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'WHY MEMPHIS?

PHYLOSOPHY

1. Not a Computer Science Project...
A Materials Science Project
No need to worry about numerical methods,
parallelization, etc...

2. Modularity
Being able to re-utilize/combine models
Rapid prototyping of models

5. Easy to code
Accessible to users with various backgrounds

4. Open source

CURRENT FOCUS

1. Synthesis of nanostructured materials
Physical Vapor Deposition of thin films
Molecular Beam Epitaxy for quantum dots

2. Aging and degradation of materials
Irradiation-induced segregation
Localized corrosion



'ROADMAP FOR TODAY’S TALK

1. Code architecture

3. Application: PVD

i

2. Verification & Validation 4. Integrating ML



CODE ARCHITECTURE

Physical models

Benchmark 1

CLHCTIHTIAIK
Benchmark 4

Benchmark 7
Benchmark

PVD binary

Model
parameters
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I* The Allen-Cahn equation for phase evolution
function phase_evolution(phi,t) result(rhs_of_egn)

real(kindof_double), intent(in) :: t
real(kindof_double), dimension(:,:,:), intent(in) :: phi

real(kindof_double), dimension(size(phi, dim=1), size(phi, dim=2), size(phi, dim=3)) ::

real(kindof_double) :: divl =

dphidx = gradient_x(phi)
dphidy = gradient_y(phi)

theta
alpha
coeff

atan(dphidy/(dphidx + div@)) - theta_0
+ epsilon_m*cos(mfold_sym*theta)

df_chem = (phi - lambda*temperature_field*( - phi**2))*(C
df_grad =

dphidt = (df_chem + df_grad)/(tau_0*(alpha**2) + div@)
rhs_of_egn = dphidt

end function phase_evolution

!* The thermal diffusion equation with a latent heat source term
function temperature_evolution(temperature,t) result(rhs_of_eqn)

real(kindof_double), intent(in) :: t
real(kindof_double), dimension(:,:,:), intent(in) :: temperature

- phi**2)

2. vim

-( w_0*w_0*epsilon_m*mfold_sym*sin(mfold_sym*theta)*alpha*gradient_norm(phi)**

div_a_grad_b((w_0*alpha)**2, phi) - gradient_x( coeff*dphidy ) + gradient_y(

rhs_of_egn

)/(dphidx**2 + dphidy**

coeff*dphidx )

real(kindof_double), dimension(size(temperature, dim=1), size(temperature, dim=2), size(temperature, dim=3)) ::

rhs_of_egn = beta_temp*laplacian(temperature) + *dphidt

end function temperature_evolution

!* The free-energy components of the system: f_chem and f_grad

subroutine free_energy()

f_chem = *phase_field**4 - *phase_field**2 &
+ lambda*phase_field*temperature_field*( - /
f_grad = *w_0*w_0*alpha*alpha*gradient_norm(phase_field)**

end subroutine free_energy

"model_benchmark_3.f90" 167L, 6062C written

)*phase_field**

+

*phase_field**4)

+ div@)

rhs_of_eqgn

MEMPHIS is written in Fortran 90

Serial or parallel (using message-passing interface
and spatial decomposition of comput. domain)

Writing a model is straight forward

Set boundary cdns in a variable way
(Neuman /Dirichlet)

Various numerical integration schemes are
available:

explicit Euler, midpoint, Heun’s, Gauss-Seidel
Output results in various formats

Can read an input microstructure



VERIFICATION & VALIDATION = (@ Gom

Diffusion of asoluteina Coupling of conserved and Solidification and dendritic SAN DIA RE Po RT
Sandia

matrix non-conserved dynamics growth in a single-component SAND2020-4015 I
Total Uploads: 54 Total Uploads: 25 Total Uploads: 14 Printed April 2020 ll“aati)]oon?l .
ratornes

Results: 1a| 1b| 1c| 1 Results: 2a| 2b| 2c| 2 Results:

Benchmark problems for the Mesoscale
Multiphysics Phase Field Simulator
(MEMPHIS)

R. Dingreville, J.A. Stewart, E.Y. Chen

Jouth et

Linear elasticity via evolution Incompressible Stokes flow in Coupled electrostatics and

of a constrained precipitate 2D Cahn-Hilliard dynamics
Total Uploads: 12 Total Uploads: 0 Total Uploads: 8

Results: 4a | 4b | 4c | 4d | 4e | g Results: Results: 6a | ¢

7. MMS Allen

fhu/k

Cahn

Use the Method of Nucleation benchmark
Manufactured Solutions to Total Uploads: 4

verify codes

Results: | 8c|
Total Uploads: 9

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185

Livermore, California 94550

Thermal
diffusion

Results: 7a | 7b |
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Heating, rotating stage
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Target B
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'MODELING PVD USING PHASE-FIELD

>
@& 1. Explicitly model
<2 " . Explicitly model vapor trapsport
@ ® ...so we can model multiple
o® : PVD processes
E 4
- o " Vapor transport
o o%e0 0o, 2. No artificial deposition of vapor
° ...so we can capture hillock
% e 0 0, - formation
* ® ®
° ¢ 3. Account for surface and bulk
Deposition diffusion into one model
. . ...S0 we can account for the
Surface diffusion Bulk composition of surface vs.

phase ordering bulk phenomena




'MODELING PVD USING PHASE-FIELD

r

2
F=/ fq’; | ,;¢ (V¢)2+3(¢) (fel+fc|

. J-

Only considered within the solid thin film
Describes concentration field

Describes two-way coupling between
elastic and concentration fields (Vegard)

T ’



- TRANSPORT & EVOLUTION OF INCIDENT VAPOR 2

»
X

o
a\a

o0 ° : Vapor transport

Deposition

%~V (D(p) V) ~ V- (pi) ~ S ()

Convection-diffusion

« Los Alamos
NATIONAL LABORATORY

. Local vapor pressure
. Sputtering power (velocity)
. Vapor density and velocity can be

adapted to simulated various PVD
processes

. Random distribution of vapor phase

initially

. Source term to allow for removal of

vapor that is being converted to solid
at thin-film interface

. Inclusion of LB capability in the

future to include hydrodynamic
effects (ALD, CVD)

11



KINETICS OF THIN-FILM GROWTH
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Allows for arbitrary surface
morphology formation

2. Captures surface-diffusion effects

. Coupling of thin-film evolution to

incident-vapor flux
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'PHASE ORDERING IN THIN-FILM

1. Bulk or surface mobilities are

selected through a ¢-dependent
switching function

oc oF 2. Ensute that surface mobility is

i » [\/Z (¢’ C) v — localized to vapor-solid interface

5’ t 5 C 5. Explicitly capture both surface and
bulk diffusion

13



'ELASTIC FIELDS IN THE FILM

) A

3.

Elastic stiffness tensor is
compositionally dependent

Formation and evolution of phase
domains give rise to compositional
misfit: Thank you Vegard!

Two-way chemo-mechanical
coupling




'MODELING PVD USING PHASE-FIELD
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'RAPIDLY PREDICTING MORPHOLOGY!

1. Simulation by phase-field 2. Reduction of microstructural space

t s

-"—-P

3. Construction of surrogate-based model for PVD

: 3 Lz
Sevo (4 1) ai (6) ~ ) _p;¥; (0)+ 0 =
=

Polynomial chaos

-

Mlcrostructure reconstruction
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'ROBUST & EFFICIENT PROTOCOL

True
)
o
c
o
@
>
-O ° °
- Point-wise
3 Only 8 components needed error
) (as opposed to 256x128)
s 99.6
>
—e— Cumulative variance
99.75%
Predicted

20 30 40
principal component




'SOURCES OF ERRORS

Error on 2pt-stats

’ ‘Strue (9) — Spca(é’) ’ ‘2 Overall the error is less than 2% for
€ITq (‘9 ) = both training and test sets
[Strue (0)]]2 E %
rror values confirm predictiveness
and robustness of overall protocol

Error on mapping process to structure Largest source of error propagation

errs (0) = ||Strue(0) — Spredicted (8)]]2 in protocol stems from PCE
[Strue (0)]]2

min max mean standard deviation
0.0030 0.0690 0.0146 0.0123
0.0030 00441 0.0123 0.0091

Buin) | 0.0032 01197 0.0206 0.0223

err (Bes) | 0.0032 0.0771 0.0154 0.0139

18



'SOURCES OF ERRORS

PCA reduces the dimensionality PCE maps back to processing parameters

C Q Li
Spea = Z o (0); =S Spredicted = Y > _ D T(0)p; + 5
= lem L= Rrem

NPCM VCM
. . Small changes in processing input space
Basis elements capture complexity of results in drastic change in morphology:
morphology and long-tange correlation but...Legendre polynomial in PCE are

continuous polynomials 19



ACCELERATING MICROSTRUCTURE EVOLUTION

20



 TIME-SERIES FORECASTING

TIME-SERIES MULTIVARIATE
ADAPTIVE REGRESSION SPLINES
(TSMARS)

Useful for identifying nonlinear structure in
time series

Non-parametric

Autoregressive: divide time-series into optimal
subdomains to fit splines

Predicting microstructure evolution trajectories
in PC space

Training is done for N previous time steps,
predicting N+1, N+2,...

21



' TIME-SERIES FORECASTING @
LONG SHORT TERM MEMORY NETWORK (LSTM)

T

1. LSTM is a special kind of a recurrent neural net (RNNN):
Network with loops in them allowing information to persist (i.e, memory)

2. Looping connect previous information to current: TIME HISTORY!
5. Uses previous states, and current input

4. Learn/forget gate (internal structure) used to form long-term memory (known as cell
state)and short-term memory (hidden state)

5. Training is done for N time steps, predicting N+1, N+2,...

el state

- Neural network
layer

‘ Pointwise

operation

el \ector transfer

T> Concatenate
< Copy

Current Hidden
input state 22
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'MICROSTRUCTURE TRAJECTORY IN PC SPACE

Training Data and Testing Data

Spinodal Decomposition Example 1
Spinodal Decomposition Example 2
Spinodal Decomposition Example 3
Timestep 10

A
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NATIONAL LABORATORY

24



WHY Do WE NEED A DEEP LEARNING STRATEGY! @
TSMARS LSTM

0 2Ia)epreciation of Error fqr TSMARS Model Trqined from Timestep 50 Depreciation of Error for LSTM Model Trained for 70 Timesteps

®®9 TSMARS Test Set Error : ; #®¢ LSTM Test Set Error
09¢ TSMARS Training Set Error : ; 0®¢ LSTM Training Set Error

When using TSMARS, error in the
prediction of microstructure
evolution is increasing due to the
accumulation of error from one time
step to the next

Mean Absolute Relative Error
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FEEDING PREDICTIONS BACK INTO MEMPHIS = (@) G
TSMARS

Radially Averaged 2-point statistics : ‘ Radially Averaged 2-point statistics

— TSMARS Only Predicted Statistics — TSMARS Only Predicted Statistics
— True Statistics — True Statistics

TSMARS+Memphis Predicted Statistics | | . TSMARS+Memphis Predicted Statistics |

VARS

100 150 200 250 300 350 400 “0 l 100 150 200 250 300 350
Radius r Radius r
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MEMPHIS

Open-source and available
through CINT user program

Contents lists available at ScienceDirect

Acta Materialia

) > ctamat
www.glsevier comAocate/acte

joumal homepage:
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MACHINE LEARNING
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James A, Stewart*, Réml Dingreville**

A data-driven surrogate model to rapidly predict microstructure
morphology during physical vapor deposition
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THE ONLY THING WE REGUIRE 15

CINT is a user facility providing cutting-edge — [ fomorsx O e Cro LasA ™
nanoscience and nanotechnology capabilities to the v ; Wt
research community.

Access to our facilities and scientific expertise is
FREE for non-proprietary research.

[

Research areas

SUBMIT A SHORT PROPOSAL
DURING ONE OF THE BIANNUAL
PROPOSAL CALLS.

"« In-Situ Characterization and Nanomechanics .t '
« Soft, Biological, and Composite Nanomaterials N, | N f/ wl p b
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apply to use the facilities, visit: ' A s
https://cint.lanl.gov ' ‘_ _ . ‘
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