull.* 97(2), 177-200.

667 Mohaghegh, S.D., 2013. Reservoir modeling of shale formations. *J. Nat. Gas Sci. Eng.* 12, 22-33.

668 Morga, R., Pawlyta, M., 2018. Microstructure of graptolite periderm in Silurian gas shales of
669 Northern Poland. *Int. J. Coal Geol.* 189, 1-7.

670 Naveen, P., Asif, M., Ojha, K., 2018. Integrated fractal description of nanopore structure and its
671 effect on CH₄ adsorption on Jharia coals, India. *Fuel* 232, 190-204.

672 Nie, H., Jin, Z., Zhang, J., 2018. Characteristics of three organic matter pore types in the
673 Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China. *Sci. Rep.* 8(1), 7014.

674 Pan, J., Niu, Q., Wang, K., Shi, X., Li, M., 2016. The closed pores of tectonically deformed coal
675 studied by small-angle X-ray scattering and liquid nitrogen adsorption. *Micropor. Mesopor.*
676 *Mat.* 224, 245-252.

677 Pan, L., Xiao, X., Tian, H., Zhou, Q., Chen, J., Li, T., Wei, Q., 2015. A preliminary study on the
678 characterization and controlling factors of porosity and pore structure of the Permian shales
679 in Lower Yangtze region, Eastern China. *Int. J. Coal Geol.* 146, 68-78.

680 Pashin, J.C., Kopaska-Merkel, D.C., Arnold, A.C., McIntyre, M.R., Thomas, W.A., 2012.
681 Gigantic, gaseous mushwads in Cambrian shale: Conasauga Formation, southern
682 Appalachians, USA. *Int. J. Coal Geol.* 103, 70-91.

683 Pearce, J.K., Dawson, G.K.W., Blach, T.P., Bahadur, J., Melnichenko, Y.B., Golding, S.D.,
684 2018b. Impure CO₂ reaction of feldspar, clay, and organic matter rich cap-rocks: Decreases
685 in the fraction of accessible mesopores measured by SANS. *Int. J. Coal Geol.* 185, 79-90.

686 Pearce, J.K., Turner, L., Pandey, D., 2018a. Experimental and predicted geochemical shale-water
687 reactions: Roseneath and Murteree shales of the Cooper Basin. *Int. J. Coal Geol.* 187, 30-44.

688 Radliński, A.P., Boreham, C.J., Lindner, P., Randl, O., Wignall, G.D., Hinde, A., Hope, J.M.,
689 2000. Small angle neutron scattering signature of oil generation in artificially and naturally
690 matured hydrocarbon source rocks. *Org. Geochem.* 31(1), 1-14.

691 Rani, S., Prusty, B.K., Pal, S.K., 2015. Methane adsorption and pore characterization of Indian
692 shale samples. *Journal of unconventional oil and gas resources* 11, 1-10.

693 Romero-Sarmiento, M.F., Rouzaud, J.N., Bernard, S., Deldicque, D., Thomas, M., Littke, R.,
694 2014. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing
695 maturation. *Org. Geochem.* 71, 7-16.

696 Ross, D.J.K., Bustin, R.M., 2009. The importance of shale composition and pore structure upon
697 gas storage potential of shale gas reservoirs. *Mar. Petrol. Geol.* 26(6), 916-927.

698 Ruppert, L.F., Sakurovs, R., Blach, T.P., He, L., Melnichenko, Y.B., Mildner, D.F.R., Alcantar-
699 Lopez, L., 2013. A USANS/SANS study of the accessibility of pores in the Barnett Shale to
700 methane and water. *Energy Fuels* 27, 772-779.

701 Sing, K.S., 1985. Reporting physisorption data for gas/solid systems with special reference to the
702 determination of surface area and porosity. *Pure Appl. Chem.* 57, 603-619.

703 Sun, M., Yu, B., Hu, Q., Chen, S., Xia, W., Ye, R., 2016. Nanoscale pore characteristics of the
704 Lower Cambrian Niutitang Formation Shale: a case study from Well Yuke# 1 in the
705 Southeast of Chongqing, China. *Int. J. Coal Geol.* 154, 16-29.

706 Sun, M., Yu, B., Hu, Q., Zhang, Y., Li, B., Yang, R., 2017. Pore characteristics of Longmaxi
707 shale gas reservoir in the Northwest of Guizhou, China: Investigations using small-angle
708 neutron scattering (SANS), helium pycnometry, and gas sorption isotherm. *Int. J. Coal Geol.*
709 171, 61-68.

710 Sun, M., Yu, B., Hu, Q., Yang, R., Zhang, Y., Li, B., Melnichenko, Y.B., Cheng, G., 2018. Pore
711 structure characterization of organic-rich Niutitang shale from China: Small angle neutron
712 scattering (SANS) study. *Int. J. Coal Geol.* 186, 115-125.

713 Tang, X., Jiang, S., Jiang, Z., Li, Z., He, Z., Long, S., Zhu, D., 2019. Heterogeneity of Paleozoic
714 Wufeng-Longmaxi formation shale and its effects on the shale gas accumulation in the Upper
715 Yangtze Region, China. *Fuel*, 239, 387-402.

716 Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J.,
717 Sing, K.S., 2015. Physisorption of gases, with special reference to the evaluation of surface
718 area and pore size distribution (IUPAC Technical Report). *Pure Appl. Chem.* 87(9-10), 1051-
719 1069.

720 Tian, H., Pan, L., Zhang, T., Xiao, X., Meng, Z., Huang, B., 2015. Pore characterization of
721 organic-rich lower Cambrian shales in Qiannan depression of Guizhou province,
722 Southwestern China. *Mar. Petrol. Geol.* 62, 28-43.

723 Topór, T., Derkowski, A., Ziemiański, P., Szczurowski, J., McCarty, D.K., 2017. The effect of
724 organic matter maturation and porosity evolution on methane storage potential in the Baltic
725 Basin (Poland) shale-gas reservoir. *Int. J. Coal Geol.* 180, 46-56.

726 Tuo, J., Wu, C., Zhang, M., 2016. Organic matter properties and shale gas potential of Paleozoic
727 shales in Sichuan Basin, China. *J. Nat. Gas Sci. Eng.* 28, 434-446.

728 Wang, P., Jiang, Z., Chen, L., Yin, L., Li, Z., Zhang, C., Tang, X., Wang, G., 2016. Pore
729 structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze
730 Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-
731 computerized tomography and gas adsorption analysis. *Mar. Petrol. Geol.* 77, 1323-1337.

732 Wang, Y., Qin, Y., Zhang, R., He, L., Anovitz, L.M., Bleuel, M., Mildner, D.F.R., Liu, S., Zhu,
733 Y., 2018. Evaluation of nanoscale accessible pore structure for improved prediction of gas
734 production potential in Chinese marine shales. *Energy Fuels* 2018, 32(12), 12447-12461.

735 Wang, Y., Zhu, Y., Chen, S., Li, W., 2014. Characteristics of the nanoscale pore structure in
736 Northwestern Hunan shale gas reservoirs using field emission scanning electron microscopy,
737 high-pressure mercury intrusion, and gas adsorption. *Energy Fuels* 28(2), 945-955.

738 Washburn, E.W., 1921. Note on a method of determining the distribution of pore sizes in a
739 porous material. *Proceedings of the National Academy of Sciences* 7(4), 115-116.

740 Webber, J.B.W., Corbett, P., Semple, K.T., Ogbonnaya, U., Teel, W.S., Masiello, C.A., Fisher,
741 Q.J., Valenza II, J.J., Song, Y., Hu, Q., 2013. An NMR study of porous rock and biochar
742 containing organic material. *Micropor. Mesopor. Mat.* 178, 94-98.

743 Wu, K., Chen, Z., Li, X., Guo, C., Wei, M., 2016. A model for multiple transport mechanisms
744 through nanopores of shale gas reservoirs with real gas effect-adsorption-mechanic coupling.
745 *Int. J. Heat Mass Tran.* 93, 408-426.

746 Wu, Y.S., Li, J., Ding, D., Wang, C., Di, Y., 2014. A generalized framework model for the
747 simulation of gas production in unconventional gas reservoirs. *SPE J.* 19(05), 845-857.

748 Xiao, D., Jiang, S., Thul, D., Lu, S., Zhang, L., Li, B., 2018. Impacts of clay on pore structure,
749 storage and percolation of tight sandstones from the Songliao Basin, China: Implications for
750 genetic classification of tight sandstone reservoirs. *Fuel* 211, 390-404.

751 Xiao, X.M., Wei, Q., Gai, H.F., Li, T.F., Wang, M.L., Pan, L., Chen, J., Tian, H. 2015. Main
752 controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic
753 marine strata in south China. *Petrol. Sci.* 12(4), 573-86.

754 Yang, R., Hao, F., He, S., He, C., Guo, X., Yi, J., Hu, H., Zhang, S., Hu, Q., 2017. Experimental
755 investigations on the geometry and connectivity of pore space in organic-rich Wufeng and
756 Longmaxi shales. *Mar. Petrol. Geol.* 84, 225-242.

757 Yang, R., He, S., Yi, J., Hu, Q., 2016. Nano-scale pore structure and fractal dimension of
758 organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations
759 using FE-SEM, gas adsorption and helium pycnometry. *Mar. Petrol. Geol.* 70, 27-45.

760 Zhang, L., Lu, S., Xiao, D., Li, B., 2017. Pore structure characteristics of tight sandstones in the
761 northern Songliao Basin, China. *Mar. Petrol. Geol.* 88, 170-180.

762 Zhang, R., Liu, S.M., Bahadur, J., Elsworth, D., Melnichenko, Y., He, L.L., Wang, Y., 2015.
763 Estimation and modeling of coal pore accessibility using small angle neutron scattering. *Fuel*
764 161, 323-332.

765 Zhao, W.Z., Li, J.Z., Yang, T., Wang, S.F., Huang, J.L., 2016. Geological difference and its
766 significance of marine shale gases in South China. *Petrol. Explor. Dev.* 43(4), 547-559.

767 Zhou, B., Han, Q., Yang, P., 2016. Characterization of Nanoporous Systems in Gas Shales by
768 Low Field NMR Cryoporometry. *Energy Fuels* 30(11), 9122-9131.

769 Zou, C.N., Dong, D.Z., Wang, Y.M., Li, X.J., Huang, J.L., Wang, S.F., Guan, Q.Z., Zhang, C.C.,
770 Wang H.Y., Liu, H.L., Bai, W.H., Liang F., Lin, W., 2015. Shale gas in China:
771 Characteristics, challenges and prospects (I). Petrol. Explor. Dev. 42(6), 753-767.