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WHY MEMPHIS? • IN-A9.!,!` , 1,..?,T,R,

PHYLOSOPHY
Not a Computer Science Project...

A Materials Science Project
No need to worry about numerical methods,
parallelization, etc...

Modularity
Being able to re-utilize/combine models
Rapid prototyping of models

Easy to code
Accessible to users with various backgrounds

Open source

CURRENT FOCUS
Synthesis of nanostructured materials

Physical Vapor Deposition of thin films
Molecular Beam Kpitaxy for quantum dots

Aging and degradation of materials
Irradiation-induced segregation
Localized corrosion



ROADMAP FOR TODAY'S TALK

1. Code architecture 3. Application: PVD

411
2. Verification Et Validation 4. Integrating ML
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CODE ARCHITECTURE
Physical models

Benchmark 1

B I II .

Benchmark 4

Benchmark 7

Benchmark

Analysis

Model ...

PVD binary

Model
parameters

Comm/Allocatio

Memory alloc.

Error

I/0

4Ik

• IN-A9.!,!`,,1..?,T,Rs
 EST.19.41  

Numerical Method

Numerical solvers

Boundary cdns

Domain
decomposition

Differential
operators

Utility fncs
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CODE ARCHITECTURE
2 ,m

I!" The Allen-Cahn equation for phase evolution

function phase_evolution(phi,t) result(rhs_of_eqn)

real(kindof_double), intent(in) t
real(kindof_double), dimension(: , : , :), intent(in) :: phi
real(kindof_double), dimension(size(phi, dim.1), size(phi, dim* ), size(phi, dim.3)) rhs_of_eqn
real(kindof_double) :: dive . i h

dphidx = grodient_x(phi)
dphidy - gradient_y(phi)

theta = atan(dphidy/(dphidx + dive)) - theta_0
alpha = + epsilon_m*cos(mfold_sym*theto)
coeff = -( w_e*w_0*epsilon_emfold_syesin(mfold_sym*theta)*alphegradient_norm(phi)**2 )/(dphidx".' + dphidy**- + dive)

df_chem = (phi - lambdetemperature_field*(, - phi**2))*(1.00 - phi**_)

df_grod = div_a_grad_b((w_0*alpho)** , phi) - grodient_x( coeff*dphidy ) + gradient_y( coeff*dphidx )

dphidt = (df_chem + df_grad)/(tau_0*(alpha" ) dive)
rhs_of_eqn = dphidt

end function phase_evolution

!* The thermal diffusion equation with a latent heat source term

function temperature_evolution(temperature,t) result(rhs_of_eqn)

real(kindof_double), intent(in) t
real(kindof_double), dimension(:,:,:), intent(in) :: temperature
real(kindof_double), dimension(size(temperature, diww'), size(temperature, dins-2), size(temperoture, dimi.3))

rhs_of_eqn = beta_temp*laplacion(temperature) + ,*dphidt

end function temperature_evolution

!* The free-energy components of the system: f_chem and f_grad

subroutine free_energy()

f_chem 0.25d0*phase_field**1 - '..*phase_field**2
+ lambdephase_field*temperature_field*(1.0d0 - (2.0d0/3.0d0)•phase_field"2 + 0.2d0*phase_field" )

f_grad = 0.5a*w_0*w_0*alpha*alpha*gradient_norm(phase_field)**i'

end subroutine free_energy

(:::::1 SandiaNational
Laboratories NATIONAL LABORATORY

MEMPHIS is written in Fortran 90

Serial or parallel (using message-passing interface
and spatial decomposition of comput. domain)

Writing a model is straight forward

Set boundary cdns in a variable way
(Neuman /Dirichlet)

Various numerical integration schemes are
available:

explicit Euler, midpoint, Heun's, Gauss-Seidel

Output results in various formats

Can read an input microstructure

"model_benchmark_3J90" 167L, 6062C written 6



VERIFICATION &VALIDATION
1. eScpoi mn opdoaslD it ir

Diffusion of a solute in a

matrix
Total Uploads: 54

Specification

Resutts: la 1 1b l 1c l 1d

f bul k Precipitate
4. Elastic

Linear elasticity via evolution

of a constrained precipitate
Total Uploads. 12

Results. 1404el4fr '

7. MMS Aller
fbulk Cahn

Use the Method of

Manufactured Solutions to

verify codes
Total Uploads 9

Results. I I

1110 2. Ostwald
Ripening

Coupling of conserved and

non-conserved dynamics
Total Uploads: 25

Specification

Result* 2a 2b12c 12c

5. Stokes Flow
6

Incompressible Stokes flow in

2D
Total Uploads. 0

• 8. Nucleation

Nucleation benchmark
Total Uploads 4

Results.

3. Dendritic
Growth

Solidification and dendritic

growth in a single-component
Total Uploads 14

Results.

--N4 6.
Electrostatics

Coupled electrostatics and

Cahn-Hilliard dynamics
Total Uploads B
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Multiphysics Phase Field Simulator
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Heating, rotating stage

Substrate



MODELING PVD USING PHASE-FIELD C) SandiaNational
Laboratories • IN-A9.!,!` , 1,..?,T,Rs

\•‘%

4r- • • 
•

• 
• 
• 
• 

N)*(e • Explicitly model vapor transport
...so we can model multiple

• • • • PVD processes
• •

Surface diffusion

•

••

• • •
• •e • ••

• 4.
•

•
•
Deposition

•
Vapor transport

itr
Bulk
phase ordering

No artificial deposition of vapor
...so we can capture hillock
formation

Account for surface and bulk
diffusion into one model

...so we can account for the
composition of surface vs.
bulk phenomena
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MODELING PVD USING PHASE-FIELD

K2
[14 
" + 2 

07,402
4 2ei fc +  c (ve)k12 (vC)2)

• Los Alamos
NATIONAL LABORATORY

  EST.19.  

(IQ

Only considered within the solid thin film

Describes concentration field

Describes two-way coupling between
elastic and concentration fields (Vegard)

•
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TRANSPORT & EVOLUTION OF INCIDENTVAPOR 0 5,Zrones

r- •
• 
• • •

0 a •
•

•

•
•
•
•
• ••
• •
•
•

•
• •• ••

•
Deposition

44.

•

Vapor transport

Op
  V • (D(p)V p) V • (pfi) S (f-i)
at

Convection-diffusion

• IN-A9.!,!`,,1..?,T,Rs

1 Local vapor pressure

2 Sputtering power (velocity)

3. Vapor density and velocity can be
adapted to simulated various PVD
processes

Random distribution of vapor phase
initially

Source term to allow for removal of
vapor that is being converted to solid
at thin-film interface

6. Inclusion of LB capability in the
future to include hydrodynamic
effects (ALD, CVD)

1 1



KINETICS OF THIN-FILM GROWTH • IN-A9.!,!` , 1,..?,T,R,

Allows for arbitrary surface
morphology formation

Captures surface-diffusion effects

Coupling of thin-film evolution to
incident-vapor flux



PHASE ORDERING IN THIN-FILM

dt 

OC 
V • (111(01 c)V (5C)

mc(c5 j mBulk msurf

.
•.

cA
CB

cB cA

C) SandiaNational
Laboratories

-UM • IN-A9.!,!` , 1,..?,T,R,

Bulk or surface mobilities are
selected through a (0-dependent
switching function

Ensure that surface mobility is
localized to vapor-solid interface

Explicitly capture both surface and
bulk diffusion

1 3



ELASTIC FIELDS IN THE FILM

fel = (€ cc) : Q. : (€ cc

V(C : (€ cc)) = 0

€ C ( C ti. C * ) 77

• IN-A9.!,!`,,1..?,T,Rs
 EST...  

Elastic stiffness tensor is
compositionally dependent

Formation and evolution of phase
domains give rise to compositional
misfit: Thank you Vegard!

Two-way chemo-mechanical
coupling

7



MODELING PVD USING PHASE-FIELD

Lateral

i• Po \'4e,
40 -sio'g

i•o,
Vertical 

dt, et <90
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RAPIDLY PREDICTING MORPHOLOGY?

1. Simulation by phase-field _ 2. Reduction of microstructural spacc

2-point statistics

Struel

Principal Component Analysis
(PCA)

pe.
+ PC2

( )

r

C1

3. Construction of surrogate-based model for PVD

SPVD fe)
Pij j (0) 0

1
Polynomial chaos

Microstructure reconstruction 16



ROBUST & EFFICIENT PROTOCOL
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SOURCES OF ERRORS

Error on 2pt-stats

err1 (0) = I Strue(0) — Sp„(0) 2

strue(e)

Error on mapping process to structure

Strue(0) Spredicted(0)err3 (0)
2

Istrueo)1 2

Error

erri (Otrain)
erri )

min rnax mean standard deviation
0.0030 0.0690 0.0146 0.0123
0.0030 0.0441 0.0123 0.0091

err3 (0train)
err3

0.0032 0.1197 0.0206 0.0223

0.0032 0.0771 0.0154 0.0139

C) SandiaNational
Laboratories • IsN-A9.!,!`,12,7!°,,,

Overall the error is less than 2% for
both training and test sets

Error values confirm predictiveness
and robustness of overall protocol

Largest source of error propagation
in protocol stems from PCE

1 8



SOURCES OF ERRORS
PCA reduces the dimensionality

Q 

Spca — ai (0) cPa + A-''\
i=1

Basis elements capture complexity of

morphology and long-range correlation

PCE maps back to processing parameters

Q Li

pji klf (0)(p, + 4S\Spredicted

LCM
i= 1 j = 1 RCM

48P‘ruf---Sf 1,7r4
r'". 0~ode? •

I • .,

N PCM VCM

Small changes in processing input space

results in drastic change in morphology:

but...Legendre polynomial in PCE are
continuous • ol nomials 1 9





TIME-SERIES FORECASTING
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TIME-SERIES MULTIVARIATE
ADAPTIVE REGRESSION SPLINES

(TSMARS)

Useful for identifying nonlinear structure in
time series

Non-parametric

Autoregressive: divide time-series into optimal
subdomains to fit splines

Predicting microstructure evolution trajectories
in PC space

Training is done for N previous time steps,
predicting N+1, N+2,...

21



TIME-SERIES FORECASTING
LONG SHORT TERM MEMORY NETWORK (LSTM)

LSTM is a special kind of a recurrent neural net (RNN):
Network with loops in them allowing information to persist (i.e, memory)

Looping connect previous information to current: TIME HISTORY!

Uses previous states, and current input

Learn/forget gate (internal structure) used to form long-term memory (known as cell
state)and short-term memory (hidden state)

Training is done for N time steps, predicting N+1, N+2,...

o ep --r-
t t 4111°
.71 (J r'? 

a■ 
l

tarh 1
Current
input

tarh

Cell state

a tarh

CB
Hidden
state

a

4310

Neural network
layer

Pointwise
operation

Vector transfer

Concatenate

—a< Copy
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MICROSTRUCTURE TRAJECTORY IN PC SPACE
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MICROSTRUCTURE TRAJECTORY IN PC SPACE

0

Training Data and Testing Data

20

wwww
1••: e
•,f •

• Spinodal Decomposition Example 1

x Spinodal Decomposition Example 2

• Spinodal Decomposition Example 3

A Timestep 10

40 60

Timestep

• LosAlamos
NATIONAL LABORATORY

  ST... 
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WHY Do WE NEED A DEEP LEARNING STRATEGY? 0 riod°L

LSTMTSMARS
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0.2 5
Depreciation of Error for TSMARS Model Trained from Timestep 50

0.20

0.15

0.10

0.05

••• TSMARS Test Set Error

000 TSMARS Training Set Error

When using TSMARS, error in the
prediction of microstructure
evolution is increasing due to the
accumulation of error from one time
step to the next
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Depreciation of Error for LSTM Model Trained for 70 Timesteps
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000 LSTM Training Set Error
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FEEDING PREDICTIONS BACK INTO MEMPHIS

TSMARS

T-7

0.40  
Radially Averaged 2-point statistics

0.35

0.30

0.25

0.20

0.15

0.10

— TSMARS Only Predicted Statistics

— True Statistics

TSMARS+Memphis Predicted Statistics

0 Sandia
National
Laboratories

LSTM

NLS aNAL LiABORATORSATIO V

0 60

0.55

0.50

0.45

0.40

0.35

0.30

Radially Averaged 2-point statistics

— TSMARS Only Predicted Statistics

— True Statistics

TSMARS+Memphis Predicted Statistics

EST.1903

100 15 0 H:10 2 Du

Radius r
350 400 50 100 150 200 250

Raclius r
300 350 400
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MOVING FORWARD

MEMPHIS
Open-source and available
through CINT user program

Modular implementation

Performance comparable to
other PF capabilities

• Extensions includes LB, SMB

Development of additional
Multiphysics models (e.g., ISCC)
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MOVING FORWARD
21"--- -4)

MACHINE LEARNING
• Regression models and

deep-learning algorithms to
accelerate predictions of
microstructure evolution

• Integration of PF-ML capabilities
with PVD chamber at LANL to
guide synthesis process
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A data-driven surrogate model to rapidly 
predict microstructure

morphology during physical vapor deposition
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FREE SCIENCE...

CINT is a user facility providing cutting-edge
nanoscience and nanotechnology capabilities to the
research community.

Access to our facilities and scientific expertise is
FREE for non-proprietary research.

Research areas:
• Quantum Materials Systems
• Nanophotonics and Optical Nanomaterials
• In-Situ Characterization and Nanomechanics
• Soft, Biological, and Composite Nanomaterials

To learn more and
apply to use the facilities, visit:

https://cint.lanl.gov


